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Abstract Most current machine learning methods for building search engines are based

on the assumption that there is a target evaluation metric that evaluates the quality of the

search engine with respect to an end user and the engine should be trained to optimize for

that metric. Treating the target evaluation metric as a given, many different approaches

(e.g. LambdaRank, SoftRank, RankingSVM, etc.) have been proposed to develop methods

for optimizing for retrieval metrics. Target metrics used in optimization act as bottlenecks

that summarize the training data and it is known that some evaluation metrics are more

informative than others. In this paper, we consider the effect of the target evaluation metric

on learning to rank. In particular, we question the current assumption that retrieval systems

should be designed to directly optimize for a metric that is assumed to evaluate user

satisfaction. We show that even if user satisfaction can be measured by a metric X,

optimizing the engine on a training set for a more informative metric Y may result in a

better test performance according to X (as compared to optimizing the engine directly for

X on the training set). We analyze the situations as to when there is a significant difference

in the two cases in terms of the amount of available training data and the number of

dimensions of the feature space.

Keywords Evaluation � Evaluation metrics � Learning to rank � Training �
Empirical risk minimization

1 Introduction

We consider the problem of optimizing the performance of a retrieval system with respect

to a particular evaluation measure. Given an evaluation measure M that is assumed to
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evaluate the quality of the search engine, search engines are build so that they optimize

their performance with respect to this measure.

In the field of information retrieval, many different evaluation metrics have been pro-

posed and used. Most of these metrics have different purposes and are known to evaluate

different aspects of retrieval effectiveness. These evaluation metrics are commonly con-

sidered in two categories.

Some metrics mainly focus on the quality of the top end of the ranking, assuming that

the users mainly care about the top end of the ranking (e.g. top 10 documents in the case of

web search) and ignore the rest. These metrics are often referred to as user-oriented metrics

(e.g. precision at rank 10, ndcg at rank 10).

Measures that evaluate the overall quality of an entire ranked list are often described as

system-oriented. Actually, such measures may be associated with a user model, perhaps

representing a population of users rather than a single user (Robertson 2007). However,

this may not be their main motivation, but they may be intended primarily to represent

quality in a reliable, informative and discriminatory way. The criteria of reliability,

informativeness, and discriminative power may conflict with a strong user motivation.

The main assumption in building search engines is that if a metric M evaluates the

utility of the search engine to an end user, then the search engine should be trained to

optimize for that particular metric (Burges et al. 2006; Yue et al. 2007; Taylor et al. 2008).

This approach is based on the principle of empirical risk minimization which dictates that

in order to optimize the algorithm according to a criterion M, one should train the algo-

rithm to minimize (or maximize) M using the training data.

Recently, Aslam et al. (2005) proposed a framework to analyze measures of retrieval

performance in terms of how informative they are and showed that some evaluation

metrics (e.g. metrics that evaluate the overall quality such as average precision) are more

informative than others (e.g. metrics that mostly evaluate the quality of the top end of the

ranking). Similarly, Webber et al. (2008) showed that some ‘complex’ evaluation metrics

(metrics that evaluate the overall quality of a ranking) are better than some ‘simpler’

metrics (metrics that evaluate the quality of the top end) in terms of predicting the value of

‘simple’ metrics on other topics.

In this paper, we consider the problem of optimization of search engine performance

and question the current approach based on empirical risk minimization. Based on the

results on informativeness and predictive power of evaluation metrics, we hypothesize that

some more informative (or predictive) metrics may be better than others for learning to

rank purposes. In particular, we show that even if the user satisfaction can be measured by

a metric X, optimizing the search engine for a more informative metric Y in the training set

may result in better performance in terms of X in the test set, as opposed to directly

optimizing the engine for X in the training set.

In the sections that follow, we first describe some of the commonly used evaluation

metrics and give an analysis of why optimizing for a more informative metric may be

better for learning purposes. Then, we extend the current learning to rank methods Lam-

daRank (Burges et al. 2006) and SoftRank (Taylor et al. 2008) to optimize for different IR

metrics and validate our hypothesis. We further analyze the effect of the amount of training

data and the number of dimensions of the feature space on the validity of this hypothesis

and conclude that since obtaining training data is an expensive procedure and often only a

limited amount of data is available, one should better optimize for a more informative

metric. Finally, we explain this behavior by showing how the local optimum of a more

informative metric compares with the local optimum of a less informative metric, both in

the test set and the training set.
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2 Evaluation metrics

Out of the many evaluation metrics proposed in IR, precision at cutoff k (PC(k)), average

precision (AP), and NDCG are three of the most commonly used metrics.

Assuming that the user is only interested in top k documents, PC(k) is defined as the

proportion of relevant documents up to rank k. A typical value for k is 10, based on web

search engines.

AP can be defined as the average of precision values at each relevant document. If a system

did not retrieve all relevant documents, these documents are assumed to be retrieved at

infinity (hence, the precision value associated with each of these documents is zero).

PC(k) and AP are based on the assumption that relevance judgments are binary (i.e., a

document can be either relevant or nonrelevant), an assumption clearly not true. Instead,

Järvelin and Kekäläinen (2000) proposed NDCG, a measure that can encorporate graded

relevance judgments. NDCG is defined as the sum of discounted cumulative gains divided

by maximum such value. Assuming the user only cares about the top end of the ranking,

NDCG at rank k (NDCG(k)) is also often used.

3 Training and informativeness of metrics

When search engines are optimized for an objective evaluation metric based on empirical

risk minimization, the evaluation metric used during training acts as a bottleneck that

summarizes the available training data. At each training epoch, given the relevance of the

documents in the training set and the ranked list of documents retrieved by the search

engine for that epoch, the only information the learning algorithm has access to is the value

of the evaluation metric, the algorithm does not have access to the relevance of individual

documents. So, the ranking algorithm be changed on the basis of the change in the value of

the metric.1

Given this fact about evaluation metrics and optimization, which metric is then a good

metric to optimize for? According to the principle of empirical risk minimization, if the

metric we ultimately care about (the test metric) is ‘‘X’’, then we should also be optimizing

for X using the training data. Intuitively, one would then think that if we care about

precision-at-cutoff k, then this is what we should be optimizing for.

Our hypothesis is that this argument is not valid and that since evaluation metrics act as

bottlenecks that summarize the training data, it is actually better to choose a more infor-
mative metric to optimize on the training data. This may be better in the sense of giving

better test results (test metric ? test data) than optimizing the test metric on the training

data. In the following sections, we will first describe why some metrics may be more

informative than others. We use the maximum entropy framework (Aslam et al. 2005) to

compare different evaluation metrics, AP and NDCG, in terms of their informativeness.

We then validate our hypothesis using two different learning to rank algorithms.

3.1 Why are some metrics more informative?

One metric can be more informative than another due to two main reasons: (1) some metrics

ignore some changes in the quality of the ranking, and (2) some metrics give to much weight

to some parts of the ranking due to the properties of the discount function used.

1 Note that this is specific to the learning algorithms that directly optimize for an objective metric, ignoring
the relevance of individual documents as this is the common practice for many learning to rank algorithms.
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Most metrics in information retrieval are based on ranks and relevances of documents

and their values only change if two documents with different relevance values are flipped.

As pointed out by Robertson and Zaragoza (2007), metrics may ignore some flips, but if

they respond at all, all reasonable metrics behave in the same way: positive for a good flip

(relevant moved above non-relevant), and vice versa. If used for optimization, they

therefore tend to guide the ranker in a similar direction.

In general, multi-graded measures are more informative than binary measures since they

respond to any flips between documents of different relevance grade. Furthermore, given

two binary (or multi-graded) measures, one measure may still be more informative than

another for three main reasons: (1) some measures respond only to flips in some specific

part of the ranking, usually the top end; (2) even if two measures depend on the same part

of the ranking, one may be insensitive to some flips within this part, and (3) even if two

measures are sensitive to the same flips, one may be more informative than another.

3.1.1 Loss of information due to ignoring flips

Suppose we know that the user only cares about the top 10 documents and never looks at

the documents beyond this rank, and that the metric that evaluates the satisfaction of the

user is precision at cutoff 10. Now consider optimizing the search engine for this metric.

Since the metric only depends on the top 10 documents, during training, the learning

algorithm will try to collect the best set top 10 documents relative to the remaining

documents. However, at each training step, the desired change will be based only on the

selection of the top 10 documents as compared to the remainder. The relative ranking of

documents beyond rank 10 will be ignored.

Furthermore, the ranking of documents 1–10 will also be ignored by PC(10). Note, on

the other hand, that NDCG(10), even though it uses exactly the same documents in the

training data as PC(10), does take account of flips within ranks 1–10 (even if the relevance

judgments were binary).

If we could assume that we had enough training data, and further that all possible situations

that might arise in the real world (or indeed in any held-out test data) were adequately

represented in the training data, then ignoring these flips would not be a problem. However, it

is quite likely that the test set will contain examples of documents which are similar to those

ignored in training, but which affect important parts of the ranking in the test.

As an example, consider a collection with N = 20 documents, a query with R = 5 relevant

documents, and two search engines. Assume that the first retrieves the five relevant docu-

ments at ranks 1, 2, 11, 12, 13 and the second engine retrieves them at ranks 8, 9, 18, 19, 20.

According to PC(10), the two are equally effective, though by many other measures (as well

as common sense), the first is better. One might argue this is not a problem; if the user

examines all documents in the top 10, then it does not really matter where these documents

are. However, in the test set, there might be other documents that have similar properties to the

top 7 nonrelevant documents retrieved by the second engine, hence the second engine would

retrieve many more nonrelevant documents before retrieving the relevant documents. Thus, it

would have worse performance in terms of PC(10) in the test set.

3.1.2 Loss of information due to discount function

Apart from the loss of information due to insensitivity to some flips, some information can

also be lost due to properties of evaluation metrics. In general, some evaluation metrics are

more informative than others even if they depend on the same amount of information as
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they give different weights to some flips (they may weights flips in some part of the

ranking much more than the flips in another part of the ranking). In the following section,

we will show how such a situation might arise by comparing NDCG and AP in terms of

their informativeness.

3.2 Informativeness of metrics

Informativeness of an evaluation metric is related to how well it summarizes the training

data, i.e., the relevance of documents retrieved by the learning algorithm (or search engine)

for a given query. If a metric is highly informative, then given the value of the metric, the

learning algorithm should be able to infer the relevance of individual documents retrieved.

Based on this intuition, Aslam et al. (2005) proposed a framework that can be used to

analyze retrieval measures in terms of their informativeness. The maximum entropy

framework is based on the assumption that the quality of a list of documents retrieved in

response to a given query is strictly a function of the relevance of the documents retrieved

within that list. The question that naturally arises is how well does a measure capture the

distribution of relevance over the output list? In other words, given the value of a measure,

for a particular system on a particular query, how accurately can one predict the relevance

of documents retrieved by the system? In order to compute how well a measure predicts the

relevance of the returned documents, the maximum entropy framework is based on

forming a distribution over all possible sequences of relevance and finding the maximum

entropy distribution over these lists given the value of the measure. Using the maximum

entropy distribution, it is guaranteed that no extra information is used other than the value

of the given measure. Thus, using only the information given by the metric, a distribution

over the sequence of relevant/nonrelevant documents of length N is formed. Assuming that

the distribution over lists is a product distribution, i.e. the probability of a particular

sequence of relevance is the product of the probability of different relevance grades at each

rank, the probability of relevance of a document at a particular rank (probability-at-rank

distribution) given the value of a metric can then be inferred.

To quantify how informative a metric is, two main criteria are used (Aslam et al. 2005):

(1) how do the precision-recall curves obtained from the inferred probability-at-rank dis-

tribution compare with the actual precision-recall curves of the system, and (2) how well

can the probability-at-rank distribution predict other metrics? If a measure is highly

informative, then one should be able to accurately infer the relevance of individual doc-

uments, and hence given the value of the metric, these inferences should also be accurate.

We would like to emphasize that informativeness of an evaluation metric is mainly

related how well it summarizes the relevance of documents in the ranked list. Hence, these

two criteria mainly aim at evaluating how the inferred probabilities of relevance of each

document compare with their actual relevance. It is easy to show that given the precision-

recall curve of a system as well as the total number of relevant documents in the collection

(R), one can infer the relevance of all the documents retrieved by the system. Therefore,

precision recall curves perfectly summarize the relevance of documents retrieved. Hence,

if a measure can accurately predict the probability of relevance of documents retrieved by a

system, then the inferred precision-recall curve of the system given the value of the metric

should be very similar to the actual precision-recall curve. Similarly, if a metric can predict

the probability of relevance of documents accurately, then given the value of the evaluation

metric one can also predict other evaluation metrics accurately.

In their experiments, Aslam et al. mainly focused on comparing the informativeness of

evaluation metrics for evaluation purposes. They compared binary evaluation metrics such
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as average precision, precision at cutoff 10 and R-precision (precision at cutoff R, where R
is the total number of relevant documents) and showed that average precision is more

informative than the other two metrics. In this paper, we extend the maximum entropy

framework to multi-graded evaluation metrics and use the maximum entropy framework

for comparing the informativeness of evaluation metrics used during optimization. Based

on the results from this framework, we show that the informativeness of the objective

evaluation metric used for optimization in learning to rank is highly important and that if

you have a limited amount of available training data, it is better to optimize for a more

informative evaluation metric.

3.3 Which evaluation metric should we optimize for?

Suppose the (test) performance of our search engine will be evaluated on 2 different

objective metrics, PC(10) or NDCG(10). Which metric should we then optimize for?

Based on the results from Aslam et al. (2005), average precision is more informative

than precision at cutoff 10 as it gives a lot of information about the relevance of documents

retrieved by the search engine, i.e., given the value of the metric one can more accurately

predict the relevance of individual documents retrieved, as compared to precision at cutoff

10. As explained before, this is due to the fact that PC(10) is insensitive to some changes in

the ranking. Similarly, NDCG is also more informative than PC(10) as it responds to many

changes in the ranked list. Therefore, we hypothesize that if the test metric is PC(10), it is

better to optimize the search engine for average precision or NDCG as compared to

PC(10).

Suppose our test metric is again PC(10), is it then better to optimize for NDCG or

average precision? Note that NDCG is more sensitive to changes in the ranking as it is a

multi-graded metric whereas average precision is binary. Furthermore, NDCG is more

correlated with precision at 10 as compared to average precision.

Figure 1 shows the correlations between average precision and PC(10), as opposed to

correlations between NDCG and PC(10) for TRECs 9 and 10. TRECs 9 and 10 contain

judgments with 3 relevance grades, nonrelevant (0), relevant (1), and highly relevant (2).

Each dot in the plots correspond to the average performance of a system over 50 queries.

The plots contain the root mean squared error (RMS) (how correlated are the values?) and

the Kendall’s s (how correlated are the rankings of systems?) statistics. It can be seen that

NDCG metric is more correlated with PC(10) than the average precision metric.

Since (1) NDCG responds to more flips than average precision, and (2) NDCG is more

correlated with PC(10), one might expect optimizing for NDCG to result in better test set

performance in terms of PC(10), as opposed to optimizing for average precision. However,

according to the maximum entropy framework, we will now show that average precision is

a more informative metric than NDCG for summarizing the binary relevance of individual

documents and that given the value of average precision, one can more accurately predict

the relevance of documents retrieved by the system.

In the following section, we will use the maximum entropy framework to compare

average precision and NDCG to quantify how informative each metric is regarding the

binary relevance of documents in a ranked list, and we will show that average precision is

actually more informative than NDCG. Therefore, we conclude that when limited amount

of training data is available, if the goal is to optimize for PC(10), optimizing for average

precision should be preferred.
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3.3.1 Maximum entropy method for comparing AP and NDCG

Since our goal is to infer the relevance of individual documents given the value of the

metric, according to the maximum entropy framework, we find the maximum entropy

probability of relevance distribution subject to the value of the evaluation metric as a

constraint. This requires us to define the expectations of evaluation measures given the

probability of relevance at rank distribution.

Let N be the total number of documents retrieved by a system, R be the total number of

relevant documents in the query and Pðreln ¼ 1Þ is the probability that the document at

rank n is relevant, then the expected value of average precision can be written as (Aslam

et al. 2005):

E½AP� ¼ 1

R

XN

n¼1

Pðreln ¼ 1Þ
n

1þ
Xn�1

j¼1

Pðrelj ¼ 1Þ
 ! !

The maximum entropy method was originally proposed to compare binary evaluation

metrics. We further extended the maximum entropy method to encorporate multi-graded

evaluation metrics such as NDCG. In the above setup, let n 2 0; 1; . . .c be a relevance

grade and let Prðreln ¼ nÞ be the probability that the relevance of document at rank n is n.

Let g(n) be the gain value associated with relevance grade n in the NDCG computation.

Then, the expected value of NDCG can be defined as:
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Fig. 1 Correlations of precision at 10 with (top) average precision and (bottom) NDCG for TRECs 9 and 10

Inf Retrieval (2010) 13:271–290 277

123



E½NDCG� ¼
XN

n¼1

Xc

n¼0

gðnÞ � Pðreln ¼ nÞ
lgðnþ 1Þ

.
optDCGð Þ

The maximum entropy formulations for average precision and NDCG are shown in

Fig. 2. The second constraint in the formulations guarantees that there are a given number

of relevant documents in total (in the case of average precision), or there are a given

number of documents from each relevance grade (in the case of NDCG), and the third

constraint guarantees that we have a distribution.

We compare the informativeness of AP and NDCG using data from TRECs 9 and 10.

Using the setup described above, we first infer the probability of relevance of each doc-

ument given the value of each metric and then calculate the maximum entropy precision-

recall curves. As NDCG is a multi-graded metric, the maximum entropy method gives us

the probability of a document being in each relevance grade. Since our goal is to compare

AP and NDCG in terms of how well they summarize the probability of relevance of each

document, we convert the inferences obtained from NDCG to binary by summing these

probabilities for each grade c [ 0.

Once the inferred probability of relevance values are obtained given the value of each

evaluation metric, we also infer the precision-recall curve of a system given the value of each

evaluation metric and compare the inferences with the actual precision-recall curve of a system.

The mean RMS and mean absolute error (MAE) between the inferred and the actual

precision-recall curves, calculated at the points where recall changes, is shown in Table 1.

It can be seen that the inferences obtained from AP are always better than the inferences

obtained from NDCG. Hence, one can conclude that average precision is actually more

informative than NDCG in terms of summarizing the binary relevance of each document.

In order to further compare the informativeness of the two metrics, we also compare

how well these two metrics can predict other evaluation metrics. Given the probability of

Fig. 2 Maximum entropy setup for AP and NDCG, respectively

Table 1 RMS and MAE between the actual precision-recall curves and inferred precision-recall curves
given the value of NDCG and AP

TREC9 TREC10

RMS MAE RMS MAE

NDCG 0.2034 0.1686 0.1751 0.1214

AP 0.1666 0.1134 0.1620 0.1086
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relevance distributions obtained given each metric, we infer the value of PC(10) and

compare the inferred PC(10) values with the actual PC(10) values. Figure 3 shows how the

inferred values of precision at 10 given each metric compare with the actual value of

precision at 10. It can be seen that average precision actually contains much more infor-

mation about PC(10) as compared to NDCG (in contrast to the original correlations as

shown in Fig. 1) since average precision can accurately predict the probability of relevance

of documents. Note that for TREC10, the inferences from NDCG look better in terms of

RMS error when compared to AP (even though the correlations seem higher visually);

however, this is mainly caused by the two outlier systems.

Based on these results, we claim that in order to obtain a better test set value with

respect to a binary evaluation measure (such as PC(10)), one should better optimize for

average precision as opposed to NDCG since average precision is more informative

regarding the binary relevance of.

Although optimizing for a different metric other than the test metric may seem counter

intuitive, similar conclusions were reached in machine learning when optimizing classifiers

for error rate. Error rate has similar problems to precision at cutoff k in the sense that it

does not much discriminate between different ranked lists. Ling et al. (2003) have shown

that even if what one cares about is error rate, training to optimize for the area under ROC

curve produces better classifiers in terms of their error rate than classifiers trained to

directly minimize error rate.
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Fig. 3 Actual PC10 values compared to inferred PC10 values given the value of (up) average precision, and
(bottom) NDCG, for TRECs 9 and 10
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Recently, Le and Smola (2007) showed that optimizing for Winner Takes it All (WTA)

metric results in worse test performance in terms of WTA, as opposed to optimizing for

NDCG at rank k. However, the authors do not provide a detailed analysis and explanation

of the phenomenon. Their main explanation is based on the argument that WTA is a less

structured metric. Furthermore, they still use NDCG at rank k for optimization, as opposed

to computing NDCG of the entire ranking.

The common assumption in the learning to rank community is that regardless of the

informativeness of the metrics and the amount of available data training data, the objective

metric used in optimization should be the target test metric. For example, Xu and Li (2007)

optimize for NDCG at rank 5, Joachims (2005) mentions that the search engines should be

optimized for the target test metric and uses target metrics such as the F-score, R-precision

(referred to as precision-recall break-even point), etc. for optimization. Similarly, Burges

et al. (2006) mention that in an ideal situation, the optimization cost should be the target cost.

4 Optimizing different metrics of retrieval effectiveness

In order to compare the effect of evaluation metrics used in optimization and test our

hypothesis, we use two algorithms that are mainly designed to optimize directly for evaluation

metrics. The two main algorithms that we use are SoftRank (Taylor et al. 2008) and Lamb-

daRank (Burges et al. 2006), which are shown to find local optima for the target evaluation

metrics (Liu et al. 2008; Donmez et al. 2008). Given that both algorithms are shown to find the

local optimum with respect to an objective metric, our results are likely to apply for any other

learning to rank algorithm that can find the local optimum for the objective metrics.

Both LambdaRank and SoftRank were originally designed to optimize for NDCG. In

the following section, we give a basic description of both methods and describe how they

can be extended to optimize for average precision and precision at cutoff k. In all our

experiments, we use NDCG with the most commonly used log2ðr þ 1Þ discount, where r is

the rank and the exponential gain 2relðiÞ � 1 , where rel(i) is the relevance of document i
(Taylor et al. 2008; Burges et al. 2006).

4.1 SoftRank

Information retrieval metrics are not smooth as they mainly depend on the ranks of doc-

uments, which are discontinuous. The main idea used in SoftRank is based on defining

smooth versions of information retrieval metrics by assuming that the score sj of each

document j is a value generated according to a Gaussian distribution with mean equal to sj

and shared smoothing variance rs. Based on this, Taylor et al. (2008) then define pij, the

probability that document i will beat document j and the rank distribution pj(r), the

probability that document j will be at rank r. These distributions can then be used to define

smooth versions of IR metrics as expectations over these rank distributions.

Given these definitions, we now define SoftPC and SoftAP, the expected precision-

at-cutoff and average precision with respect to these distributions and compute the gra-

dients of these metrics.

4.1.1 SoftRank for optimizing PC(k) (SoftPC)

Given the rank distribution as defined above, expected value of precision at cutoff k with

respect to this distribution can be written as:
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PCðkÞ ¼
PN

j¼1 relðjÞ � Pðrj� kÞ
k

where N is the total number of documents in the collection, rel(j) is the binary relevance of

document j, and Pðrj� kÞ is the probability that the document j will be among the top k
documents retrieved by the search engine, which can be computed as Pðrj� kÞ ¼

Pk
r¼1 pjðrÞ:

Using the same approach as in SoftRank and using the chain rule for obtaining deriv-

atives, the derivative of PC(k) with respect to the score of document �sm can be written as

oPCðkÞ
o�sm

¼ oPCðkÞ
opmðrÞ

� opmðrÞ
o�sm

where

oPCðkÞ
opmðrÞ

¼
relðmÞ

k if r� k
0 o.w.

�

and
opmðrÞ
o�sm

can be computed as described by Taylor et al. (2008).

4.1.2 SoftRank for optimizing AP (SoftAP)

In order to define soft average precision, consider the random experiment corresponding to

average precision, as defined by Yilmaz and Aslam (2008):

1. Pick a relevant document at random. Let the rank of this document be r.

2. Pick a document that is ranked at or above r, at random.

3. Output the relevance of this document.

Given the distribution pij, the probability that document i will beat document j, SoftAP

can then be defined as:

AP ¼ 1

R

XN

j¼1

relðjÞ �
relðjÞ þ

PN
i¼1;i 6¼j pijrelðiÞ

PN
i¼1;i 6¼j pij þ 1

where R is the number of relevant documents in the query.

Using the same approach as before, he derivative of AP with respect to the score of

document �sm can be written as

oAP

o�sm
¼
XN

i¼1

XN

j¼1

oAP

opij
� opij

o�sm
þ oAP

opji
� opji

o�sm

oAP

opij
¼ relðjÞ

R

relðiÞ
PN

i¼1;i 6¼j pij þ 1
�

relðjÞ þ
PN

i¼1;i 6¼j pijrelðiÞ
PN

i¼1;i 6¼j pij þ 1
� �2

2
64

3
75

and
opij

o�sm
can again be computed as described by Taylor et al. (2008).

4.2 LambdaRank

In order to overcome the problem of optimizing non-smooth IR metrics, LambdaRank uses

the approach of defining the gradient of the target evaluation metric only at the points

needed.
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Given a pair of documents, the virtual gradients (k functions) used in LambdaRank are

obtained by scaling the RankNet (Burges et al. 2005) cost with the amount of change in the

value of the metric obtained by swapping the two documents (Burges et al. 2006).

Following the same setup, in order to optimize for the precision or the average precision

metric, we scale the RankNet cost with the amount of change in the value of the corre-

sponding metric when the two documents are swapped. This way of building gradients in

LambdaRank is shown to find the local optima for the target metrics (Donmez et al. 2008).

4.2.1 LambdaRank for optimizing PC(k)

The discount function corresponding to precision at cutoff k can be written as:

DðrÞ ¼
1
k if r� k
0 o.w.

�

where PCðkÞ ¼
PN

j¼1 relðjÞ � DðrjÞ , where rj is the rank of document j.
Then, when document i and j are swapped, the change in precision value is equal to

ðrelðiÞ � relðjÞÞ � ðDðriÞ � DðrjÞÞ . When weighted by the RankNet cost, the k function for

precision is:

k ¼ 1

1þ expðsi � sjÞ
� ðrelðiÞ � relðjÞÞ � ðDðriÞ � DðrjÞÞ

4.2.2 LambdaRank for optimizing AP

Average precision is computed as average of the precisions at relevant documents and the

precision at each relevant document depends on the relevance of all documents above that

document. Therefore, swapping two documents may affect the precision at all documents

that are ranked in between the two documents. Hence, the difference in the average

precision value when two documents are swapped is not as obvious as the change in the

value of NDCG or precision at cutoff k.

Consider two documents j and i at ranks r1 and r2. When the two documents are

swapped so that document j is now at rank r2 and document i at rank r1, assuming r1 \ r2 ,

the change in the average precision value can be written as:

DAP ¼ 1

R
� DPðr1Þ þ

X

r2 r1;r2ð Þ
DPðrÞ þ DPðr2Þ

2
4

3
5

where DP(i) corresponds to the change of precision at rank i when the two documents are

swapped. Then the change in precision value at rank r1 and r2 can be computed as

DPðr1Þ ¼
relðiÞ

r1

relðiÞ þ
Xr1�1

r¼1

relðrÞ
 !

� relðjÞ
r1

relðjÞ þ
Xr1�1

r¼1

relðrÞ
 !

DPðr2Þ ¼
ðrelðjÞ � relðiÞÞ �

Pr2�1
r¼1;r 6¼r1

relðrÞ þ 1
� �

r2

For all ranks r such that r1 \ r \ r2 , the change in precision value is
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DPðrÞ ¼ relðrÞ
r

relðiÞ � relðjÞð Þ

Once these values are computed, the lambda values can be computed as

k ¼ 1

1þ expðsi � sjÞ
� DAP

5 Experimental results

Given that we have extended the current learning methods to optimize for different

evaluation metrics, we now use these algorithms to validate our hypothesis. In this section,

we first show that when the number of features is large, training for a more informative

metric produces significantly better results than training for a less informative metric. We

further investigate the effect of the number of features and the amount of available training

data on the validity of the hypothesis and finally analyze how the local optimum of a more

informative metric compares with the local optimum of a less informative one, both in the

test set and the training set.

In order to test our hypothesis, we run each algorithm with data obtained from a

commercial web search engine. The web data contains 382 features and is split into train,

validation and test sets. We use training data of various sizes since the effect of the

informativeness of a metric on a learning to rank algorithm depends on the amount of

available training data. We use validation and test sets with 1K, and 2K queries, respec-

tively. The documents in the datasets are assigned relevance judgments with 5 grades,

between 0 (nonrelevant) to 4 (most relevant). In order to compute the binary measures, we

convert these judgments to binary by assuming that documents with relevance[ 0 are all

relevant and the rest are nonrelevant.2

In our experiments, similar to the setup used in LambdaRank and SoftRank, we use a

two layer net with ten hidden nodes. For various learning rates, we run each algorithm for

300 epochs and pick the best epoch according to the validation set.

We consider PC(10) and NDCG(10) as the test metrics that evaluate user satisfaction.

We also report the AP value as the test metric for comparison purposes. Tables 2 and 3

show the result of training, testing and validating using different measures on a dataset

with 2K training queries using LambdaRank and SoftRank as the learning algorithms,

respectively. By convention, we report the results in the scale of 0–100 for each metric.

The rows of the tables correspond to training for a different metric, average precision,

precision at cutoff 10, NDCG at 10, and NDCG of the entire list. The columns correspond

to the test metric. When training (optimizing) the search engine for a measure X and using

a test measure Y, we use Y as the validation metric to pick the best epoch using the

validation set.3

The • mark indicates statistically significant differences (with 95% confidence) com-

pared to training, validating and testing using the test metric itself and � corresponds to

significant difference when training for AP and NDCG are compared, given a test metric.

In order to avoid reaching wrong conclusions due to using a particular significance test, we

2 We tried varying the conversion by thresholding at different grades, but the conclusions did not change.
3 We tried using the training metric as the validation metric as well, but did not observe significant
differences in the results.
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mark a difference as statistically significant if it is significant with 95% confidence

according to both Wilcoxon sign-rank, sign test and t-test (Sanderson et al. 2005).

It can be seen from the tables that even if the search engine will be ultimately tested on

PC(10) or NDCG(10), it is better to train the search engine for a more informative metric

such as AP or NDCG. This result is consistent for both learning algorithms. Note that the

improvements obtained by optimizing for a more informative metric are similar in terms of

value to the improvement achieved by LambdaRank over RankNet (Burges et al. 2006) or

LambdaRank over SoftRank (Taylor et al. 2008) on a similar dataset obtained from a

commercial search engine. Since LambdaRank is known to be better than RankNet (or

SoftRank), these results suggest that the informativeness of the objective metric may be as

important as the quality of the learning algorithm. k over SoftRank on a similar dataset

obtained from a commercial search engine as it is difficult to achieve these improvements.

When the two measures that depend on the entire ranking are compared (AP and

NDCG), it can be seen that when SoftRank method is using for optimization, training for

average precision produces significantly better results for average precision and PC(10),

compared to training for NDCG. When LambdaRank is used, average precision still

produces better values for the two binary evaluation metrics (AP and PC(10)). However,

the differences are not significant when the test metric is PC(10). This result is consistent

with the conclusions obtained through the maximum entropy framework in the previous

section that suggests that average precision is actually more informative than NDCG in

terms of summarizing the binary relevance of documents. These results also suggest that

properties of average precision should be further explored and a multi-graded version of

the measure be designed.

When NDCG(10) is compared with precision at cutoff 10, it can be seen that NDCG(10)

consistently outperforms PC(10), as expected.

5.1 Number of features, amount of training data and informativeness

In this section, our goal is to answer two main questions: (1) if the number of features is

small (hence, the algorithm does not need as much information for learning), and (2) if

much more training data were available, does optimizing for a more informative metric

still result in a significant improvement over optimizing for a less informative one?

Table 2 LambdaRank results on
2K web data

Testmetric AP PC(10) NDCG(10)

TrainAP 62.91� 54.96• 63.03•

Train PC(10) 62.28 54.44 62.24

Train NDCG 62.82 54.92• 62.98•

Train NDCG(10) 62.30 54.72• 62.41

Table 3 SoftRank results on 2K
Web data

Testmetric AP PC(10) NDCG(10)

Train AP 61.95� 54.21•� 61.29

Train PC(10) 59.99 52.73 61.81

Train NDCG 61.30 53.27• 62.90•�
Train NDCG(10) 60.82 52.77 62.37
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Taylor et al. (2006), recently showed that when there are very few features (e.g. 2), a

much smaller amount of training data is enough for learning and increasing the amount of

training data does not result in any significant improvement. As the number of features

increase, the learning algorithm needs more training data to perform well.

Similarly, when the number of features is large, using a more informative metric in

training should result in a bigger improvement in test set performance over a less infor-

mative metric. When the number of features is small, since the algorithm does not need as

much information, training using a less/more informative metric will probably not sig-

nificantly affect the test set performance.

Note that this hypothesis is also related to the amount of available training data versus

the number of features. If the number of features is large, then one would need more

training data to get a similar performance when using a non-informative metric versus

when using an informative metric. Furthermore, even if the number of features is large, if

infinite amount of training data were available, then the informativeness of the objective

metric may not make significant differences.

In order to check the tradeoff between the number of dimensions, informativeness of a

metric and the amount of training data, we use the data from the 2K training set and vary

the number of features (382 vs. 9 vs. 2, as in Taylor et al. (2006)) and the amount of

available training data (by sampling queries from this training set) and optimize the search

engine for different target metrics. Since LambdaRank and SoftRank behave in a similar

way, we mainly focus on LambdaRank as the learning algorithm.

For comparison purposes, we focus on the effect of training for average precision

assuming the test metric is PC(10) compared to training for PC(10) and the effect of

training for NDCG assuming the test metric is NDCG(10) compared to training for

NDCG(10).

Figure 4 shows the result of this experiment. The left plot in the figure shows the test set

PC(10) value when training for AP versus PC(10) when the number of features varies.

Similarly, the right plot shows the test set NDCG(10) value when training for NDCG

versus NDCG(10) when the number of features varies. The x axis in both plots show the

amount of training data used in optimization as a percentage.

10 20 30 40 50 60 70 80 90 100
50

51

52

53

54

55

56

Percentage of Queries

T
es

t s
et

 P
C

(1
0)

Optimize AP, 382 features
Optimize PC(10), 382 features
Optimize AP, 9 features
Optimize PC(10), 9 features
Optimize AP, 2 features
Optimize PC(10), 2 features

10 20 30 40 50 60 70 80 90 100
55

56

57

58

59

60

61

62

63

Percentage of Queries

T
es

t s
et

 N
D

C
G

(1
0)

Optimize NDCG, 382 features
Optimize NDCG(10), 382 features
Optimize NDCG, 9 features
Optimize NDCG(10), 9 features
Optimize NDCG, 2 features
Optimize NDCG(10), 2 features

Fig. 4 (Left) Test set PC(10) values when optimizing for AP versus PC(10) (Right) Test set NDCG(10)
values when optimizing for NDCG versus NDCG(10), varying the number of queries used in training and
the number of features
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In both plots, when the number of features is small (i.e. 2), for all amounts of training

data, training on AP (or NDCG) gives similar test performance to training on PC(10) (or

NDCG(10)), and there is no statistically significant differences in the results.

Figure 4 shows that when we use 9 features, except when 100% training data is used,

training on AP (or NDCG) results in significantly better test set PC(10) (or NDCG(10))

values when compared to training on PC(10) (or NDCG(10)). When 100% training data is

used, there is no significant difference in the two cases.

When all the features are used (382 features), training for AP (or NDCG) consistently

significantly outperforms training on PC(10) (or NDCG(10)), for all amounts of training

data. Note that in general the informativeness of the optimization metric tends to matter

more when less training data is available, as expected.

In order to validate our conclusions that the informativeness of the optimization metric

is not important when there as a small number of features, we also ran our experiments on

the OHSUMED dataset. This dataset contains 20 features most of which are highly cor-

related with each other, hence the effective number of features is much fewer than 20.

Given this fact, the optimization metric is expected not to make a significant difference and

our results validate this. Similar conclusions were reached when we used global optimi-

zation techniques (brute force search) with 2 features.

In order to further check the effect of the amount of training data versus the informa-

tiveness of the objective metric, we repeated the same set of experiments using training

data with 30K queries with 382 features from a commercial search engine. We used the

same validation/test set as in the previous experiments with 2K training data. Table 4

shows the result of this experiment. Even though the amount of training data is much larger

in this case, the results obtained are still similar to the ones obtained using 2K dataset;

training on the more informative metric resulting in a better test set performance for the

target metric than training for the target metric itself. Note that all the above experiments

are still performed using a limited amount of training data. Although training data with

30K queries is quite a large set, if we had even more training data available, we might

reach different conclusions (Donmez et al. 2008). However, since obtaining relevance

judgments is an expensive procedure, we almost always have a limited amount of training

data available (especially for non-commercial usage). In the literature, many different

methods have been proposed for learning with unlabeled data. Our results suggest that one

way of decreasing the amount of judgment effort for obtaining training data is to use more

informative metrics during training, especially when the number of features is large.

5.2 Local optimality of training versus target metrics

A natural question one might ask is how optimizing for a metric X compares with opti-

mizing for another metric Y in terms of the optimality of Y in the training and test sets.

Figure 5 shows the learning curves when optimizing for each metric. These plots

illustrate how the value of the test metric changes while training for another metric. For

Table 4 Lambdarank results on
30K Web data

Testmetric AP PC(10) NDCG(10)

Train AP 64.36•� 56.40•� 64.94

Train PC(10) 63.98 56.12 64.65

Train NDCG 64.14 55.96 65.55•�
Train NDCG(10) 63.77 55.95 65.31
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comparison purposes, we again mainly focus on the effect of training for average precision

assuming the test metric is PC(10) (top left plot) compared to training for PC(10) (top

middle plot) and the effect of training for NDCG assuming the test metric is NDCG(10)

(bottom left plot) compared to training for NDCG(10) (bottom middle plot).

The dotted line (blue) at each plot shows how the value of the optimization metric

changes in the training set and the solid line (red) shows how the value of the test metric

changes in the same set at each training iteration (epoch). The dotted solid line (green)

shows the value of the test metric in the validation set. We restart the optimization if we do

not observe any improvement in the training set performance for 16 consecutive iterations.

The sudden drops in the validation/training set values of the metrics are due to these

restarts.

It can be seen that when optimizing for NDCG (or AP), the NDCG(10) (or PC(10))

values follow a very similar trend in the training set.

In Fig. 5 in the top right plot, we compare how the value of PC(10) changes when the

learning algorithm is optimized for AP versus PC(10) during training and in the bottom

right plot change in the NDCG(10) value when the algorithm is optimized for NDCG

versus NDCG(10). These plots also show that when optimizing for AP (or NDCG), the

learning algorithm is behaving in a very similar way to optimizing for PC(10) (or

NDCG(10)) in terms of the values of these test metrics.

Intuitively, optimizing for NDCG (or AP) of the entire ranked list should implicitly

correspond to optimizing for NDCG(10) (or PC(10)). A natural question to ask is ‘Is the

local optimum for these more informative metrics also a local optimum for the less

informative ones?’. If this is the case, then this also suggests that one should better

optimize for these overall metrics, since the metrics that depend on the top end of the

ranking will be implicitly optimized. In order to check whether the local optimum of a

metric that evaluates the overall quality of a ranking (AP, NDCG) is also the local opti-

mum for a metric that evaluates the top end of the ranking (PC(10), NDCG(10)), we use
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Fig. 5 (Top) Training and validation curves when optimizing for AP and PC(10). (Bottom) Training and
validation curves when optimizing for NDCG and NDCG(10)
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the Monte-Carlo test with one side error used by Donmez et al. (2008) to prove that

Lambdarank finds the local optimum of an IR metric.

The Monte-Carlo test of local optimality can be described as follows: Given w; the

optimal weights found by the optimization algorithm, sample points from a unit sphere

around w: In order to do so, first form an n-dimensional vector by sampling each dimension

of the vector from a Gaussian distribution with 0 mean unit variance and project it on to the

unit sphere. Repeat this process k times, obtaining k vectors v1; v2; . . .vk: Alter the optimal

weights w by adding g � vi to w for small g[ 0 and test whether there is any improvement

on the value of the objective metric. The g value corresponding to the step size is varied

(g 2 f0:1; 0:2; . . .; 1g).
Donmez et al. conclude that if no improvement on the value of the objective metric is

observed more than a small e = 0.003 when k = 460 random directions are used (resulting

in 4,600 different alterations of the weight vector considering the step size), then the

learned weights represent a local optimum with 99% confidence. Using such an e value

may be arguable for checking local optimality. However, such a value can be used con-

sidering the granularity of the IR metrics.

In our experiments, we used the Monte-Carlo test of local optimality to show whether

optimizing for a metric Y also optimizes for a target metric X, both in training and testing

sets. Table 5 shows the result of this experiment.

Given the optimal weights for a training metric in the training set, we also use 4,600

different alterations of the weight vector as described above and check whether we observe

any improvement in the value of the test metric, both in the training set and in the test set.

Out of the 4,600 different alterations, we report the number of cases when we see any
improvement in the value of the test metric and an improvement greater than e = 0.003. It

can be seen that when using PC(10) as the test metric, no improvement[e was observed in

the training set when training for AP or PC(10). So, according to the criterion by Donmez

et al., when training for AP, the algorithm also finds the local optimum for PC(10) (we

refer to this as e-optimality). Similarly, when training for NDCG, the e-optimum for

NDCG(10) is also found.

However, it can be seen that when the weights are altered, there are some cases when

we observe an improvement \e in the training set. Considering PC(10) as the test metric,

the number of cases that we observe any improvement is more when training for AP than

when training for PC(10) itself.

When the test set is considered given the optimal weights of the training metric in the

training set, the number of cases where there is any improvement or an improvement[e in

the PC(10) value is always smaller when AP is used as the training objective versus when

PC(10) is used as the objective. In the case of AP for example, AP seems to be e-optimal

even in the test set. This suggests that even though training for AP is less likely to have

found the local optimum for PC(10), as compared to training for PC(10) in the training set,

Table 5 Optimality results for
PC(10) when training for AP
versus PC(10) and NDCG(10)
when training for NDCG and
NDCG(10)

Train
metric

Test
metric

Trainset Testset

[0 [e [0 [e

AP PC(10) 325 0 271 0

PC(10) PC(10) 252 0 539 15

NDCG NDCG(10) 226 0 590 17

NDCG(10) NDCG(10) 150 0 670 22
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it is more likely to have found to local optimum in the test set. This may be related to the

fact that PC(10) does not utilize all the training data and since there may be documents in

the test set with similar properties to those that were ignored during training, even when the

weights are slightly altered, we are more likely to observe an improvement in the test set

when PC(10) is used for training. Similar behavior can be seen for NDCG versus

NDCG(10).

6 Conclusions

Most commonly used learning to rank algorithms are based on empirical risk minimization

which suggests that if a metric M evaluates the quality of a search engine to an end user,

then the engine should be trained to optimize for M.

We show that this assumption is not necessarily valid. Evaluation measures used in

learning to rank act as bottlenecks that summarize the training data. It has been shown that

some measures are more informative than others (Aslam et al. 2005). When the number of

features is large, given a limited amount of training data, it is essential that the evaluation

measure summarizes the limited data as good as possible. In this case, even when the

ultimate metric that the user is interested in is M, one might better optimize for a more

informative metric in the training set. We further analyze the local optima of different

metrics and show that when training for a more informative metric in the training set, one

is more likely to have found the local optimum for the less informative metric in the test set

as compared to directly training for the less informative metric.

Our results suggest that the objective metrics used in optimization are not necessarily

the metrics that evaluate user satisfaction and that more research should be devoted to

developing evaluation measures that are more informative and better suited for learning to

rank.
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