
LEARNING TO RANK FOR INFORMATION RETRIEVAL

Adapting boosting for information retrieval measures

Qiang Wu Æ Christopher J. C. Burges Æ Krysta M. Svore Æ
Jianfeng Gao

Received: 21 April 2009 / Accepted: 19 August 2009 / Published online: 3 September 2009
� Springer Science+Business Media, LLC 2009

Abstract We present a new ranking algorithm that combines the strengths of two pre-

vious methods: boosted tree classification, and LambdaRank, which has been shown to be

empirically optimal for a widely used information retrieval measure. Our algorithm is

based on boosted regression trees, although the ideas apply to any weak learners, and it is

significantly faster in both train and test phases than the state of the art, for comparable

accuracy. We also show how to find the optimal linear combination for any two rankers,

and we use this method to solve the line search problem exactly during boosting. In

addition, we show that starting with a previously trained model, and boosting using its

residuals, furnishes an effective technique for model adaptation, and we give significantly

improved results for a particularly pressing problem in web search—training rankers for

markets for which only small amounts of labeled data are available, given a ranker trained

on much more data from a larger market.

Keywords Learning to rank � Boosting � Web search

1 Introduction

We consider the ranking problem for information retrieval (IR), where the task is to order a

set of results (documents, images or other data) by relevance to a query issued by a user.

Ranking is a core technology that is fundamental to widespread applications such as

internet search and advertising, recommender systems, and social networking systems.

Q. Wu � C. J. C. Burges � K. M. Svore (&) � J. Gao
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
e-mail: ksvore@microsoft.com

Q. Wu
e-mail: qiangwu@microsoft.com

C. J. C. Burges
e-mail: cburges@microsoft.com

J. Gao
e-mail: jfgao@microsoft.com

123

Inf Retrieval (2010) 13:254–270
DOI 10.1007/s10791-009-9112-1



There are two basic categories of ranking algorithms: one scheme is based on learning

the pairwise preference, such as RankNet (Burges et al. 2005) and LambdaRank (Burges

et al. 2006), which use neural nets to learn the pairwise preference function; the other

scheme is based on relevance regression or classification such as McRank (Li et al. 2007).

Because a perfect ranking implies perfect decisions on all pairs’ preferences and an

incorrect ranking implies the existence of mistakenly ordered pairs, learning a ranking

function is equivalent to learning a pairwise preference function. On the other hand,

although predicting (with classification or regression) the relevance labels perfectly implies

perfect ranking, the converse is not true. For example, if the classifier assigns class c - 1

to each returned document whose true class is c, and the documents are ranked by class,

then the ranking will be perfect even though the classification error rate is 100%. There-

fore, casting ranking as learning pairwise preferences is superior to treating it as a clas-

sification or regression problem simply because it avoids solving an unnecessarily hard

problem. Another advantage of the pairwise scheme is the fact that at each stage of

boosting, we need train only one tree, as opposed to training a multiclass classifier, for

which each stage of boosting requires as many trees as there are classes. This results in

much smaller and faster models at test time, which is crucial when ranking millions of

documents in real time, as is required for web search.

In this paper, we propose a new ranking algorithm that combines the strengths of two

previous approaches: LambdaRank (Burges et al. 2006), and boosting. LambdaRank has

been shown to be a very effective ranking algorithm for optimizing IR measures (Donmez

et al. 2008). It is a pairwise-based approach that leverages the fact that neural net training

needs only the gradients of the cost function, not the function values themselves, and it

models those gradients using the sorted positions of the documents for a given query. This

bypasses two significant problems, namely that typical IR measures (Robertson and

Zaragoza 2007), viewed as functions of the model scores, are either flat or discontinuous

everywhere (Burges 2005), and that those measures require sorting by score, which itself

is a non-differentiable operation. On the other hand, it was recently shown that treating the

ranking problem as a simple classification problem, followed by mapping the outputs to a

single score by computing the expected relevance, and using boosted trees as the classi-

fiers (‘‘McRank’’), can work remarkably well (Li et al. 2007). However, McRank is

inefficient in test phase (each round of boosting requires as many trees as there are

classes). Yet, its success suggests that using boosted trees in an algorithm that directly

optimizes the IR cost function, rather than simply treating the problem as a classification

problem, may give further improvement to the accuracy/speed tradeoff. This paper pre-

sents such an algorithm.

We consider retrieval problems with five levels of relevance and we use the normalized

discounted cumulative gain (NDCG) relevance measure (Jarvelin and Kekalainen 2000),

which is suitable for non-binary relevance measures and which emphasizes the top

returned results. For a given query Qi; i ¼ 1; . . .;m; the NDCG is defined as:

Ni � ni

XT

j¼1

2rðjÞ � 1
� �

= logð1þ jÞ ð1Þ

where rðjÞ 2 f0; . . .; 4g is the integer label for the relevance level of the jth document in

the sorted list, and where T is the truncation level at which the NDCG is computed. Here ni

is a normalization constant chosen so that Ni = 1 for a perfect ranking for truncation level

T. For multiple queries, the NDCGs are simply averaged.

Inf Retrieval (2010) 13:254–270 255

123



2 Relation to previous work

Recently the problem of learning to rank has attracted increasing attention in the infor-

mation retrieval and machine learning communities. The superiority of learned ranking

models over traditional probabilistic retrieval models has been demonstrated on benchmark

data sets. For example, Gao et al. (2005) showed that a linear ranking model significantly

outperforms a number of state-of-the-art language models (Gao et al. 2004; Song and

Croft 1999; Zhai et al. 2002) and the classical probabilistic retrieval model (Jones et al.

1998) on the ad hoc retrieval task using TREC test sets.

A key goal of learning to rank is to set up a learning problem that can be solved

efficiently for an underlying problem that is non-smooth, non-convex and in fact combi-

natoric. Yue et al. used SVMs to optimize a convex upper bound on mean average pre-

cision, a widely used binary measure (Yue et al. 2007). Le and Smola proposed using the

Hungarian Marriage algorithm to optimize a convex bound on any general IR measure (Le

and Smola 2007). However, although these algorithms are fast in test phase for linear

kernels, one generally needs more expressive models for the web search problem, and

using general kernels renders such methods to be unacceptably slow. Other approaches

have modified AdaBoost for NDCG (Xu and Li 2007) and have considered ranking using

the whole list of returned results as input for computing the score of a given document (Cao

et al. 2007). At the other extreme, ignoring the IR measure and treating the problem as a

classification problem, using boosted trees as proposed by Li et al. (2007), works

remarkably well. However the resulting algorithm (‘‘McRank’’) is slow (in both train and

test phases) since it requires as many trees per iteration as classes (namely, five, in Li et al.

2007). One might hope that simply treating the problem as a regression problem would

yield the same performance speedup for similar accuracy, but (Li et al. 2007) showed that

regression does not work as well as classification for this task. Zheng et al. (2007) pro-

posed a method of using gradient boosting for ranking on smooth pairwise loss functions,

but most IR metrics, such as NDCG, are non-smooth and cannot be optimized directly in

this framework.

Prior to this work, neural nets were shown to give good results (Burges et al. 2005,

2006), and in particular, a training method called LambdaRank (Burges et al. 2006) has

been shown to optimize the NDCG measure (Donmez et al. 2008; Yue and Burges 2007),

which is a very intriguing result. The LambdaRank trick is basically to note that neural net

training requires only the gradients (of the cost with respect to the model scores), and that

these can be chosen heuristically, based on the rank position and label of each document,

after the sort. The LambdaRank gradients reported in (Burges et al. 2006, Donmez et al.

2008, Yue and Burges 2007) are the gradients of the pairwise log binomial loss (Burges

et al. 2005) multiplied by the NDCG gained by swapping the two documents, and then

summed over pairs of documents (see Sect. 3); they are smooth functions of the document

ranks (in that the gradients change smoothly as two adjacent documents exchange rank

positions during learning); the idea is to rely on the (also smooth) RankNet cost gradient to

smoothly encode the dependence on the document scores.

Boosted trees are very flexible models. For example, they handle categorical and count

data better than neural nets (they can use count data directly, whereas nets require inputs

with similar dynamic ranges); they give models for which the importance of each feature

can be computed directly; and truncating the number of boosted trees (in the order in which

they were trained) gives a simple method for trading off speed and accuracy. This tradeoff

is particularly important for a search engine, where one is often willing to sacrifice

accuracy for improved speed. The work described above raises the following question: can

256 Inf Retrieval (2010) 13:254–270

123



we combine the flexibility of boosted trees, with the empirical optimality that has been

observed for LambdaRank, to construct a ranker that has the benefits of both methods? It is

this question that we investigate in this paper.

Following (Li et al. 2007), we will use MART (Friedman 2001) as the starting point.

The principal novelty of our work springs from three main ideas:

1. We use the LambdaRank gradients when training each tree, so that as opposed to

McRank, the number of trees per boosting iteration is just one. In addition, the use of

LambdaRank gradients allows us to consider highly non-smooth IR metrics, such as

DCG and NDCG. Previous work combining pairwise cost functions with MART

allows for only smooth, twice-differentiable risk functions (Zheng et al. 2007) and

does not take the entire results set for a given query into consideration, which is very

important for complex ranking metrics such as NDCG. It is not obvious how to

combine the LambdaRank gradients with MART (for example, the LambdaRank

gradients depend on pairs of samples, and typically MART is used for costs that

depend on individual samples); solving this is a principal contribution of our work, and

contrasts with other recent work on using boosted trees with smooth costs (Chen et al.

2008). Our work also differs from (Chen et al. 2008) in that we solve the ranking

problem directly, rather than solve an intermediate regression problem.

2. A major problem that search engines face, beyond the basic ranking problem, is model

adaptation: for example, using labeled data for a large, established market as a starting

point to train models for markets with much smaller labeled dataset sizes. To address

this problem we use the additive nature of boosted trees to replace the first tree with

a previously trained model (a ‘‘submodel’’); hence the name of our algorithm,

‘‘LambdaSMART’’, for Lambda-submodel-MART, or LambdaMART for the case

with no submodel (for more detailed results on model adaptation and interpolation, see

Gao et al. 2009).

3. We present a new method for finding the optimal linear combination of any two rankers,

for any IR measure. This is a basic technique that has many possible applications: for

example, solving the model adaptation problem by optimally combining a ranker trained

on a large amount of data, with one trained on data for a small market; or, computing the

optimal linear combination that is required when adding a new tree to a model during the

learning phase for boosting.

The paper is organized as follows. In Sect. 3 we describe the LambdaSMART algorithm.

In Sect. 4 we describe the path-following optimal combination technique. This technique

can be used within the LambdaSMART algorithm to potentially find a better combination

of regression trees. Experimental results are given in Sect. 5. Our experimental results fall

into three main categories: experiments showing the speedup gained by LambdaSMART

over the previous best ranker, McRank; experiments showing the significant gains that can

be achieved using model adaptation, for which LambdaSMART is particularly well-suited;

and experiments demonstrating the optimal combination method. We present conclusions

and future work in Sect. 6.

3 The LambdaSMART algorithm

LambdaSMART is built on MART (multiple additive regression trees). We refer the reader

to (Friedman 2001) for details, although here we briefly summarize the MART algorithm

for completeness. MART is a boosted tree algorithm that performs gradient descent in

Inf Retrieval (2010) 13:254–270 257

123



function space (Mason et al. 2000). By this is meant the following: viewing the cost C as a

functional of the model output (or, of the function value F), then to first order, C ¼
C0 þ oC

oF dF: Thus as in ordinary gradient descent, by choosing dF / � oC
oF for a suitable step

size, the model further reduces the cost. Since the functional gradient oC
oF can only be

evaluated at the training points, the trees give a means of estimating a smooth regression to

the gradients everywhere. Each tree in MART may thus be viewed as a small step dF in

function space, where the step size (which is computed using the Newton approximation)

becomes the weight attached to that tree. Performance can be further improved by com-

puting a step size for each leaf node. Each tree is computed as a standard regression tree,

using least squared error to compute the best splits.

Our approach also builds regression trees to model the functional gradient of the cost

function of interest, evaluated at all the training points. However we use the LambdaRank

functional gradients, since we are interested in optimizing NDCG. Here we briefly

summarize the ideas behind LambdaRank. Since the NDCG cost is either flat or dis-

continuous everywhere, LambdaRank uses an approximation to the gradient of the cost,

called k-gradients. Consider a set of documents that have been ranked, for a given query,

while training the model. A particular document is given a scalar k-gradient which is

computed using all the pairs of documents for which that document occurs as a member

of the pair, and for which the other member of the pair was generated for the same query,

but has a different label; the k-gradient for a given document thus depends on its position

in the sorted list, and on the positions of the other documents (that have different labels)

in the sorted list. Specifically, the contribution to the k-gradient for a given document,

resulting from its membership in a given pair of documents, consists of the product of two

factors: (1) the RankNet cost (Burges et al. 2005) (a pairwise cross-entropy loss, applied

to the logistic of the difference of the model scores), for the pair of documents, and (2)

the NDCG gained by swapping the pair, DNDCG. Although the first factor is pairwise

(only depending on the local information of the pair), the second factor depends on the

global structure of the entire query and on the metric under consideration (in our case,

NDCG). The first factor plays the role of a smooth cost with a margin built in; that is,

even documents that are correctly ordered, or that have the same rank, get a contribution

from the RankNet cost, and this contribution falls off smoothly as s1 - s2 increases,

where s1 (s2) is the score of the more (less) relevant document. Thus a key intuition

behind the k-gradient is the observation that NDCG does not treat all pairs equally; the

cost depends on the global sorted order as well as on the labels. It is due to these two

separate factors that LambdaRank can be applied to any IR metric (by substituting that

metric for NDCG), and in fact has been shown to be empirically optimal for several such

metrics (Donmez et al. 2008, Yue and Burges 2007) (by ‘‘empirically optimal’’, we mean

that the algorithm finds a local optimum for the cost function, which is by no means

obvious, given the indirect route that LambdaRank takes in modeling the cost). This

motivates our using the LambdaRank gradients as target gradients in MART. Concretely,

the k-gradients may be written as

kij � Sij DNDCG
oCij

ooij

����

����; ð2Þ

where oij � si � sj is the difference in ranking scores for a pair of documents in a query

(here we are using si as a shorthand for F(xi)),

Cij � CðoijÞ ¼ sj � si þ log 1þ esi�sjð Þ ð3Þ

258 Inf Retrieval (2010) 13:254–270

123



is the cross-entropy cost applied to the logistic of the difference of the scores, DNDCG is

the NDCG gained by swapping those two documents (after sorting all documents by their

current scores), and Sij 2 f�1; 1g is plus one if document i is more relevant than document

j (has higher label value) and minus one if document i is less relevant than document j (has

lower label value) (Burges et al. 2006). Note that

oCij=ooij ¼ oCij=osi ¼ �1= 1þ eoijð Þ ð4Þ

and that the overall sign of kij depends only on the labels of documents i and j, and not on

their rank position. Each point then sums its k-gradients for all pairs P in which it occurs:

ki ¼
X

j2P

kij: ð5Þ

LambdaRank has a physical interpretation in which the documents are point masses and

the k-gradients are forces on those point masses; the k’s generated for any given pair of

documents are equal and opposite. A positive lambda indicates a push toward the top rank

position and a negative lambda indicates a push toward the lower rank positions (Burges

et al. 2006).

We now combine MART and LambdaRank to form LambdaSMART, which is sum-

marized in Algorithm 1. Here we assume that there are N total documents in our training

set and that we wish to train M boosting stages (trees). The ‘‘S’’ in LambdaSMART refers

to a submodel that one can use as the initial model (as opposed to training the first tree

from scratch). We optionally load a submodel in Step 2. This is easy to implement: one

simply starts by computing the LambdaRank functional gradients of the cost function using

the scores output by the submodel, and then trains the trees as described in the algorithm.

LambdaSMART training then proceeds similarly to (Friedman 2001). M rounds of

boosting are performed, and at each boosting iteration, a regression tree is constructed and

trained on all documents for all queries. We choose the final number of trees for the model

by using a validation set.

Step 6 calculates the k-gradients for each document i, as described above. Step 7

calculates the second-order derivative using the k-gradients (which are smooth in the

scores). A regression tree with L terminal nodes is built in step 9, using mean squared

error to determine the best split at any node in the regression tree. The value associated

with a given leaf of the trained tree is computed first as the mean of the k-gradients for

the training samples that land at that leaf. Then, since each leaf corresponds to a different

mean, a one-dimensional Newton–Raphson line step is computed for each leaf (Step 11).

These line steps may be simply computed as the derivatives of the LambdaRank gra-

dients with respect to the model scores si. Finally, in Step 14, the regression tree is added

to the current boosted tree model, weighted by the ‘‘shrinkage coefficient’’ v (Friedman

2001), which is chosen to regularize the model. Choosing a fixed, global shrinkage

coefficient is in fact equivalent to setting the slope of the sigmoid used in the Lamb-

daRank gradients.

Thus LambdaSMART has three parameters: M, the total number of boosting iterations,

L, the number of leaf nodes for each regression tree, and v, the ‘‘shrinkage coefficient’’. We

selected the optimal parameters by using a validation set. Fortunately, as verified in our

experiments, the performance of the algorithm is relatively insensitive to these parameters

as long as they lie within a reasonable range: given the training set of a few thousand

queries or more M = 500, L = 15, and v = 0.1 usually give good performance. Smaller

trees and shrinkage may be used if the training data set is smaller.

Inf Retrieval (2010) 13:254–270 259

123



Algorithm 1 The LambdaSMART algorithm

1: for i = 0 to N do

2: F0ðxiÞ ¼ BaseModelðxiÞ {BaseModel may be empty or set to a submodel.}

3: end for

4: for m = 1 to M do

5: for i = 0 to N do

6: yi = ki {Calculate k-gradient for sample i.}

7: wi ¼ oyi

oFðxiÞ {Calculate derivative of k-gradient for sample i.}

8: end for

9: fRlmgL
l¼1 {Create L-terminal node tree on fyi; xigN

i¼1:}

10: for l = 0 to L do

11: clm ¼
P

xi2Rlm
yiP

xi2Rlm
wi

{Find the leaf values based on approximate Newton step.}

12: end for

13: for i = 0 to N do

14: FmðxiÞ ¼ Fm�1ðxiÞ þ v
P

lclm1ðxi 2 RlmÞ {Update model based on approximate Newton step and
shrinkage size.}

15: end for

16: end for

A further novelty of our approach over the algorithms described in (Friedman 2001) is

that we use a pairwise cost function, in particular for non-smooth metrics, which has been

shown to give excellent performance for ranking (Burges et al. 2005, 2006). Since we are

optimizing NDCG at each step, we do not need the number-of-classes trees per iteration

that McRank needs. We could also achieve one tree per iteration by considering regression

instead of classification. However, regression has been shown to cause a decrease in

accuracy (see Fig. 1 of Li et al. 2007); our approach overcomes this drawback.

4 How to optimally combine two rankers

The problems that IR measures present for optimization, as described in Sect. 1, can be

turned to our advantage. Here we show how this property can be leveraged to find the

optimal linear combination of any two rankers. For concreteness we will refer to NDCG,

but the method applies to any of the typically used IR measures (Robertson and Zara-

goza 2007). Our method can be used to combine, for example, rankers trained on different

data sets, or trained using different algorithms; we will use it below to find optimal

combinations of weak learners during boosting.

The idea is a path-following method and is illustrated in Fig. 1. There, the vertical lines

represent the ranges of the outputs of two different rankers, R and R0, for the same single

query; each point on each line is the score for a particular document, where sR
i denotes the

score for document i from Ranker R, and the scores sR
i and sR0

i are convexly combined as

si ¼ ð1� aÞsR
i þ asR0

i ; ð6Þ

where a [ [0, 1]. As a sweeps from 0 to 1, the score for each document follows the

corresponding line moving from left to right. When a = 0, the score is precisely Ranker

260 Inf Retrieval (2010) 13:254–270

123



R’s score, and when a = 1, the score is precisely Ranker R0’s score. Due to its discrete

nature, the NDCG can only change when two or more lines cross (and when the corre-

sponding labels of the documents differ). Hence we can simply enumerate all possible

values of a for which the NDCG changes by analytically computing all possible crossing

points. Thus, at each crossing point, we only have to evaluate the change in NDCG caused

by swapping the two documents involved in the crossing. This is an Oðn2Þ algorithm,

where n is the mean number of documents returned per query (as are many ranking

algorithms).

Note that the requirement that we keep track of the NDCG as the mixing parameter a
sweeps from 0 to 1 means that (1) for a given query, every pair of documents with different

labels must be examined (since the NDCG will change when they swap rank positions) and

(2) for a given query, every pair of documents with the same label must also be examined

(since we must also keep track of every document’s rank to use in subsequent computa-

tions of the NDCG). These together mean that the algorithm cannot do better than Oðn2Þ:
For multiple queries, we compute all crossing points ac for all queries, and then sort the ac.

By traversing this sorted list we can then analytically compute the change in NDCG for

every crossing point across all queries, and save the value of ac that gives the highest

overall NDCG.

One can use this to compute the optimal weights for combining the weak learners in a

boosting model. In functional form, any boosting model may be written

FðxÞ ¼
X

i

aifiðxÞ; ð7Þ

where x is the input feature vector and where the fi are the weak learners. Usually the

weight ai is learned once fi has been trained, using for example a Newton–Raphson step

(which requires an estimate of the inverse Hessian) (Friedman 2001), and ai is then left

fixed. The inverse Hessian is approximated since it is too expensive to compute exactly.

The method proposed here gives an Oðn2Þ algorithm to compute ai exactly, given the

trained fi, obviating the need for the Newton–Raphson step. Methods to avoid overfitting,

such as ‘‘shrinkage’’ (Friedman 2001), can equally well be applied to the a’s computed

using our path following algorithm, which has the significant advantage that the a one

starts with is known to be optimal for the training data. In the case of boosting models, it is

more convenient to fix the weight of the current ranker R output at 1 and let a vary from 0

up to some maximal value: si ¼ sR
i þ asR0

i , where R ¼
Pi�1

j¼1 ajfjðxÞ is the model up to that

boosting iteration and R0 ¼ fiðxÞ is the new tree to be added to the model.

In computing a given a, degeneracies (where several lines in Fig. 1 cross at the same

point) can either be computed analytically or removed by adding jitter (very small random

values) to the scores. Degeneracies at the endpoints (which is commonly encountered when

Fig. 1 Optimally combining two rankers. NDCG changes only at the crossing points. The two vertical lines
represent the sorted list of scores output by Ranker R and R0, respectively. sR

i indicates the score of document
i ouput by ranker R

Inf Retrieval (2010) 13:254–270 261

123



training trees) can be similarly handled, or can be broken by adding �� 1 times the value

of a strong, floating point feature that correlates positively with relevance (such as BM25)

to the model score; however we chose a more principled approach, that of computing the

expectation of the NDCG, given that the ranks of the documents with a given score all have

equal probability. Note that this expectation can in fact be computed efficiently with a

single loop over the documents for any given query.

Finally we note that, for cases where limiting the number of trees provides sufficient

regularization for the data at hand (so that no shrinkage is needed), we can get improved

fits for all the ai by iteratively recomputing aj given that all ak 6¼j are held fixed, so that at

any iteration we are computing the optimal combination of two rankers. This iterative

procedure is guaranteed to converge since the NDCG is monotonically non-decreasing at

every step. We emphasize that our method for optimally combining rankers works for any

set of rankers (although optimality is only guaranteed for a given pair of rankers), and in

particular it is not limited to boosting models; it may for example prove useful for con-

structing ensembles of rankers. Experimental results for this algorithm, on both artificial

and real web data, are given in Sect. 5.6. In order to explore the contributions of the

various new ideas described in this paper, we used standard techniques for computing the

weights assigned to the trees throughout, except in Sect. 5.6, where results for the optimal

combiner are given.

5 Experiments

We perform experiments to (1) compare the accuracy and speed of LambdaSMART and

LambdaMART to LambdaRank and McRank (the latter two algorithms are state-of-the-art

rankers and have been reported to outperform previous state-of-the-art rankers on the web

search task); (2) assess the effectiveness of model adaptation by training a base model and

boosting it using different data sets; and (3) provide preliminary results on whether the

optimal ranker combination improves the NDCG and the learning speed over the Newton

step.

5.1 The data

The data sets include an artificial set and a web data set, called Web-1. We perform model

adaptation studies on four language data sets, namely Korean, English, Chinese, and

Japanese, a names data set consisting of only person name queries, and a long query data

set consisting of queries of length four or more.1 All data sets contain samples labeled on a

5-level relevance scale and all train/valid/test sets contain non-overlapping queries. The

web and language data sets contain features constructed from the document (including

anchor text and URL information), the query, and matches between the document and the

query. Queries were sampled from search engine query logs and URLs were sampled from

search engine results.

The artificial data set, generated as described in (Burges et al. 2005), was synthetically

produced to mimic a perfectly labeled data set. It was created from random cubic poly-

nomials and contains 50 features. There are 50 URLs per query and 10K/5K/10K in train/

valid/test sets. The Web-1 data has 367 features, with on average 26 URLs per query, and

10K/5K/10K queries for train/valid/test sets.

1 We use query length to mean the number of words in the query.

262 Inf Retrieval (2010) 13:254–270

123



For across-domain adaptation experiments from non-Korean to Korean markets, we

use Korean data for the adaptation domain, and English, Chinese, and Japanese data sets

as the background domain. The Korean data has 425 features with a total of 4,430 queries.

The average number of URLs per query is 75. The train/valid/test sets contain 3,724/334/

372 queries, respectively. The English data contains 6,167 queries, with on average 198

URLs per query. The Chinese data comprises 32,827 queries with on average 72 URLs

per query. The Japanese data comprises 45,012 queries with on average 58 URLs per

query.

The names web data set has 416 features, on average 105 URLs per query, and 5,725/

158/318 queries in train/valid/test sets. The long query web data set has 416 features, on

average 98 URLs per query, and 6,255/176/356 queries in train/valid/test sets. In our model

adaptation experiments, the names and long query data sets serve as the respective adap-

tation domains. The background domain is the same for name and long queries, namely

Web-2. Web-2 has 416 features, on average 134 URLs per query, and 31,555 queries in the

train set (since we use it for model adaptation, we do not need a valid or test set).

Although the data sets are not of the size the ranker would see at test phase, the sets used

for training are of the rough order of magnitude of those used for web scale training. In

particular, we show that our algorithm is fast enough at test phase to handle web scale test

data, in particular due to the fewer number of required trees.

The performance of different ranking methods is measured through NDCG evaluated

against test sets. We report NDCG results (where queries for which all URLs have the

same label have been dropped, since all rankers give identical NDCG on such queries), at

truncation levels 10, 3, and 1. Significance test (i.e., t-test) was also employed.

5.2 Model parameters

Model parameters are chosen using validation sets: here we summarize the best settings

found. LambdaRank is tuned by varying the number of layers, the number of hidden nodes,

and the learning rate. For all data sets we use two layers unless otherwise stated, and ten

hidden nodes. On the artificial data, we use a learning rate of 10-4; for the Web-1 data, we

use a learning rate of 10-5; and for the Web-2 data, we use a learning rate of 10-4.

McRank and LambdaSMART are both tuned by varying the number of leaf nodes L, the

shrinkage v, and the number of boosting iterations M. For McRank we set L = 10,

v = 0.05 and M = 1,000 for all datasets, as in (Li et al. 2007). For LambdaMART we use

M = 1,000 and v = 0.1 for all datasets, L = 10 for the artificial data, and L = 15 for the

Web-1 data. For LambdaSMART (the model adaptation experiments) we use M = 500,

L = 20, and v = 0.1. Although LambdaSMART is in general not sensitive to model

parameters, we report the best parameters found on validation data for completeness and as

a principled way to find model parameters. Our results do not imply sensitivity to model

parameters. Reported experiments do not use the optimal combiner approach, with the

exception of experiments reported in Sect. 5.6.

5.3 Accuracy results

We compare results of LambdaRank, McRank, and LambdaMART on the artificial and

Web-1 data. We use LambdaMART since we found that in this setting it performs as well

or better than LambdaSMART on the validation data.

Table 1 lists the NDCG results on the 10K artificial and 10K Web-1 test queries, with

95% confidence intervals listed in the parentheses based on a statistical t-test. The artificial

Inf Retrieval (2010) 13:254–270 263

123



data has no label noise, so less strongly regularized models such as McRank and Lamb-

daMART learn the data well and outperform a 2-layer LambdaRank model. Both McRank

and LambdaMART were run for 1,000 iterations; note that McRank therefore has 5,000

trees, as opposed to LambdaMART’s 1,000.

On the Web-1 data, McRank and LambdaMART exhibit similar asymptotic perfor-

mance, although as shown in the next section, LambdaMART exhibits better speed/

accuracy tradeoff behavior. The NDCG results on both data sets indicate that McRank and

LambdaMART outperform LambdaRank. We also compared our results against BM25,

since BM25 alone has been used for ranking in the Information Retrieval community for

several years, and we find that BM25 is consistently behind Lambda(S)MART, McRank,

and LambdaRank by several NDCG points, for all datasets.

5.4 Speed versus accuracy results

The most significant advantage of LambdaSMART over McRank is its improved behavior

regarding the speed/accuracy tradeoff. This is crucial for real time applications such as web

search, where typically results must be returned to the user within milliseconds of their

issuing a query. Figure 2 plots accuracy (NDCG@10) versus speed (the number of boosted

trees) for both LambdaMART and McRank, for both the artificial and the Web-1 data. The

validation set was used to choose the optimal settings, which were found to be L = 20 and

v = 0.15 (from ranges L = 10, 15, 20 and v = 0.05, 0.1, 0.15). The graphs show the

results on the test set, for systems trained with the above optimal settings. Since both

methods use the same number of leaf nodes, the number of trees provides a reliable

measure of speed. The faster learning exhibited by LambdaMART gives a significant

speed-up for a large range of accuracies: although the curves in the right panel appear

close, a single percentage point of NDCG gain is a significant increase in accuracy for

web search. Achieving the same accuracy, but with approximately half as many trees, is a

big win.

Additional speed-ups can be obtained by increasing the shrinkage parameter at a small

cost in accuracy or by performing early stopping by essentially reducing the number of

boosting iterations. However, these methods can be applied to McRank as well, and any

speed-ups gained by using them for McRank will also benefit LambdaSMART.

Table 1 LambdaMART, McRank and LambdaRank results on the artificial and Web-1 data, with 95%
confidence intervals in the parentheses

k-MART McRank k-Rank

Artificial

NDCG@10 87.9 (0.16) 83.7 (0.19) 75.4 (0.25)

NDCG@3 81.7 (0.32) 75.6 (0.36) 67.8 (0.41)

NDCG@1 79.6 (0.56) 72.2 (0.65) 65.8 (0.66)

Web-1

NDCG@10 69.3 (0.46) 69.7 (0.46) 68.6 (0.47)

NDCG@3 62.5 (0.60) 62.9 (0.60) 61.5 (0.60)

NDCG@1 61.3 (0.81) 61.6 (0.81) 60.4 (0.82)

Results are reported for NDCG at 10, 3 and 1

264 Inf Retrieval (2010) 13:254–270

123



5.5 Model adaptation results

Ranking model adaptation attempts to adjust the parameters of a ranking model trained on

one domain (called the background domain), for which large amounts of training data are

available, to a different domain (the adaptation domain), for which only a small amount of

training data is available. In web search applications, domains can be defined by query

length, languages, dates, etc.

Model adaptation has been well-studied in the context of statistical language models for

a variety of natural langauge and speech applications. State-of-the-art adaptation tech-

niques can be grouped into two categories: maximum a posteriori (MAP) estimation and

discriminative training methods. MAP methods adjust the parameters of the background

model so as to maximize the likelihood of the adaptation data (Bellagarda 2001). Dis-

criminative training methods, on the other hand, aim at using the adaptation data to directly

minimize the errors on the adaptation data made by the background model (Bacchiani et al.

2004; Gao et al. 2006). LambdaSMART can be viewed as a discriminative training

method. In our experiments we also compare it with model interpolation, a previous state-

of-the-art method of model adaptation (Bellagarda 2001).

In this section we report results on three adaptation experiments. The first uses a large

set of web data, Web-2, as the background domain and uses the long query data set (data

containing only queries of length 4 or more) as the adaptation domain. In this scenario, the

idea is that we have very little data for long queries containing 4 or more words, but we

have lots of web data on queries of all lengths. We compare against several baselines: a 2-

layer LambdaRank model with 15 hidden nodes and a learning rate of 10-5 trained on

Web-2 (called the Background Ranker), a 2-layer LambdaRank model with 15 hidden

nodes trained on the long query train data set only (called the In-domain Ranker), and an

interpolated ranker, which is a linear interpolation of the Background Ranker and the In-

domain Ranker, and the interpolation weights were optimized on long query validation

data. We ‘‘adapt’’ the Background Ranker to long queries by training off the Background

Ranker with long query training data. We trained LambdaSMART with M = 500 trees,

each with L = 20 leaves, and with a learning rate of v = 0.1. At each boosting iteration,

we randomly selected 70% of training samples, instead of all training samples, to construct

the regression tree. We found randomness to be crucial to the performance of the model.

The results are listed in Table 2. Here, no statistically significant gain was observed. This,

0 100 200 300 400 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Boosted Trees

N
D

C
G

@
10

λMART, artificial
McRank, artificial

0 50 100 150 200 250
0.6

0.62

0.64

0.66

0.68

0.7

Number of Boosted Trees

N
D

C
G

@
10

λMART, Web−1
McRank, Web−1

a) Artificial b) Web-1

Fig. 2 Speed versus accuracy results for McRank and LambdaMART

Inf Retrieval (2010) 13:254–270 265

123



together with the successful adaptation experiments described below, suggests that for

successful adaptation with LambdaSMART, using just a few thousand queries for the

adaptation training phase is not sufficient.

The second experiment is an adaptation experiment on names queries. Again, Web-2

serves as the background domain. The adaptation domain is the names query data set. All

experiments report test numbers on the names test set. We again compare against several

baseline rankers: a 2-layer LambdaRank model with 15 hidden nodes and a learning rate of

10-5 trained on Web-2 (called the Background Ranker), a 2-layer LambdaRank model

with 10 hidden nodes trained on the names query train data set only (called the In-domain

Ranker), and a ranker interpolated on the Background Ranker and the In-domain Ranker,

where the interpolation weights were optimized on names query validation data. We

‘‘adapt’’ the Background Ranker to names queries by using the Background Ranker as a

submodel for LambdaSMART, and training LambdaSMART on the names query train

data. We again trained LambdaSMART with M = 500, L = 20 and v = 0.1. At each

boosting iteration, we randomly selected 70% of training samples. Results are given in

Table 3. In this case, the In-domain Ranker and Interpolated Ranker demonstrate similar

performance. However, LambdaSMART far outperforms all baseline rankers significantly,

with p-value \ 0.05 for all NDCG levels, according to the paired t-test.

The third experiment is an adaptation experiment involving data from several languages

(Table 4). Two-layer LambdaRank baseline rankers are first built from Korean, English,

Japanese, and Chinese training data and tested on Korean test data. These baseline rankers

then serve as submodels for LambdaSMART and are ‘‘adapted’’ using the Korean training

data, and tested on the Korean test data. We randomly divided the Korean dataset into three

non-overlapping subsets. Both base and adapted models use the same feature set. A subset

containing 3,724 queries is used as training data (adaptation training data in our model

adaptation experiments). The subset containing 372 queries is used as validation set, and

the remaining subset with 334 queries is used as test set. For the LambdaSMART training,

we again used L = 20, M = 500 and v = 0.1. Although the Korean train data set is much

smaller than the other three data sets, the first table in Table 4 shows that the ranking

Table 2 Results on Long Query test data, for baseline models and LambdaSMART with the Background
Ranker as submodel

Long Back. In-dom. Interp. k-SMART

NDCG@10 47.78 48.42 48.71 48.38

NDCG@3 45.32 46.05 46.39 46.19

NDCG@1 45.23 49.10 48.00 47.80

Results are reported for NDCG at 10, 3 and 1

Table 3 Results on names query test data, for baseline models and LambdaSMART with the Background
Ranker as submodel

Names Back. In-dom. Interp. k-SMART

NDCG@10 54.46 57.74 57.47 59.51

NDCG@3 49.52 52.96 52.54 54.49

NDCG@1 45.75 49.21 47.45 50.42

Results are reported for NDCG at 10, 3 and 1

266 Inf Retrieval (2010) 13:254–270

123



model trained on the Korean data set is still much better than the other models trained on

much larger cross-domain training data (due to the domain mismatch between training and

test data). This is a typical result of cross-domain training.

Results are shown in the second table in Table 4. All adaptation results are statistically

significantly better (again with p-value \ 0.05 for all comparisons) than the corresponding

baseline. We find that LambdaSMART is a very effective model adaption technique. We

also compared our method with model interpolation.2 Model interpolation is a standard

baseline for reporting model adaptation results; see (Gao et al. 2009). We linearly inter-

polate the four baseline rankers, which are trained respectively on the Korean, English,

Japanese, and Chinese datasets as aforementioned. The interpolation weights are learned

using the Powell Search algorithm to optimize NDCG on the Korean validation data set.

The results are listed in the right hand column of the second table in Table 4. They are only

slightly better than the baseline results. The LambdaSMART model adaptation achieves

statistically significant NDCG gains over interpolation and over the baseline.

5.6 Optimal combination results

Here we present results validating the optimal combination method described in Sect. 3.

For the model we used LambdaMART. We trained a baseline model, which uses the full

Newton step to compute the combination weight for each leaf, and a model ‘‘OC’’ that uses

the optimal combiner to compute the global combination weights (i. e. one per tree). We

used the artificial data as described in (Burges et al. 2005). The advantage of the optimal

combiner is that it bypasses the (diagonalized) Newton–Raphson approximation and

returns the exact answer. However, here we are replacing the per-leaf weights (each

computed with its own Newton–Raphson step) with a single global (but optimal) mixing

parameter. Our intent here is simply to show that using the optimal combination strategy

works, and can help, despite the approximation introduced by replacing per-leaf weights by

a single weight per tree; we emphasize that the optimal combination trick is likely to also

prove useful elsewhere.

Figure 3a shows the results of training on the 10K artificial queries and using the 5K

validation queries to choose the optimal step size. Note that both training and test accuracy

Table 4 Results for baseline model adaptation, LambdaSMART, and model interpolation (Interp.)

Baseline Korean English Japanese Chinese

NDCG@10 62.91 58.73 60.27 57.61

NDCG@3 58.24 54.13 56.84 51.05

NDCG@1 59.27 53.71 56.40 49.66

kSMART English Japanese Chinese Interp.

NDCG@10 64.54 63.85 64.15 62.89

NDCG@3 60.57 59.66 60.95 58.70

NDCG@1 60.96 60.14 59.55 58.78

Results are reported for NDCG at 10, 3 and 1

2 We could also consider merging the data sets and training a model on the merged data. In our experiments
linearly interpolating models trained on background and adaptation data sets respectively achieves better
results than simply training on merged datasets.

Inf Retrieval (2010) 13:254–270 267

123



converge significantly faster using OC. This experiment used a version of OC where the

combined score takes the form si ¼ sR
i þ asR0

i ; where R is the model of previously trained

trees and R0 is the new tree to add, which is more convenient for boosting (the convex

combination version requires repeatedly changing the weights of the previously trained

trees). We limit a to lie in the interval [0.1, 100]; the lower limit is necessary because

occasionally a new tree provides almost no gain, and the optimal combiner therefore sets

its weight close to zero, resulting in the training essentially stopping. In this experiment we

handle the problem of ties using the probabilistic averaging method described in Sect. 4.

This data set does not require setting the shrinkage to a value less than one, but we

emphasize that using the optimal combination method does not preclude using shrinkage,

or other regularization methods.

We performed a similar experiment on the Web-1 data. Figure 3b shows the results of

training on the 10K Web-1 queries and using the 5K validation queries to select the optimal

step size a. We trained a baseline LambdaMART model on Web-1 data using the full

Newton step to compute the combination weight for each leaf. Then we trained a

LambdaMART model on Web-1 data using the optimal combiner to determine the global

combination weights. We compute the optimal combined score using si ¼ sR
i þ asR0

i ; where

R is the model of previously trained trees and R0 is the new tree to add. We trained

LambdaMART using shrinkage v = 0.1 and L = 15. When using the optimal combiner,

we found using a in the interval [0.1, 5] worked best and helped to prevent overfitting. We

also experimented with smaller shrinkage, but found restricting a worked better in this

case. Again, we handle the problem of ties using the probabilistic averaging method

described in Sect. 4. The results show we can achieve comparable performance using the

optimal combiner, but with far fewer trees. We find using the optimal combiner, we require

only 80 trees, whereas using the full Newton step, we require over three times as many

trees, namely 250.

Figure 4 shows the values of a, chosen based on the Web-1 validation set, at each

boosting iteration. Small values of a indicate the new tree provides very little gain, and

thus a fractional step size is found. The fluctuation in a values across iterations indicates

the optimal combiner is doing the right thing, that is it is compensating for trees of poor

generalizability even when the number of trees is large. It also indicates that we can do

much better than constant step size across iterations.

10 110 210 310 410 510
0.6

0.65

0.7

0.75

0.8

0.85

0.9

Boosting Iteration

N
D

C
G

@
10

Optimal Train
Newton Train
Optimal Test
Newton Test

0 50 100 150 200 250
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74
0.75

Boosting Iteration

N
D

C
G

@
10

Optimal Train
Newton Train
Optimal Test
Newton Test

a) Artificial b) Web-1

Fig. 3 NDCG@10 versus boosting iteration; the curves are ordered as in the legends

268 Inf Retrieval (2010) 13:254–270

123



6 Discussion and future work

LambdaSMART inherits significant advantages from both MART and LambdaRank. It has

the flexibility and the interpretability of boosted trees, and we have shown that replacing

the first tree with a previously trained model significantly improves accuracy for the model

adaptation problem. From LambdaRank it inherits the property of direct optimization of

the IR measure at hand, and in addition produces models that have significantly better

behavior regarding the speed/accuracy tradeoff. It is intriguing that the gains are so dif-

ferent between the artificial and real data sets. The artificial data set was chosen to have

properties that are as close as possible to the real data (i.e. the distribution of labels, the

number of features, and the number of URLs per query). One significant difference is that

the real data is known to be very noisy (with both label noise and feature noise) and we

plan to investigate whether modifying the boosted tree methods to better handle noise gives

further improvements. We also plan to investigate whether similar ideas—boosted trees

trained with LambdaRank-type gradients—can be used to optimize for other commonly

used IR measures. Finally, the optimal combination results suggest that finding per-leaf

optimal weights may also prove useful.

References

Bacchiani, M., Roark, B., & Saraclar, M. (2004). Language model adaptation with MAP estimation and the
perceptron algorithm. In HLT-NAACL (pp. 21–24).

Bellagarda, J. (2001). An overview of statistical language model adaptation. In ITRW on adaptation methods
for speech recognition (pp. 165–174).

Burges, C. (2005). Ranking as learning structured outputs. In C. C. S. Agarwal & R. Herbrich (Eds.),
Proceedings of the NIPS workshop on learning to rank.

Burges, C., Ragno, R., & Le, Q. (2006). Learning to rank with non-smooth cost functions. In NIPS.
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., et al. (2005). Learning to rank

using gradient descent. In ICML. Bonn, Germany.
Cao, Z., Qin, T., Liu, T. Y., Tsai, M. F., & Li, H. (2007). Learning to rank: From pairwise approach to

listwise approach. In ICML.
Chen, K., Lu, R., Wong, C., Sun, G., Heck, L., & Tseng, B. (2008). Trada: Tree based ranking function

adaptation. In ACM 17th conference on information and knowledge management.
Donmez, P., Svore, K., & Burges, C. (2008). On the optimality of LambdaRank. SIGIR.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Boosting Iteration
α

Fig. 4 a versus boosting
iteration on the Web-1 data

Inf Retrieval (2010) 13:254–270 269

123



Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29(5).

Gao, J., Nie, J. Y., Wu, G., & Cao, G. (2004). Dependence language model for information retrieval.
In SIGIR, (pp. 170–177).

Gao, J., Qin, H., Xia, X., & Nie, J. Y. (2005). Linear discriminative model for information retrieval.
In SIGIR, (pp. 290–297).

Gao, J., Suzuki, H., & Yuan, W. (2006). An empirical study on language model adaptation. ACM Trans on
Asian Language Information Processing, 5(3), 207–227.

Gao, J., Wu, Q., Burges, C., Svore, K., Su, Y., Khan, N., et al. (2009). Model adaptation via model
interpolation and boosting for web search ranking. In Conference on Empirical Methods in Natural
Language Processing.

Jarvelin, K., & Kekalainen, J. (2000). IR evaluation methods for retrieving highly relevant documents. In
SIGIR 23. ACM.

Jones, K., Walker, S., & Robertson, S. (1998). A probabilistic model of information retrieval: Development
and status. Tech. Rep. TR-446, Cambridge University Computer Laboratory.

Le, Q., & Smola, A. J. (2007). Direct optimization of ranking measures. CoRR abs/0704.3359. Informal
publication.

Li, P., Burges, C., & Wu, Q. (2007). Learning to rank using classification and gradient boosting. In NIPS.
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Boosting algorithms as gradient descent. In T. L. S. A.

Solla & K. R. Müller (Eds.), Advances in neural information processing systems (Vol. 12, pp. 512–518).
Robertson, S., & Zaragoza, H. (2007). On rank-based effectiveness measures and optimization. Information

Retrieval, 10(3), 321–339.
Song, F., & Croft, B. (1999). A general language model for information retrieval. In CIKM (pp. 316–321).
Xu, J., & Li, H. (2007). A boosting algorithm for information retrieval. In SIGIR.
Yue, Y., & Burges, C. (2007). On using simultaneous perturbation stochastic approximation for learning to

rank, and the empirical optimality of LambdaRank. Tech. Rep. MSR-TR-2007-115, Microsoft research.
Yue, Y., Finley, T., Radlinski, F., & Joachims, T. (2007). A support vector method for optimizing average

precision. In SIGIR.
Zhai, C., & Lafferty, J. (2002). Two-stage language models for information retrieval. In SIGIR (pp. 49–56).
Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., & Sun, G. (2007). A general boosting method and its

application to learning ranking functions for web search. In NIPS.

270 Inf Retrieval (2010) 13:254–270

123


	Adapting boosting for information retrieval measures
	Abstract
	Introduction
	Relation to previous work
	The LambdaSMART algorithm
	How to optimally combine two rankers
	Experiments
	The data
	Model parameters
	Accuracy results
	Speed versus accuracy results
	Model adaptation results
	Optimal combination results

	Discussion and future work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


