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Abstract Search effectiveness metrics are used to evaluate the quality of the answer lists

returned by search services, usually based on a set of relevance judgments. One plausible

way of calculating an effectiveness score for a system run is to compute the inner-product

of the run’s relevance vector and a ‘‘utility’’ vector, where the ith element in the utility

vector represents the relative benefit obtained by the user of the system if they encounter a

relevant document at depth i in the ranking. This paper uses such a framework to examine

the user behavior patterns—and hence utility weightings—that can be inferred from a web

query log. We describe a process for extrapolating user observations from query log

clickthroughs, and employ this user model to measure the quality of effectiveness

weighting distributions. Our results show that for measures with static distributions (that is,

utility weighting schemes for which the weight vector is independent of the relevance

vector), the geometric weighting model employed in the rank-biased precision effective-

ness metric offers the closest fit to the user observation model. In addition, using past

TREC data as to indicate likelihood of relevance, we also show that the distributions

employed in the BPref and MRR metrics are the best fit out of the measures for which

static distributions do not exist.
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1 Introduction

Search effectiveness metrics are used to evaluate the quality of the answer lists returned by

search services, usually based on a set of standard queries and a partial or complete set of

relevance judgments (Voorhees and Harman 2000). One plausible way of calculating an

effectiveness score for a system run is to compute the inner-product of the run’s relevance

vector and a vector of weights, where the weights represent the relative benefit obtained by

the user of the system if they encounter a relevant document at that depth in the ranking.

For example, the simple metric precision at depth five, P@5, can be thought of as being the

inner-product of a binary relevance vector, and the weight vector [0.2, 0.2, 0.2, 0.2, 0.2,

0.0,…]. Use of P@5 as an effectiveness metric is implicitly an argument that the user will

derive equal utility from seeing a relevant document in any ranked position from one to

five, and no utility whatsoever from relevant documents that appear at ranks below five.

More complex weighting schemes have also evolved. Many of these make use of

infinite decaying weight distributions, so that every document in the ranked list has some—

albeit, vanishingly small—influence on the effectiveness score assigned to that run. For

example, the rank-biased precision (RBP) metric of Moffat and Zobel (2008) makes use of

a geometric weight vector controlled by a parameter p; and the discounted cumulative gain

(DCG) metric of Järvelin and Kekäläinen (2002) uses a vector of weights based on an

inverse log function, controlled by the logarithm base b.

Our work in this paper is motivated by a desire to compare the behavior of different

effectiveness evaluation metrics. By factoring out the relevance vector input required for

various metrics, we are able to represent the intrinsic weighting models of those metrics as

distributions, and then compare them with each other. Furthermore, because the utility of a

system is based on the relevant documents seen by the users of the system, if we were to

obtain a model of the manner in which users view retrieved documents, it is possible to

quantify the relationship between the search effectiveness observed by users, and the

search effectiveness score assigned by an evaluation metric.

In particular, we examine the correlation between effectiveness evaluation metrics and

user behavior patterns in the web search context, with evidence for the relationship being

inferred from a detailed analysis of a search query and clickthrough log. Our results show

that for measures with static weight distributions (that is, for which the weighting vector is

fixed across all queries and systems), the geometric weighting model employed in rank-

biased precision offers the closest fit to the user observation model. In addition, using past

TREC data as to indicate likelihood of relevance, we also show that the distributions

employed in the BPref and MRR metrics are the best fit out of the measures for which

static distributions do not exist. Furthermore, when used as a stand alone evaluation metric,

the observation model shows a high degree of correlation with other metrics, most notably

rank-biased precision, for which a system-order Kendall’s s value of greater than 0.98 is

attained over the systems that took part in the TREC9 Web Track.

In summary, the key contributions made are:

– A framework describing static weighting models of inner-product evaluation metrics

and their relationship to user observations in effectiveness evaluation;

– A method for deriving weighting models for complex evaluation metrics that require

global relevance information and/or relevance positions, using past TREC runs;

– A process for creating a user observation model from query log clickthroughs; and

– An analysis of fit values between various established evaluation metrics and the

observation model derived from a recent Microsoft Search query log.
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The paper is structured as follows: Sect. 2 introduces some commonly employed

measures in information retrieval effectiveness evaluation, and groups them based on the

key characteristics. Section 3 then describes the generalized form of those measures via

weight distributions, as well as a method for using past TREC runs to estimate the

weighting models of complex measures built on empirical relevance information. The

process of obtaining a model of the manner in which users view the results ranking based

on the clickthrough data is presented in Sect. 4, together with methods for processing the

observation model to obtain a more realistic representation. Section 5 shows the results of

experiments that examine the fit of weighting distributions of evaluation metrics to an

observation model created from a recent Microsoft Search (MSN) query log. Recent work

in the area is outlined in Sect. 6, and compared to our study. Finally, Sect. 7 summarizes

our results, and gives directions for possible future work in this area.

2 Measuring effectiveness in web search

A range of metrics are used to quantify the effectiveness of the document rankings gen-

erated by document retrieval systems. Average precision is often employed, as are P@k for

some value k and reciprocal rank, the inverse of the depth in the ranking of the first

relevant document. For experimental purposes, we divide these and other measures into

two broad categories: recall-based measures, which require knowledge of the total number

of relevant documents in the collection for each query; and precision-based measures,

which do not require this value.

2.1 Recall-based measures

Knowledge of the number of relevant documents, denoted R, that are present (on a per

query basis) in the collection allows the use of effectiveness metrics that encompass

completeness. Recall itself is defined as the fraction of all relevant documents that have

been retrieved. More complex metrics that incorporate R also include this notion of

completeness. For example, precision can be biased to include the notion of recall by

measuring it over a range of recall percentiles, or at depth R in the case of R-precision.

Average precision (AP) is computed by summing the observed precision at each rele-

vant document in the ranking, and dividing by the total number of relevant documents for

the query:

APðRÞ ¼ 1

R

XjRj

i¼1

ri

i
�
Xi

j¼1

rj

 !
¼
XjRj

i¼1

ri

Pi
j¼1 rj

i � R ;

where ri is the (binary) relevance of the ith document and R ¼ frig is the corresponding

relevance vector. Average precision scores have the potential to shift both up and down as

further documents get judged, particularly if the value of R is varied as a result of the

additional judgments (Moffat and Zobel 2008). Nevertheless, AP tends to be reasonably

well behaved in standard test environments, and mean average precision (MAP, the

average of the AP scores across a set of topics) is probably the most widely reported IR

effectiveness metric in current evaluations.

To address the issues that arise from incomplete relevance judgments, the BPref (or

binary preference) measure rewards rankings in which known-relevant documents are
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ranked highly, and punishes highly ranked known-irrelevant documents (Buckley and

Voorhees 2004):

BPrefðRÞ ¼ 1

R

XjR0j

i¼1

ri 1�
minðk þ R; i�

Pi
j¼1 rjÞ

minðk þ R;NÞ

 !
;

where R0 is a modified results vector from which all unjudged documents have been

removed, N is the number of known-irrelevant documents, and k is a tuning constant

introduced to counter erratic outputs when R is small (k = 10 is commonly employed). The

BPref metric is more stable than AP when there are unjudged documents, and is employed

in large-scale experiments in which relevant documents are relatively less common. Sakai

(2007) comments on the usefulness of BPref for effectiveness evaluation, and notes several

situations in which it performs suboptimally in comparison to other measures.

The Q-measure is a further variant of AP (Sakai 2004):

Q-measureðRÞ ¼ 1

R

XjRj

i¼1

ri

2
Pi

j¼1 rj

iþminði;RÞ

 !
:

For queries with a small number of relevant documents, the Q-measure assigns higher

precision contributions when a relevant document is encountered at larger depths. Its

behavior when dealing with large R values is similar to AP. The Q-measure is also

designed specifically to handle graded relevance judgments in applicable test collections

such as NTCIR.

The single biggest drawback of recall-based measures is the need to determine R. For all

but trivial document collections it is infeasible to carry out exhaustive relevance judg-

ments, and R is usually approximated using pooling—the set of top ranked documents from

runs submitted by participating systems are judged, and all documents that were not ranked

highly by any of the participating systems are left unjudged and (for the purposes of

calculating AP and other recall-based measures) deemed to be irrelevant. As more docu-

ments are introduced into the pool, it is to be expected that a more accurate approximation

of R is obtained, but experiments have shown that the fidelity of the approximation is query

dependent (Zobel 1998). Furthermore, although recall-based tasks may be appropriate in

some IR domains, the nature of web search lends itself more to precision-based tasks.

Despite these issues, recall-based measures are used extensively in evaluation

(including for web search). They are reliable discriminators between different systems in

large experiments, and provide a solid basis for quantitative analysis of effectiveness

performance.

2.2 Precision-based measures

Precision-based measures calculate effectiveness scores solely as a function of the relevant

documents encountered as the document ranking is traversed, and do not make use of R.

Precision itself—the fraction of retrieved documents that are relevant—is normally mea-

sured at fixed depths that are significant for some reason, such as result page boundaries, or

at numerically significant values such as recall percentiles. In addition, a range of other

precision-based methods have been proposed, and are summarized in this section.

The discounted cumulative gain (DCG) metric allocates decaying weight contributions

to relevant documents using a modified log-harmonic series (Järvelin and Kekäläinen

2002):
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DCGðR; bÞ ¼
Xb

i¼1

ri þ
XjRj

i¼bþ1

ri

logbi
;

where b is a discounting factor, and is typically taken to be 2, and ri can be real-valued,

0 B ri B 1, if graded relevance judgments are being used. Because there is no use made of

R, DCG is purely precision-based. A drawback of DCG is that the log-harmonic sequence is

divergent, and if DCG scores are required to fit the range zero to one, a non-constant scaling

factor is required, computed as a function of jRj, the length of the ranked document list.

Another way of bounding the range of DCG is provided by normalized DCG (NDCG)

(Järvelin and Kekäläinen 2002), which is computed by dividing the DCG score by the

maximum DCG score that could have been obtained at that point in the ranking, assuming

that all of the documents relevant to the query appear at the top of the ranking (and in

decreasing relevance order, should a multi-valued relevance scale be employed). Unlike

DCG, or the scaled-to-one equivalent of DCG, NDCG is a recall-based measure because it

requires knowledge of the relevant documents in order to compute the effectiveness score.

Rank-biased precision (RBP) (Moffat and Zobel 2008) is a related effectiveness metric

based on a geometric weight sequence, and a corresponding user model in which the user is

presumed to move sequentially through the ranked list of documents, stepping from one

document to the next with probability p, or finishing the search at that point with proba-

bility (1 - p). Unlike DCG which is divergent, the geometric sequence is convergent, and

the RBP score of a ranking is always a number in the range [0, 1]:

RBPðR; pÞ ¼ ð1� pÞ
XjRj

i¼1

rip
i�1;

where p is the persistence parameter, and is expressed as a value between 0 and 1. Low

persistence values place greater emphasis on the relevance of documents near the top of the

ranking, with the corresponding interpretation being that low-p (impatient) users are less

likely to move further down the ranking than are high-p users, and so will judge the quality

of the ranking according to what is encountered near the top of it. A p value of 0.8,

equivalent to a user examining on average approximately five results, is a realistic value for

web search (Park and Zhang 2007).

Rank-biased precision has the property that every rank position adds a predetermined

amount to the evaluation score, and hence that as a run is explored to increasing depth the

confirmed RBP score is non-decreasing. In addition, the geometric sequence (used for the

RBP weights) is convergent. Hence, it is possible to calculate the set of score contributions

of all unjudged documents through to depth infinity, and determine a residual, or error

bound, which then provides an upper bound on the score assigned to that ranking. This can

be done regardless of how many unjudged documents there are in the ranking, or where

they occur. In the context of pooled evaluation, the residual error bounds can be used to

guide the design of the experiment (Moffat and Zobel 2008), and also to determine which

documents can most productively be judged if the experimental resource is limited (Moffat

et al. 2007).

Sum of precisions (SP) is, like DCG, an unbounded metric that is not reliant on

knowledge of R:

SPðRÞ ¼
XjRj

i¼1

ri

Pi
j¼1 rj

i
:
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Recent work has proposed a method for standardizing SP (as opposed to normalizing by R
to get AP), using the mean and standard deviation calculated from a set of contributing

systems (Webber et al. 2008). Based on the topic means and deviations, adjusted z scores

are computed for the contributing systems, with an across-systems mean of 0.5 on every

topic, and a uniform standard deviation. Standardized SP (sSP) is thus a metric that

depends on a set of systems being jointly available at the time the judgments are being

undertaken, as is the case for pooled relevance judgments; but not that those pooled

judgments then be used as the basis for determining a reliable estimate of the value of R for

each query. Experiments show that relatively few systems are needed to obtain reliable

standardization factors, and that the standardization technique can be applied to other

metrics (Webber et al. 2008).

Also worth noting is that reciprocal rank (and mean reciprocal rank across a set of

topics, MRR) can also be included as a precision-based metric—RR is the value of

P@fs,t where fs,t is the rank position of the first relevant document identified by system s
on topic t.

We have commented several times that precision-based measures do not explicitly

incorporate R in their formulation. The drawback of this independence is that the maxi-

mum realizable score for some topic calculated using them is unknown to the user. For

example, P@10, the fraction of the top-ten documents that are relevant, cannot exceed

min{R/10, 1.0} for a topic with R relevant documents. If is not known whether R C 10, the

realizable limit for P@10 is also unknown. Similarly, the infinite sum used in the RBP

metric means that an RBP score of 1.0 is impossible to attain unless R C 1, and p = 1.0.

When R is unknown, the realizable maximum RBP score is also unknown. That is, while

the value of R is not required as scores are computed for precision-based metrics,

knowledge of R will be required if those scores are then to be normalized to fill the

realizable range prior to them being compared.

2.3 User observation measures

In terms of numbers of users or queries issued, web search is the single largest application

of information retrieval, and the queries and browsing actions of millions of users can be

analyzed to provide considerable insight into their searching habits. For example, web

queries are shorter in length than other types of queries; web users engage in relatively few

query interactions before completing their search task; and web users are reluctant to

browse past the first page of results (Jansen and Spink 2004).

Clickthroughs from user-viewed result pages can be used as an indicator of perceived

interest in relation to result snippets, and as a source of implicit relevance feedback

(Joachims 2002). In particular, eye-tracking experiments show that (Joachims et al. 2005,

p. 157):

– ‘‘on average users tend to read the results from top to bottom’’;

– users ‘‘…view substantially more abstracts above than below the click’’;

– ‘‘a sharp drop occurs [in views] after link 10, as ten results are displayed per page’’; and

– ‘‘…users click substantially more often on the first than on the second link, while they

view the corresponding abstract with almost equal frequency.’’

Additionally, by switching the positions of results in the ranked list, Joachims et al.

discovered that relevance does indeed affect users’ clicking patterns, although this was

subject to biases stemming from the overall quality of results and the preconceived quality

of the search engine.
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A framework for utilizing clickthroughs as relative relevance judgments for learning

retrieval functions is presented by Agichtein et al. (2006). Clickthroughs can also be utilized

as features in determining user intent (Lee et al. 2005; Teevan et al. 2008), and, more recently,

as a query-independent measure of page importance in the web graph (Liu et al. 2008).

3 Decaying weight models for effectiveness

We now consider a more general way of defining effectiveness measures, and show how a

wide range of current mechanisms can be described using a common framework.

3.1 Weighted relevance rankings

Effectiveness evaluation metrics seek to measure the utility of a particular ranking in a

quantifiable and objective manner. In some situations, this implies a combination of pre-

cision-based and recall-based evaluation. On the other hand, there are also many situations

in which the metric should quantify the user experience in some natural manner, based

solely on the set of documents (or document summaries) that is presented to the user as the

result of the search. The latter approach is particularly important in web searching, in

which the pool of documents in the system is effectively infinite, and the perceived quality

of the user experience is largely influenced by the documents presented in the first page or

two of results. If the user finds the information they are after in a highly-ranked document

they are probably satisfied, and the fact that the same information is available in the further

20 (or 200, or 2,000) relevant documents not shown in the first page of results has little

effect on their perception of the quality of the retrieval system.

In such a metric, the benefit delivered by a relevant document needs to be tempered by

knowledge of its position in the ranking. For example, the utility model implicit in DCG

(taking b = 2) presumes that the first and second documents in the ranking are of equal

importance to the user, that the third is approximately 2/3 as important as each of those

two, that the fourth is half as important, that the one hundredth document is approximately

1/7 as important as the first two, and so on.

Generalizing the DCG and RBP approaches, we can thus postulate a family of effec-

tiveness metrics based on a simple inner-product calculation of a relevance vector and a

weighting vector:

EffectivenessðR;WÞ ¼ R � W ¼
XjRj

i¼1

riwi; ð1Þ

where

– R ¼ fr1; r2; . . .g is a (usually finite) relevance vector, as was presumed in the previous

section; and

– W ¼ fw1;w2; . . .g is a (usually infinite) weighting vector in which wi defines the

relative importance (or utility) to the user of encountering a relevant document at

position i in the ranking.

A large number of effectiveness metrics can be defined in this way, including P@k, DCG,

and RBP. Common to all three is the presumption that W is non-increasing—that a

relevant document at position i in the ranking does not convey more utility to the user than

a document at some position j \ i. In addition, note that the relevance values ri are free to
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take on values between zero and one; and that graded relevance evaluations are thus

naturally supported.

If the further assumption that
P1

i¼1 wi ¼ 1 is added (which is the case for RBP, and also

for DCG as specified in Eq. 2, below), then W can be interpreted as a probability distri-

bution, and Eq. 1 is a statement that the effectiveness score for a ranking is the expectation

that a randomly selected document (according to W; a probability distribution over doc-

uments) is relevant (according to R). Interpreting weighting vectors probabilistically in

this manner allows us to compare individual representations of user behavior on a uniform

scale, and also to examine the weight vectors themselves, rather than the effectiveness

scores they give rise to.

From this point onward, we use the term weighting model to describe a vector W that

defines an effectiveness metric in the way described by Eq. 1. In addition, whenW sums to

one, we will regardW as being a probability distribution over the documents in the ranking

that gives the likelihood of each document being selected by a user.

3.2 Static weighting models

We now examine a range of common weighting models that might be used as the basis for

effectiveness metrics.

3.2.1 Discrete uniform distribution

This distribution provides equal probability for a defined range and zero probability outside

of that range:

WU;kðiÞ ¼
1=k for 1� i� k
0 otherwise:

�

As an example, suppose that for some query a retrieval system has provided a ranked list of

results in which relevant documents occur at ranks {2, 5, 6, 13, 20} (that is,

R ¼ f0; 1; 0; 0; 1; 1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 1g). When k = 10, evaluation using the

discrete uniform distribution as the weighting model gives rise to P@10, the fraction of

relevant documents observed in the top ten:

EffectivenessðR;WU;10Þ ¼
X10

i¼1

ri

10
¼ 0:3:

When k ¼ jRj ¼ 20, EffectivenessðR;WU;20Þ decreases to 0.25.

3.2.2 Zipf distribution

The Zipf distribution represents a general power law with a long tail, and is observed in

many aspects of large document collections. If the range of values is limited to k� jRj, the

scaled weight associated with rank i is given by:

WZ;b;kðiÞ ¼ i�b=S for 1� i� k
0 otherwise:

�

where b characterizes the distribution, and S ¼
Pk

i¼1 i�b is a scaling factor that makes the

(truncated) distribution sum to one. For the same example ranking as was used earlier, a

Zipf weighting model with b = 1 and k ¼ jRj ¼ 20 gives:
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EffectivenessðR;WZ;1;20Þ ¼
1

3:598

X20

i¼1

ri

i
;

which is (0.500 ? 0.200 ? 0.167 ? 0.077 ? 0.050)/3.598 = 0.276. Note that in this

example, if s were taken to be 100 instead of 20, the score would drop to 0.191, and an

aggregate weight of 0.297 would be indeterminate (as a residual)—meaning that the final

effectiveness score might be as large as 0.488, if all of the unjudged documents between

rank 21 and rank 100 were in fact relevant.

3.2.3 Poisson distribution

The Poisson distribution is generally used to express the number of events occurring within

a specific period of time, but its monotonicity when 0 B a B 1 means that it can also be

used to represent the probability of observing the i th document in the ranking:

WP;aðiÞ ¼
aði�1Þe�a

ði� 1Þ! ;

where a characterizes the distribution. When a = 1 the Poisson distribution reduces to:

WP;1ðiÞ ¼
e�1

ði� 1Þ! ;

implying that WP;1ð1Þ ¼ WP;1ð2Þ. It has been observed that the probability of examining

the first and second result snippets is the same (Joachims et al. 2005; Turpin et al. 2006),

and the Poisson weighting model might thus be useful when modelling those situations.

3.2.4 Geometric distribution

The geometric distribution models the probability of i - 1 successes before a failure on the

ith attempt:

WG;pðiÞ ¼ pi�1ð1� pÞ;

where p is the probability of success. This is the distribution used in the RBP metric, and its

behavior as a metric is documented by Moffat and Zobel (2008).

3.2.5 Log-harmonic distribution

The DCG metric utilizes a log-harmonic distribution, modified to assign equal probability

to all ranks up to rank b:

WL;b;kðiÞ ¼
1=S for i� b
1=ðS logb iÞ b� i� k
0 otherwise;

8
<

: ð2Þ

where S ¼ bþ
Pk

i¼bþ1ð1= logb iÞ is a fixed scaling factor that yields weights that sum to

one, and does not affect the relative values of scores provided that all topics and systems

are evaluated using the same run depth k� jRj. Note also that this linear scaling process is

not the normalization approach used by Järvelin and Kekäläinen (2002) in the definition of

54 Inf Retrieval (2010) 13:46–69

123



normalized discounted cumulative gain, and that DCG and NDCG do not necessarily

generate the same system orderings, even when evaluated to the same depth.

3.3 Distributions for complex measures

Recall-based measures can be cast into the same framework if we allow the weight vector

W to incorporate one or both of:

– The number of relevant documents for this query, R; and/or

– The positions of relevant documents within the ranking, as expressed by the vector R.

With these additional factors allowed, the corresponding weighting vectors for AP,

Q-measure, and SP are given by:

WAP;RðiÞ ¼
Pi

j¼1 rj

i � R ; ð3Þ

WQ�measure;RðiÞ ¼
2
Pi

j¼1 rj

ðiþminði;RÞÞ � R ;

and

WSP;RðiÞ ¼
Pi

j¼1 rj

i
:

The weighting model for BPref is slightly different, as it requires all unjudged docu-

ments to be removed from the relevance vector prior to calculation. Since unjudged

documents make no contribution, all of R, N and k remain unaltered, and ri is unaltered

assuming an unjudged document has relevance 0. To make the weighting model consistent

with our unmodified relevance vectors, we introduce a variable Ji to represent the number

of judged documents up to rank i:

WBPref;RðiÞ ¼
1

R
�

min k þ R; Ji �
Pi

j¼1 rj

� �

minðk þ R;NÞ � R :

It is also clear that a weighting function WRR for the reciprocal rank measure can be

specified as:

WRR;RðiÞ ¼
1=i if i ¼ minfj j rj 2 R; rj ¼ 1g
0 otherwise;

�
ð4Þ

All of these are rather contrived expressions. For example, the definition ofWAP;R in Eq. 3

suggests that the probability of examining the i th document is zero if there are no relevant

documents within the first i of the ranking; and also means thatWAP;RðiÞ is not necessarily

non-increasing in i. Nor, as defined, is WAP;R a probability distribution. Nevertheless, by

casting AP into this framework, it makes it clear that it can be computed as the inner-product

of a relevance vector and a weight vector, and sets the scene forWðiÞ to be estimated across a

whole set of rankings, rather than as something that is specific to a single ranking.

3.4 Generating background values

If we are given a set of TREC-style rankings, generated by a set of s IR systems against a set

of t topics, and also have relevance judgments for those topics, then a total of s � t relevance
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vectors can be computed. Those s � t runs can be used as training information to estimate

(for that set of systems, and that set of queries) a value forWAPðiÞ as it is defined in Eq. 3,

by averaging across the systems (using the correct value of R for each topic and the
P
ðrj=iÞ

values through the rankings for that topic), and then averaging across the topics. That is, if

training data is available, it is possible to estimate the distributionWAP independently of the

relevance vector for any particular system/topic combination, by computing:

WAPðiÞ ¼
1

s � t � i
Xs

j¼1

Xt

‘¼1

Xi

m¼1

rj;‘;m

R‘
;

where R‘ is the number of relevant documents associated with the ‘th topic, and rj,‘,m is the

relevance (or not) of the mth document in the ranking generated by system j on topic ‘.
An inferred weight distribution for reciprocal rank can also be constructed based on

Eq. 4, by aggregating across the set of system-topic runs the rank locations fj,‘ of the first

relevant document identified by system j on topic ‘:

WRRðiÞ ¼
1

s � t � i �
Xs

j¼1

Xt

‘¼1

j fj;‘ j fj;‘ ¼ i
� �

j:

It is similarly possible to calculate empirical weighting vectors for BPref, Q-measure, and

SP. All of these inferred distributions are explored in the experiments reported below. Like

all TREC outcomes, the weighting vectors are not portable from one experimental regime

to another, and should only be used in the context of the sets of systems and topics from

which they were generated. Nevertheless, the existence of empirical WAP and WRR dis-

tributions allows the AP and RR measures to be directly compared with methods such as

RBP and DCG, which use static weighting vectors, within a particular TREC dataset. We

will return to this point later.

4 Predicting web user observations

We have presented a range of weighting models corresponding to established evaluation

metrics. Logic or rhetoric might then be used to argue that one weighting scheme is more

plausible than another. Instead of those approaches, we turn to experiment, and ask, based

on the evidence available in a large search engine clickthrough log, whether the pattern of

user clickthroughs observed in the log provides support for any particular weighting model.

4.1 User gap distributions

It has already been noted that a weighting model can be interpreted as being a probability

distribution over documents, in which case the effectiveness score is the expected rele-

vance. An obvious question to ask is then, what documents do users examine when looking

at ranked lists of documents? And, if we can create an observation model that establishes

the probability that a user looks at a particular item in a ranking, what—if any—corre-

spondence is there between the observation model and the various weighting models that

provide the basis for different effectiveness metrics?

One simple way of forming an observation model is to note the rank positions of users’

clickthroughs, data that is readily available in the web search context. In selecting a snippet

to click on, the user has certainly observed that document. The user will also have observed
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other snippets that were not selected for clickthrough, and these non-clicked snippets

should also be included in the user observation model. The problem is that, except with the

use of specialized laboratory equipment, there is no record of these passive interactions

with snippets.

We thus make a number of critical assumptions about user behavior that allow the

density of a users’ clickthrough distribution to be analyzed to infer information about

snippets that were observed, but not clicked, based on the findings by Joachims et al.

(2005), discussed in Sect. 2:

– Users observe the results snippet listing in rank (presentation) order;

– A clickthrough at rank n implies that the user certainly observed all ranks 1, …, n;

– Users are more inclined to stop observing at result page boundaries than they are within

a result page; and

– Users may also observe one or more snippets past the last one they clicked.

In particular, we use the density of the clickthrough distribution for each user in order to

estimate the number of documents that were observed beyond the last clicked one and to

allow accurate estimates of the observation model. We express the click gap distribution
for a user as Pðgap ¼ i j u; qÞ, the probability that user u observes exactly i consecutive

snippets in the result ranking for query q without clicking on any of them. The key

assumptions then mean that, aggregated over all of the queries they issued, this user’s

probability of observing a document j ranks beyond the last observed clickthrough (or of

observing the document in rank position j if there are no clickthroughs) can be expressed as

Pðgap� j j u; qÞ ¼
X1

i¼j

Pðgap ¼ i j u; qÞ:

This cumulative distribution can be averaged out over all observed queries for user u,

Pðgap � j j uÞ ¼ meanqPðgap � j j u; qÞ;

and then appended to the known last clickthrough position for each query issued by this

user, to obtain the probability that they observed a result at any given rank:

Pðobserved ¼ i j u; qÞ ¼ 1 for i�LCðu; qÞ
Pðgap � ði� LCðu; qÞÞ j uÞ otherwise;

�

where LCðu; qÞ is the rank of the last clickthrough in query q as issued by user u, and is

zero if there were no clickthroughs for query q by this user.

The probability Pðobserved ¼ i j u; qÞ can then be normalized to form the observation
model of user u on this query, and if the user issued multiple queries, the individual

observation models for their queries can be combined to compute a overall observation

model Pðobserved ¼ i j uÞ for the user. The observation models could then be averaged

across all sampled users to obtain a pooled distribution, and then compared with effec-

tiveness weighting distributions. However, we insert two further steps before finalizing the

user observation models, to account for potentially biased samples, and to obtain a better

representation of user behavior. The next two subsections discuss these adjustments.

4.2 Smoothing observation predictions

Despite their large volume, most query logs contain relatively few samples for each user,

and the observed gaps for any single user form a sparse distribution. To adjust for this
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problem, we incorporate a smoothing step, to balance the observed gap distribution for an

individual user against the clickthroughs issued by all users:

Psmoothðgap� i j uÞ ¼ auPðgap� i j uÞ þ ð1� auÞPðgap� i j UÞ;

where Pðgap� i j UÞ is the click gap distribution computed across all users, and au is the

smoothing parameter for user u.

Although it is possible select the value of au manually (Jelinek-Mercer smoothing), we

opted to use Dirichlet smoothing, which selects au based on the number of samples

available for each user:

au ¼
CTðuÞ

CTðuÞ þ l
;

where CT(u) is the number of clickthroughs observed for user u, and l 2 R
þ is a constant.

Less smoothing is applied if a large number of samples are available.

4.3 Page boundary handling

Another important factor that needs to be compensated for is that the predicted observa-

tions will often span page boundaries, which typically occur every ten results for web

search engines. Because the observation model for a user aims to represent the manner in

which that user views results in a homogeneous ranked list rather than a segmented one,

page boundary effects need to be identified in the query log data, and allowed for in the

subsequent analysis.

Note that the drop in observation probability only applies for predicted observations

past the last recorded clickthrough. For example, if the last recorded clickthrough for a

user/query combination is at rank 15, the inferred probability of observing ranks 1–15 is

still one. Similarly, the estimated probability of observing ranks 16–20 is unchanged

relative to the gap-based estimation alone. But the probability of the user observing ranks

21–30 needs to be discounted, to acknowledge that users are likely to discontinue

observing at page boundaries; and ranks 31–40 need to be doubly discounted.

The rate of ‘‘observation leakage’’ at page boundaries can be estimated from query and

clickthrough logs. Let ‘p represent the number of issued queries for which the last click-

through LCðu; qÞ was recorded in page p 2 f1; 2. . .g, taken across all users; and define

Page(i) as the page on which the snippet at rank i occurs. When there are n results per page,

PageðiÞ ¼ di=ne; in the context of web retrieval, n = 10 is a suitable value for a wide

variety of web search engines.

The observation model then becomes:

Pboundaryðobserved ¼ i j u; qÞ

¼
1 for i�LCðu; qÞ
Psmoothðgap�ði� LCðu; qÞÞ j uÞ � BðiÞ otherwise;

8
<

:

where

bðiÞ ¼
X1

p¼i

‘p;
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and

BðiÞ ¼ bðPageðiÞÞ
bðPageðLCðu; qÞÞÞ :

As required, observation probabilities for snippets up until the last clickthrough, as well as

snippets past the last clickthrough but still occurring on the same results page, remain

unaltered compared to the original observation model. All other observations receive a

reduction for each page boundary crossed.

4.4 An example

We now illustrate the process for calculating observation models with an example. Sup-

pose that a user has clicked on ranks 1, 5 and 6 for query A, with gaps of 1, 4, and 1; and

then clicked on ranks 2, 4, and 10 for query B, with gaps of 2, 2, and 6. The second column

in Table 1 shows the unmodified click gap distribution for this example user. The third

column in the table shows the click gap distribution for the example user, formed by

cumulatively summing the previous probabilities. The small number of clickthroughs for

the user gives rise to zero samples for gaps of 3, 5, and all lengths greater than 6.

We now incorporate Dirichlet smoothing with l = 2, and hence au = 6/(6 ? 2) = 0.75,

so that 25% percent of Psmoothðg� i j uÞ is contributed from global observation gap proba-

bilities. The last column in Table 1 shows the results of applying smoothing, resulting in a

more rounded click gap distribution when using the hypothetical global click gap distribution

shown in column four. Using this and the last clickthrough information, we can now obtain

Pðobserved ¼ i j qÞ for each query issued by the user, and apply page boundary reductions to

the applicable observations past the last clickthrough. For this example, assuming there were

1,000 clickthroughs finishing on the first page of results out of a global 1,860, predicted

observations crossing the first page boundary would have their probabilities multiplied by

860/1,860.

Since the last clickthrough for query A is at rank 6 and Psmoothðgap� i j uÞ is non-zero

for gaps of up to 7, ranks 7 through to 13 obtain predicted observation probabilities as part

of Pðobserved ¼ i j u; qÞ. Because we defined the page boundaries to occur every 10

results, ranks 11–13 have page boundary reductions applied. Query B is handled similarly.

Finally, after obtaining Pboundaryðobserved ¼ i j u; qÞ for queries A and B, we average to

obtain Pðobserved ¼ i j uÞ. This distribution is shown in Fig. 1, which also includes the

observation models for both queries after page boundary adjustment.

5 Observation modelling with query logs

To obtain an observation model based on real world search behavior, we used an MSN

query log, containing approximately 5 million user search sessions and 12 million click-

throughs, collected over a one month period (May 2006) from US users of Microsoft’s

MSN web search service1 Because this data is anonymized in the sense of there being

short-term query identifiers, but not longer-term user identifiers, we have no choice but to

assume in our calculations that each session corresponds to a unique user. Using the

computed observation model derived from the data, we are able to compare effectiveness

metric weighting models and actual user behavior.

1 http://search.msn.com, now replaced by bing.
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5.1 Click gap distribution

From the user sessions and clickthrough data, we generated a click gap distribution for

each query in the log, and then aggregated them to form a global cumulative distribution

Pðgap� i j UÞ, as shown in Fig. 2. Small click gaps have a very high probability—fully

65% of the click gaps observed correspond to a gap of one, and another 14% to a gap of

two—and this means that the cumulative distribution is similarly focussed on low ranks.

Note that Pðgap� 1 j UÞ ¼ 1:0 by definition, which implies that in our model users always

Table 1 Click gap distribution for the example user, with an assumed global gap distribution, and
smoothed values using Dirichlet smoothing with l = 2 (and hence au = 0.75)

i Pðgap ¼ i j uÞ Pðgap� i j uÞ Pðgap� i j UÞ Psmoothðgap� i j uÞ

1 2/6 6/6 10/10 1.000

2 2/6 4/6 9/10 0.725

3 0/6 2/6 8/10 0.450

4 1/6 2/6 5/10 0.375

5 0/6 1/6 3/10 0.200

6 1/6 1/6 2/10 0.175

7 0/6 0/6 1/10 0.025
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Fig. 1 Calculation of overall
observation model Pðoverlap ¼
i j uÞ for the example user shown
in Table 1, using the mean from
the query A and B models, each
with prior smoothing and page
boundary reductions applied
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Fig. 2 Global click gap
distribution Pðgap� i j UÞ across
all users in the MSN query log.
Given that a measured click gap
exists, it must be at least one,
hence the 1.0 value for i = 1. In
turn, this implies that users
always look at least one result
past their last clickthrough
(except when they click on the
last snippet in the page)
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observe at least one more document after their last clickthrough, except when they have

clicked on the last snippet of a results page. In particular, a user that issues no click-

throughs is still assumed to have always observed the highest ranked snippet.

Using the calculated cumulative global click gap distribution, observation models were

calculated for each user, and the set of resultant observation models averaged to obtain a

single curve. Figure 3 shows the original clickthrough distribution for the MSN log along

with observation models computed using Dirichlet smoothing with l 2 f0; 5g. In con-

structing this graph, each set of probabilities was normalized to a total of 1.0, so that what

is plotted for each of the three data sets can be thought of as being on the same scale, and is

now of a form that can be later compared with the effectiveness metric distributions

discussed in Sect. 3. Because the observation models have more mass at higher ranks, the

normalized click probability at rank one is greater than the normalized observation

probabilities.

Since clickthroughs in the top ten ranked results account for over 99% of all click-

throughs, there is a significant reduction in observation probability associated with crossing

the first page boundary, shown in the first row of Table 2. Subsequent page boundaries

incur smaller penalties, and once a user has crossed the second page boundary, they are

quite likely to continue into the fourth and then fifth results pages. There are no samples in

the log beyond the sixth page boundary, and we assign a constant reducing factor of

b(p) = 10-8 for those boundaries.
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Fig. 3 Generated observation
models with Dirichlet smoothing
compared to raw clickthrough
distribution for MSN dataset.
Clickthroughs are strongly biased
towards the first results in the
ranking, and have sharper drop-
offs when moving to later ranked
results within each page
compared to generated models.
Smoothing appears to have little
impact on the overall observation
model

Table 2 Page boundary reduction values b(p ? 1)/b(p), which indicate the observed conditional proba-
bility (as evidenced by clickthrough activity) of the user stepping from page p to page p ? 1 in the
Microsoft query log

p lp b(p) b(p ? 1)/b(p)

1 8,793,770 8,831,275 0.0042

2 35,014 37,505 0.0664

3 2,001 2,491 0.1967

4 224 490 0.5429

5 265 266 0.0038

6 1 1 0.0000

Clickthroughs within the top ten results account for over 99% of all clicks
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The calculated observation models depicted in Fig. 3 show a smooth decline within

each of the results pages, with sharp drops at the page boundaries. The large number of

queries with a single rank-one clickthrough, combined with the cumulative method for

calculating click gap distributions, means that ranks one and two end up with equal

observation probability. This coincides with findings from eyetracking experiments

(Joachims et al. 2005), as was discussed in Sect. 2. Page boundaries have been preserved in

the modelling process, and the overall observation model is monotonically decreasing.

Except at rank one, the normalized observation probability is higher than the normalized

click probability, as expected.

Use of l = 5 in the Dirichlet smoothing gives rise to smaller normalized probabilities

than l = 0, except at ranks one and two, and a more pronounced decline within each page.

The majority of the results below make use of l = 5.

5.2 Parameter estimation for static distributions

Each of the static weighting models described in Sect. 3 was compared to the observation

models, to determine in each case a ‘‘best’’ parameter for the static distribution, plus a

goodness-of-fit coefficient to indicate how well the distributions match each other. The

results of this evaluation are shown in Table 3. The Kullback–Leibler (KL) divergence is a

non-commutative measurement of the extent to which an approximate probability distri-

bution (the four different effectiveness models in the rows of the table) departs from a

reference distribution (the three different observation models in the columns), and repre-

sents the additional cost of entropy coding the reference models using the probabilities

given by the approximate distribution rather than by their own probability distribution,

measured in ‘‘nats per symbol’’, where one nat is the equivalent of approximately 1.44 bits.

When the two distributions are identical, the KL divergence is zero. To create Table 3, a

search over the parameter space of each candidate approximate distribution was used to

determine the parameter value that gave the lowest KL divergence score. Note that the log-

harmonic distribution derived from the DCG metric is unlike the other distributions, in that

the parameter must be an integer. Figure 4 depicts the fitted distributions, along with the

observation model formed using Dirichlet smoothing l = 5.

The KL best fits and fitted parameters are similar across all three observation

models shown, and the choice of l plays a minor role only. The geometric distribu-

tion clearly offers the best KL fit for all instances of l, with the lowest KL value of

Table 3 Kullback–Leibler divergence scores and fitted parameter values for weighting models of static
distributions, where a smaller KL score indicates a better fit to the reference distribution listed as the column
heading

Distribution l = 0 l = 1 l = 5

KL div. Param. KL div. Param. KL div. Param.

Geometric 0.051 0.731 0.043 0.729 0.040 0.727

Poisson 0.355 3.719 0.303 3.690 0.268 3.661

Zipf 0.272 1.455 0.281 1.451 0.289 1.450

Log-harmonic 0.941 2 0.946 2 0.953 2

When l = 0 the observation model is formed without performing Dirichlet smoothing. The parameter in the
log-harmonic distribution is restricted to be an integer. KL divergence of 0.1 or less (in bold) represent close
agreement between the two distributions
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approximately 0.04, representing a high level of agreement between the reference

(observation) and approximate (effectiveness metric-based) probability distributions. The

Zipfian and Poisson distributions also perform moderately well, with divergences of around

0.3. On the other hand, the log-harmonic distribution (with evaluation depth k = 50) gives

rise, even at best, to low quality approximations, with KL divergences close to 1. This

distribution greatly underestimates the observation probabilities for highly ranked docu-

ments, and similarly overestimates the observation probabilities for ranks greater than ten.

The geometric distribution gives rise to a best-fit p value of approximately 0.73, implying

that the average user observes 1/0.73 = 3.7 documents. This is close to the value of p = 0.8

suggested by previous work with the same query/click log (Park and Zhang 2007).

5.3 Judgment-based weightings for complex distributions

We employed three TREC tracks to generate weighting models for the complex distri-

butions, using the approach described in Sect. 4: the TREC9 Web Track (Hawking 2000),

the TREC2001 Web Track (Craswell and Hawking 2001), and the TREC2004 Terabyte

Track (Clarke et al. 2004). The two Web Tracks reflect the emphasis of this paper on web

querying, and the fact that the observation models were generated using a web query log.

We also included the Terabyte Track in these experiments to confirm that using web track

data to generate weighting models for a web-based observation model should provide a

better fit than using some other track.

Table 4 shows KL divergences when the empirical effectiveness weighting models

derived from the three sets of TREC relevance judgments were compared with the

observation distribution (using l = 5) calculated using the methodology of Sec. 4. The KL

divergence scores listed in Table 4 can be directly compared with the l = 5 column in

Table 3. With the exception of BPref, these measures do not involve further parameters. In

preliminary experiments not described here, BPref was trialled with k = 1 and k = 100 as

well as using the recommended value of k = 10, with k = 1 giving similar results to

k = 10, and k = 100 being markedly inferior.

Figure 5 presents a visual representation of the relevance-derived weighting models for

the TREC9 Web Track, and compares them to the click-derived observation model
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Fig. 4 Predicted observation model for the MSN query/click log (shown as circles, calculated with l = 5)
and KL-best probability distributions according to different effectiveness metric weighting schemes. The
parenthetical numbers are the KL divergence scores, and the parameter values for each of the distributions
are as listed in the last column of Table 3. The geometric weighting scheme yields the closest fit to the
observation model, with parameter p = 0.73
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computed using l = 5. It is clear from Table 4 and Fig. 5 that the static distributions

shown in Fig. 4 provide higher fidelity approximations to the click-derived observation

model than do the alternative weighting vectors derived empirically from AP, BPref, RR,

and so on. Indeed, the complex distributions are all similar in nature, assigning comparable

weightings. This characteristic is a consequence of the fact that all of the complex

weighting models incorporate scoring methods that calculate precision at the rank positions

at which relevant documents occur. Since the same query/run data is used for approxi-

mation in each method, they receive essentially the same inputs.

The nature of each experimental track also plays a part in determining the quality of fit.

As is documented in Table 4, the TREC9 Web Track provided the best-fitting judgment-

derived models, and the TREC 2004 Terabyte Track the worst, reflecting the fact that the

observation model against which the various weighting schemes are being compared is

derived from web data.

Finally in this section, having already determined that RBP with parameter p = 0.73 is

a close fit to the observation model, we also identified the values of p that led to the closest

match between RBP’s geometric distribution, and each of WAP and WRR, for each of the

three TREC collections used. The results are shown in Table 5. When seeking to match

Table 4 Kullback–Leibler divergence scores for TREC-estimated effectiveness weighting distributions,
compared to the click-derived observation model calculated using Dirichlet smoothing and l = 5

Distribution KL divergence compared with observation model, l = 5

TREC9 Web TREC2001 Web TREC2004 TB

WRR 0.675 0.722 0.968

WAP 1.481 1.642 2.078

WSP 1.913 1.978 2.228

WBPref;k¼10 0.569 0.805 1.725

WQ-measure 1.735 1.852 2.116

The best-fitting alternative in each column (of the listed options) is highlighted; note that Table 3 offers
better-matched distributions
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Fig. 5 Approximated weighting models for complex measures, using TREC9 Web Track topics and
judgments to infer effectiveness weighting distributions for a range of complex effectiveness measures. The
circles show the click-derived observation model weightings using Dirichlet smoothing with l = 5, as was
also the case in Fig. 4. All of the relevance-based models shown in this graph underestimate the click-
derived observational probabilities for ranks up to ten, and overestimate for lower ranks
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RBP to the inferred AP weighting distribution, values of p of approximately 0.95 should be

used. On the other hand, the inferred RR distribution is much more heavily weighted

towards the early part of the ranking, and the best-fit values of p are around 0.5. In all

cases, the low KL divergence values indicate a good quality of fit between the two

probability distributions.

5.4 System rank correlations with the observation model

Our purpose throughout this paper has been to determine what evidence—if any—can be

extracted from query/click log data in support of different retrieval effectiveness metrics,

with an emphasis on those that can be expressed as an inner-product of a relevance vector

and a unit-sum weighting vector. The litmus test of any effectiveness metric is how it

scores systems, so that systems that are perceived (by users) to be ‘‘good’’ are scored more

highly than systems that are perceived to be ‘‘not as good’’.

To complete our experiments, we thus applied all of the weighting models to compute

overall system scores for the TREC9 Web Track data. The weightings included in this last

round of experimentation included all of the static methods listed in Sect. 2; the judgment-

derived distributions for AP, BPref, RR, and so on, as described in Sects. 3 and 4; the

distribution of clickthroughs; and the click-derived observation model described in Sect. 3.

Each of these normalized weight distributions can be used in the weighted-precision inner-

product effectiveness metric defined in Eq. 1, and numeric values computed for TREC

systems based on the TREC relevance judgments.

Then, once the set of TREC systems has been scored by a particular effectiveness

metric, they can be ordered by score, and that metrics’ system ordering compared with any

other system ordering—including the ordering generated by any conventional metric such

as MAP or MRR—to determine a correlation coefficient. Every pair of effectiveness

metrics can be compared in this way. To compute the strength of each correlation,

Kendall’s s (Kendall and Gibbons 1990) was used, yielding values between -1 (reverse

ordering) and ?1 (identical ordering).

A subset of the computed correlation values is shown in Table 6. The four columns of

the table reflect the use of four empirical weighting distributions: two derived from the

Microsoft query log,Wclick andWobservation;l¼5; and two derived from the aggregate of the

TREC9 topics and systems (assuming knowledge of the relevance judgments), WAP and

WRR. The rows of the table reflect a range of standard effectiveness metrics, including

RBP, which itself uses a decreasing weight vector in Eq. 1. With the exception of MRR,

P@2 and RBP with p = 0.5, all of which are top-dominant metrics, the raw clickthrough

data has lower correlation values than does the observation model, an outcome that vali-

dates the assumptions that led to the observation model. The click distribution and MRR-

Table 5 Kullback–Leibler divergences, and best-fit parameter values, for RBP for each of two inferred
probability distributions on the three TREC datasets used

Distribution TREC9 Web TREC2001 Web TREC2004 TB

KL div. p KL div. p KL div. p

WRR 0.204 0.447 0.237 0.483 0.185 0.353

WAP 0.150 0.951 0.129 0.949 0.231 0.957

Values of p & 0.95 are a good fit to WAP, and values of p & 0.5 are a good fit to WRR
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derived weightings are both heavily focussed on the first few positions in the ranking;

whereas the other two approaches give weighting further into the ranking.

The observation model shows a relatively high degree of correlation with all the tested

evaluation measures, with RBP being the standout, and P@10 also being strong. At the

other end of the range, DCG generates the weakest correlation when both the both the

observation model and the click distribution are used as effectiveness weighting vectors.

In part of the full pairwise correlation matrix not shown in Table 6, all ofWAP,WBpref ,

and WQ-measure yield correlations of around 0.9 with each other, indicating that they order

the TREC9 systems into quite similar arrangements.

6 Recent related work

Methods for quantifying retrieval effectiveness have been explored for many years. The

problems we are particularly concerned with in this paper arise because of the large size of

current test collections, and the impossibility of fully judging them, even against small

topic sets. Zobel (1998) showed that even relatively deep pooling was unlikely to discover

all relevant documents, and user studies such as that of Joachims et al. (2005) showed that

users of web search systems were unlikely to pursue their interest deep in a ranking. These

two observations have led to the recent interest in metrics that are heavily top-weighted,

and in which what is being quantified is the ‘‘expected rate at which utility is transferred

from the search provider to the user’’ (Moffat and Zobel 2008, p. 14). The issue then is to

define a weighting scheme over the ranks at which relevant documents might be found;

Table 6 Kendall’s s correlation scores for overall system rankings for selected pairs of effectiveness
weighting schemes, using the t = 50 topics and s = 105 systems of the TREC9 Web Track, with corre-
lations greater than 0.9 highlighted in bold

Metric From query log From TREC judgments

Clicks Obs., l = 5 WAP WRR

MRR 0.922 0.853 0.710 0.930

P@2 0.921 0.893 0.734 0.906

P@10 0.851 0.917 0.820 0.794

RBP, p = 0.5 0.963 0.908 0.744 0.930

RBP, p = 0.73 0.914 0.987 0.795 0.859

RBP, p = 0.95 0.819 0.874 0.884 0.769

MAP 0.775 0.809 0.874 0.747

BPref, k = 10 0.775 0.815 0.836 0.745

DCG, k = 1,000 0.722 0.749 0.932 0.694

NDCG 0.761 0.782 0.898 0.736

Each of the rows represents a standard effectiveness metric, applied to the pool of systems to generate an
ordering (from best to worst) of the systems. The four columns represents the same systems ordered by
inner-product precision, based on an empirical weighting vector derived from either the MSN query log, or
from the aggregate behavior of the TREC9 systems. Each entry in the table is a correlation score, showing
the extent to which the row and column system orderings are similar, with 1.0 representing ‘‘identical’’ and 0
representing ‘‘no correlation’’. The observation model (using l = 5) shows a high correlation ([0.75) for all
of the standard effectiveness measures included in the table, and extremely high correlation ([0.98) with
rank-biased precision, p = 0.73
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DCG (Järvelin and Kekäläinen 2002) gives one method; rank-biased precision another

(Moffat and Zobel 2008); and observation-based approaches, as considered here, a third.

In the same framework, Robertson (2008) recently described an interpretation of AP

that fits this ‘‘expected utility’’ approach, building also on the Expected Search Length
measure of Cooper (1968). Robertson observed that if a user is equally likely to abandon

their search at any of the R relevant documents in the ranking, but to always continue their

search after irrelevant documents are encountered, then AP is the expected value of pre-

cision, as observed over the universe of users. This expectation is directly comparable to

the expectation generated by the various inner-product measures discussed in this paper;

but employs a weighting vector that is dependent on the actual run being evaluated.

Furthermore, this utility-based interpretation does not resolve the key issues that affect AP:

that it is undefined when R = 0; and that it cannot be computed if R is unknown, or if the

ranks of (any of) the relevant documents are unknown.

Robertson’s normalized cumulative precision (NCP) can then be generalized by con-

sidering different probability distributions in regard to the stopping point, with one variant

being a mechanism in which a truncated RBP-like geometric distribution is applied to the

probability of terminating the search at relevant documents (Sakai and Robertson 2008).

However, this approach again requires that users indefinitely scan rankings in which there

are no answers, a significant shortcoming. Indeed, among methods where the ranking is

allowed to influence the weighting vector, it seems more promising to consider arrange-

ments ‘‘in which the conditional probability of advancing given a relevant document is p1,

and the conditional probability of advancing given an irrelevant document is p2’’ (Moffat

and Zobel 2008, p. 17). Presuming that R is known, and truncating the weighting distri-

bution after R relevant documents have been observed is also a choice that is debatable.

7 Conclusion

We have examined the relationship between traditional evaluation models and how users

interact with results to web queries. Using the MSN query/clickthrough dataset, and

manipulation of clickthrough data, we formed a user observation model describing the way

in which web users examine documents in ranked answer listings, including making

suitable allowance for boundaries between the pages of snippets presented to the user.

Then, by comparing the observation model with the weighting models associated with

evaluation metrics, we were able to establish how well those metrics correlated with the

models of observed user behavior, and thus distinguish which metrics are indicative of user

satisfaction.

One potential criticism of our methodology is that, while the sample used to generate

the log-based observation model is non-trivial, there is no easy way of directly validating

its accuracy without a comparable volume of user-based experimentation. For example, if

many thousands of users could be monitored in eye tracking experiments, it would be

possible to gauge the extent to which our derived observation model actually fits user

behavior. But in the absence of a public opt-in approach in which users ‘‘volunteer their

eyeballs’’ via on-computer cameras and ground-breaking tracking software, we are left to

hypothesize, rather than actually demonstrate. Nevertheless, we believe that the hypothesis

is a plausible one, and that it is not unreasonable to take the approach we have in this work,

in order to construct a framework in which to compare the models associated with

decaying-weight effectiveness metrics.
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Of the tested evaluation measures, the geometric distribution employed in RBP gives a

much better fit to the observation model than does any other approach. The best parameter

was p = 0.73, a value that suggests that the average user can be expected to observe a total

of 3.7 snippets in the results listing of a search engine. Suitably parameterized Poisson and

Zipfian distributions also led to reasonable approximations of the observation model, but

differed significantly in observational probabilities they predicted for documents later in

the ranking. The log-harmonic distribution used in DCG was a poor fit to the observation

model, and it greatly overestimates observation probabilities except near the head of the

ranking.

Using TREC data and derived run statistics, we were also able to compute approxi-

mations for a range of recall-based measures such as AP, all of which utilize global

relevance information and contextual relevance positioning. Of these measures, those

derived from BPref and MRR were the best fits to the observation model, but were still

poor compared to the static models. All of the recall-based measures tested share similar

attributes, and tend to underestimate observation probabilities for documents at the head of

the ranking, while overestimating the probabilities associated with the documents that

appear later. Those evaluation measures should be used carefully when evaluating to

significant result depths, and may not reflect the utility observed by typical web users.
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