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Abstract Query Expansion is commonly used in Information Retrieval to overcome

vocabulary mismatch issues, such as synonymy between the original query terms and a

relevant document. In general, query expansion experiments exhibit mixed results. Overall

TREC Genomics Track results are also mixed; however, results from the top performing

systems provide strong evidence supporting the need for expansion. In this paper, we

examine the conditions necessary for optimal query expansion performance with respect to

two system design issues: IR framework and knowledge source used for expansion. We

present a query expansion framework that improves Okapi baseline passage MAP per-

formance by 185%. Using this framework, we compare and contrast the effectiveness of a

variety of biomedical knowledge sources used by TREC 2006 Genomics Track participants

for expansion. Based on the outcome of these experiments, we discuss the success factors

required for effective query expansion with respect to various sources of term expansion,

such as corpus-based cooccurrence statistics, pseudo-relevance feedback methods, and

domain-specific and domain-independent ontologies and databases. Our results show that

choice of document ranking algorithm is the most important factor affecting retrieval

performance on this dataset. In addition, when an appropriate ranking algorithm is used, we

find that query expansion with domain-specific knowledge sources provides an equally

substantive gain in performance over a baseline system.
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1 Introduction

The Genomic era is upon us; however, popular commercial literature search engines used

by biomedical researchers, such as Entrez PubMed1 and Google Scholar,2 provide no

explicit support for genomic-focussed queries. These information needs are, broadly

speaking, requests for published articles describing the specifics of how genes contribute to

disease in organisms. Given the prevalence of gene and general biomedical term synonymy

in the literature (Ananiadou and Nenadic 2006), it is clear that information retrieval (IR)

applications have much to gain from query expansion techniques which automatically

augment user queries with related terms. For example, using terminology resources, a

biomedical concept such as ‘‘colorectal cancer’’ can be expanded with its abbreviated form

‘‘CRC’’, and a gene such as ‘‘MLH1’’ to its other aliases ‘‘COCA2, FCC2, HNPCC,

HNPCC2, MGC5172, hMLH1’’. By adding these terms to the query, we explicitly address

what is referred to as the vocabulary mismatch problem (Furnas et al. 1987).

In this paper, we perform a number of experiments using data from the TREC 2006

Genomics Track task.3 This is a question answering-style task that requires the retrieval of

exact answer passages in response to natural language questions. Examining TREC 2006

participant workshop papers we find a mixed bag of results for query expansion: some

groups report increases in performance, for example (Si et al. 2006; Zhou et al. 2007),

while others describe performance drops (Smucker 2006; Dorff et al. 2006). Despite the

fact that experiments are conducted on the same set of queries and documents, there are

many implementation differences between these participating systems that prevent us from

establishing concrete conclusions from these experiments.

Hence, the principal contribution of this paper is the definition of a list of system design

criteria that are necessary for effective query expansion in the genomic domain. We

achieve this by running a set of controlled experiments that isolate specific factors

affecting system performance. These factors focus on two aspects of system design: the IR

ranking metric and the variety of knowledge sources available for query expansion. These

query term expansion sources include corpus-based cooccurrence statistics, pseudo-rele-

vance feedback methods, and domain-specific and -independent ontologies and databases.

Our results clarify that the choice of passage ranking algorithm is the most important factor

affecting retrieval performance. Another contribution of this paper is our novel ranking

metric which, our results show, maximises the impact of query expansion in the genomic

domain. In particular, we find that query expansion with synonyms from domain-specific

terminology resources provide the most substantive gains in performance over a baseline

system on our dataset.

The remainder of the paper is structured as follows. In Sect. 2, we provide an overview

of related work in biomedical IR, and discuss the additional tasks explored by the TREC

Genomics Track. Section 3 examines the popularity of various biomedical terminology

resources used for query expansion by TREC participants. In Sect. 4, we present our novel

IR framework, which includes a modified version of the Okapi ranking algorithm

(Robertson et al. 1994) specifically designed to optimise results for expansion of queries

containing multiple concepts. Section 5 briefly contrasts our IR framework with system

descriptions published at the official TREC 2006 Genomics Track workshop. Sections 6

and 7 describe our experimental methodology and results. This discussion is concluded, in

1 Entrez PubMed: http://www.ncbi.nlm.nih.gov/sites/entrez.
2 Google Scholar: http://scholar.google.com.au/.
3 http://ir.ohsu.edu/genomics.
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Sect. 8, with a proposed list of criteria necessary for successful query expansion for this

TREC task.

2 Background

The recent deployment of high throughput analysis methods in biomedical research, such

as gene expression microarrays, has facilitated a rapid increase in the rate at which

experimental results are obtained and subsequently published. In the area of genomics, user

queries tend to focus on genes and their corresponding proteins. More specifically,

geneticists are interested in the role of genes and proteins in biological processes in the

body through their interactions with other genes and their products. The ‘‘big picture’’ aim

is the generation of hypotheses from the literature that can then be used to drive new

experimental research in the area of drug discovery for diseases. The TREC Genomics

Track’s motivation was to support these information searching endeavours.

Since the Genomics Track’s commencement in 2003, two important IR document

collections with corresponding queries and relevance judgements (gathered from real

expert information requests) have been produced: a large subset of abstracts taken from the

MEDLINE bibliographic database,4 and a collection of full-text open source documents in

HTML gleaned from the HighWire website.5 While the main focus of the TREC Genomics

Track is ad hoc retrieval, text categorisation to support database curators was also

investigated at the 2003–2005 forums. Database curation is the manual extraction and

addition of important relevant information from the literature to a database format. This is

very desirable from the point of view of clinicians and biomedical researchers, as it can

significantly speed up their analysis of genomic data. However, performed manually, the

process is very costly and time-consuming. The categorisation task at the Genomics Track

evaluated how effective an automatic triage task would be at deciding whether a document

requires additional expert review and inclusion in the database, thus saving the curators

valuable time. The document subset investigated was taken from the Mouse Genome

Informatics (MGI) project,6 and the task in 2005 required systems to classify documents

into one of four categories: tumour biology, embryologic gene expression, alleles of

mutation and phenotypes, and Gene Ontology annotation. See the track overview papers

for more on text categorisation (Hersh et al. 2004, 2005).

Like the categorisation task, full documents were not the focus of the ad hoc retrieval

task until 2006. Furthermore, the ad hoc retrieval task has shifted to Question Answering

(QA)-style retrieval of relevant answer passages in response to natural language queries. In

2007, entity-based QA was investigated, which requires not only a relevant answer, but

also references to a certain entity type, e.g., ‘‘What mutations are responsible for Retina

Blastoma?’’, where the entity type is ‘‘mutation’’. Obviously, an effective named-entity

tagger for all 14 entities investigated by TREC is required; however, research in this area

has been limited to only a few types such as mutations, and gene and protein names (Park

and Kim 2006).

The experimental results discussed in this paper focus on the retrieval of relevant

answer passaged from full-text articles. We do not report results for the 2007 task since

entity recognition errors would make it impossible to ascertain the ‘‘true’’ level of

4 http://medline.cos.com.
5 http://www.highwire.org.
6 http://www.informatics.jax.org.
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effectiveness of both our query expansion framework and the knowledge resources

investigated here.

Excluding the TREC datasets, the only other large scale collection for ad hoc medical

IR is OHSUMED,7 which consists of a subset of clinical MEDLINE abstracts spanning the

years 1987–1991, 106 topics from clinicians, and an accompanying set of relevance

judgements (Hersh et al. 1994).8 Obviously, these queries differ from their TREC coun-

terparts as the information requests are centred around patient conditions and treatments

rather than inquiries of a genomic nature. This collection has been a testbed for many pre-

TREC medical IR experiments. For example, there are a number of papers describing

query expansion on this dataset. Hersh et al. (2000) explored the usefulness of expanding

OHSUMED queries with related terms found in the UMLS Metathesaurus (UMLS is the

Unified Medical Language System9). Their experiments showed an overall decline in

performance when expansion terms were added to original queries. However, some small

portion of queries did respond well to both synonym and hierarchical expansion. A manual

expansion experiment (where the user interactively adds terms to the query) also showed

no significant improvement over baseline performance. Hersh et al. (2000) notes that

potential improvements may have been dampened by the inclusion of MeSH indexing

terms which are manually assigned when an abstract is added to MEDLINE (removing

these MeSH terms reduces performance by about 10%). Related research by Aronson and

Rindflesch (1997) and Srinivasan (1996) in contrast showed that both query expansion

terms from automatically derived thesauri and additional terms from pseudo-relevance

feedback improved baseline performance. More recently, Ruch et al. (2006) report

improvements on the same collection when a pseudo-relevance feedback approach using

the Rocchio algorithm (Rocchio 1971) is enhanced by selectively choosing sentences in the

initial ranked list that discuss one of the following points of information, as classified by a

machine learning approach: Purpose, Methods, Results or Conclusions. They show that by

considering only these aspects of document argumentative structure (in particular Purpose

and Conclusion tag sentences) in the feedback process, they can improve baseline per-

formance by about 40%.

Mixed reports of query expansion effectiveness are also a characteristic of the TREC

Genomics Track. The aim of this paper, as already stated, is to investigate and show that

certain sources of query expansion terms do significantly improve baseline performance,

with the caveat that certain IR system design issues are met. In the next section, we

describe in detail some of the most popular biomedical knowledge sources used at TREC.

Section 5 continues our discussion of related work, but provides specific details on TREC

participant approaches.

3 Knowledge sources for genomic query expansion

In this section, we review different sources of biomedical terminology used by TREC

genomic participants. These knowledges sources can be classified into two different types:

hand-crafted ontological resources, and automatically generated knowledge sources

7 http://davis.wpi.edu/*xmdv/datasets/ohsumed.html.
8 Some papers report results on retrieval from a subset of the OHSUMED collection containing all
MEDLINE citations that have an abstract (that is 233,455 records from 348,566, e.g.), and for the 101
queries which have at least one positive relevance judgement (Ruch et al. 2006).
9 http://umlsinfo.nlm.nih.gov.
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derived from biomedical corpora. Since the focus of this paper is query expansion, one of

our aims is to determine which word association type provides the most benefit when

expanding genomic focussed queries. These word association types can be categorised into

the following expansion term types:

• Lexical variants of query terms, including plural/singular, morphological, orthographic

and spelling variations. In this work we examine the impact of an automatic variation

generation tool, first suggested by Buttcher et al. (2004), which segments terms at

possible break points such as hyphens, and normalises common characters, such as

alpha to a. A detailed explanation of this tool is provided later in this section.

• Synonyms are lexically distinct, but semantically equivalent terms; synonyms are

considered, with lexical variants, to be the most effective type of query expansion term.

Three ontological resources containing biomedical synonyms are explored in this

paper: UMLS MetaThesaurus, MeSH and SNOMED-CT. Given the genomic focus of

the TREC queries, the following gene and protein synonym sources are also

investigated: HUGO (Eyre et al. 2006), UniProt (Bairoch et al. 2005), Entrez Gene
(Maglott et al. 2005), and OMIM (McKusick 1998). A useful source of synonymy can

also be found in abbreviation databases such as ADAM (Zhou et al. 2006a). A more

detailed description of these resources is provided later in this section.

• Ontological relationships include specialisation/generalisation associations between

query term and expanded term—e.g., ‘‘liver’’ has part ‘‘bile ducts’’. These relationships

are found in knowledge resources such as the ontological resources listed above.

• Cooccurrence relationships are automatically generated from a corpus of biomedical

documents (in our case MEDLINE). These related terms represent word associations

that cannot be described by any of the previous relationship types, but which are often

considered intuitive due to their high frequency of occurrence with query terms in the

same context; e.g., ‘‘heart disease’’ and ‘‘statins’’, where the latter is a drug used to

control the former. Two sources of cooccurrence are explored in this paper: pseudo-

relevance feedback; and statistically frequent n-grams extracted from the MEDLINE

collection of biomedical abstracts. We discuss these expansion sources in more detail

in Sect. 4.

Of the 20 groups that participated at TREC 2006, 16 used a terminological or ontological

resource for query expansion. Table 1 compares the popularity of the different biomedical

resources, where MeSH was the most used ontological resource, and Entrez Gene was the

most popular source of gene synonyms. The four entries in the ‘‘Other’’ category refer to

the HUGO gene database (Cornell U: ðTweaseÞ), UniProt protein database (Berkeley),

the T2K group’s gene synonym expansion tool (Amsterdam),10 and suggested PubMed

term expansions (Fudan U:). Most of the groups that explored abbreviation expansion use

resources described in Schwartz and Hearst (2003) for mining acronyms from the TREC

Genomics collection, and then storing their frequencies and corresponding longforms in a

database. Ready-made abbreviation resources were also used such as AcroMed (Puste-

jovsky et al. 2001) and ADAM (Zhou et al. 2006a). We use the ADAM abbreviation

database in our experiments. An overview of this and the other terminology resources we

investigate in the paper are provided in Table 2.

In Table 2, vocabulary resources are either classified as GENE or GENERAL (more

specifically, general biomedical terms). Classifying terminologies in this way is a bit

10 T2K provides an online service which collects information from GenBank, OMIM and MEDLINE data
http://www.bioinformatics.org/textknowledge/synonym.php.
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misleading as many of the general resources, such as MeSH, also have gene and protein

entries; however, their coverage is poor compared to a gene specialised resource such as

Entrez Gene. In particular, MeSH entries cover only well-known genes such as ‘‘tp53’’ and

‘‘BRCA1’’. Classifying resources in this way helps to clarify how they contribute to our

query expansion process described in Sect. 4, since all TREC Genomics queries match one

of the following predefined query templates11:

• What is the role of a gene [GENE] in a disease[GENERAL]?

• What effect does a gene [GENE] have on a biological process [GENERAL]?

• How do genes [GENE] interact in organ [GENERAL] function?

• How does a mutation in a gene [GENE] influence a biological process [GENERAL]?

As we can see, all italicised ‘‘concept’’ query terms are followed by their type, which

indicates which subset of knowledge sources we will use to expand them. The aim of the

experiments described in Sect. 7 is to determine which of these resources provides the

most effective query expansion terms for the genomic domain.

So far we have discussed terminology expansion without commenting on the issue of

sense disambiguation, that is, the automatic determination of the sense of a particular word

in a particular concept. For example, given the ambiguous phrase ‘‘Big Apple’’, if the

context indicates that this is the fruit sense then ‘‘cooking apple’’ is an appropriate term;

however, if we interpret it as its ‘‘city’’ sense then the synonym ‘‘New York City’’ should

be added to the query.

Table 1 Table showing the frequency of use of different terminology and ontological resources for query
expansion at the TREC 2006 Genomics Track

Group Gene/Protein Other biomedical concepts

Entrez Gene GO OMIM UMLS MeSH Abbrev. DB Other

U: Wisconsin 9

Geneva 9 9

Arizona State 9 9

U: Colorado 9 9 9

Berkeley 9 9 9 9

Dalian UoT 9 9

Amsterdam 9 9

IIT Chicago 9 9

Fudan U: 9

Kyoto=Melbourne 9 9 9

NLM et al: 9 9

Oregon H&SU 9 9

State U: of NY 9

U: Illinois 9 9 9 9

CMU 9 9 9

Cornell U: ðTweaseÞ 9 9

11 Query templates are officially referred to as generic topic templates (GTT); see Hersh et al. (2006) for
more details.
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Experiments by Sanderson (2000) have shown that unless automatic sense disambig-

uation methods achieve over 90% accuracy (around 30% more than current state-of-the-art

systems are capable of), no increase in IR performance will be observed. Voorhees and

Buckland (1994) shows that even when the senses of the query terms are correctly

interpreted, query expansion using WordNet12 only achieves performance gains when a

subset of highly relevant expansion terms are manually chosen from the knowledge source.

These results are indicative of domain independent query expansion experiments using

ontological resources. Hence, the IR community has focussed more on corpus-based

expansion methods such as pseudo relevance feedback (Ruthven and Lalmas 2003). The

strength of these methods is accredited to the query collocation effect (Krovetz and Croft

1992). More specifically, in pseudo relevance feedback, query terms mutually disambig-

uate each other, which means that the top ranked documents, from which the query

expansion terms are derived, tend to contain more domain specific relevant terms. For

example, given the query ‘‘Big Apple City Tours’’, we can expect that the most highly

ranked documents for this topic are more likely to describe excursions in New York city

than recipes for an apple pie.

This discussion shows that in domain independent query expansion, the topic of dis-

ambiguation is an important consideration. However, the experiments described in this

paper are performed on a collection of domain specific documents and queries. Hence, like

many other TREC Genomics participants we assume that multiple senses of a term are

rare, and that no explicit sense disambiguation method is required. Our results show this to

be the case, in all except one instance: the addition of abbreviated terms to the query. This

result, and a proposed solution to the problem are discussed in more detail in Sect. 7.

4 A genomic query expansion framework

In this section, we describe the different components of our Genomic IR architecture

(Fig. 1). Our IR system is a version of the Zettair engine13 which we have specifically

modified for passage retrieval and biomedical query term expansion. This system will form

the basis for the experiments reported on below, wherein we vary the resources and

techniques used for query expansion for genomic IR tasks.

4.1 Document preprocessing

The TREC 2006 Genomics document collection consists of 162,259 full-text journal

articles obtained by crawling the Highwire site. When uncompressed, the full collection is

about 12.3 GB in size. After preprocessing, the whole collection becomes 7.9 GB. The

collection is pre-processed as follows:

• Paragraph Segmentation: for evaluation purposes the Genomics Track requests that the

ranked answer passages must be within specified paragraph boundaries.

• Sentence Segmentation: all sentences within paragraphs are segmented using an open

source tool.14

12 WordNet is a domain independent machine-readable, manually-derived thesaurus developed by
researchers at Princeton (Fellbaum 1998).
13 http://www.seg.rmit.edu.au/zettair.
14 http://l2r.cs.uiuc.edu/*cogcomp/atool.php?tkey=SS.
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• Character Replacement: Greek characters represented by gifs are replaced by textual

encodings; accented characters such as ‘‘À’’ or ‘‘Á’’ are replaced by ‘‘A’’; Roman

numbers are replaced by Arabic numerals. These replacements are very important for

capturing variations in gene names. In addition, hyphens in terms such as ‘‘Creutzfeldt-

Jakob’’ are replaced by spaces (similar changes must be made to query terms).

• Text Removal: all HTML tags, very short sentences, paragraphs with the heading

Abbreviations, Figures, Tables, and some special characters such as hyphens, slashes

and asterisks, are removed.

• Abbreviation Resolution: all abbreviations and their corresponding long forms within

the same article are detected using ADAM as a filter, and the long forms are added after

the abbreviations in the original text. For example, ‘‘HIV’’ is replaced by ‘‘HIV

(Human Immunodeficiency Virus)’’.

4.2 Query parsing and expansion

Once pre-processing on the collection has been completed, and an index consisting of

paragraphs (rather than full-text documents) has been created, querying can begin. As

already explained, TREC simplifies the query preprocessing task by ensuring that all topics

conform to the query templates discussed in Sect. 3. The following is a sample query,

Topic 160 from the 2006 track, which contains two concepts: ‘‘PrnP’’ (a gene) and ‘‘mad

cow disease’’ (a general biomedical term):

What is the role of PrnP in ‘‘mad cow disease’’?

To use our concept-based search engine model, we first need to parse the query and

identify phrases corresponding to concepts. For this task we leverage PubMed; we submit

Answer 
Passages

Collection of 
Journal Papers

ZETTAIR (modified)

Query

Document Preprocessing

Paragraphing, Removal 
& Replacement

Abbr. Resolution

Query Preprocessing

Parsing (with PubMed)

Expansion (with 
external resources)

Term variant generation
Terms

Querying

Passage Extraction,  
Reranking & Document 
Context Combination

Relevance 
Feedback 
Terms

Expanded 
Query

Indexing

Fig. 1 A genomic query expansion framework
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the natural language query to PubMed and use information presented in the details tab, to

obtain a parsed version of the query. We also use information from the query templates to

automatically differentiate between gene concept and general biomedical term concepts.15

For example, in the above topic the two identified concepts (the first of type [GENE], and

second of type [GENERAL]) are highlighted in bold font. After parsing, the external

resources are used to expand these concept terms to their synonyms, ontologically related

terms (generalisations and specialisations), and abbreviations. The following example

shows the expanded terms derived from Entrez Gene and MeSH:

What is the role of PrnP, {‘‘prion protein’’, ‘‘p27-30’’, ‘‘Creutzfeldt-Jakob disease’’,
‘‘Gerstmann-Strausler-Scheinker syndrome’’, ‘‘fatal familial insomnia’’, ‘‘ASCR’’,
‘‘CD230’’, ‘‘CJD’’, ‘‘GSS’’, ‘‘MGC26679’’, ‘‘PRIP’’, ‘‘PrP’’, ‘‘PrP27-30’’, ‘‘PrP33-
35C’’, ‘‘PrPc’’, ‘‘CD230 antigen’’, ‘‘major prion protein’’, ‘‘prion protein’’, ‘‘prion
protein PrP’’, ‘‘prion-related protein’’} in ‘‘mad cow disease’’ {‘‘Encephalopathy,
Bovine Spongiform’’, ‘‘Bovine Spongiform Encephalopathy’’, ‘‘BSE’’, ‘‘BSEs’’,
‘‘Encephalitis, Bovine Spongiform’’, ‘‘Bovine Spongiform Encephalitis’’, ‘‘Mad Cow
Disease’’, ‘‘Mad Cow Diseases’’, ‘‘Spongiform Encephalopathy, Bovine’’, ‘‘Spongi-
form Encephalopathy‘‘, ’’Spongiform Encephalitis‘‘, ‘‘Prion Diseases’’, ‘‘Cattle
Diseases‘‘}?

As mentioned in Sect. 3, while we don’t apply any explicit sense disambiguation

method when deciding which expansion terms to add to the query, we do define rules for

cases where our terminology databases returns multiple hits for a given query term. In

addition, these resources may provide additional information that would not be of benefit to

our task. The rules presented in Table 3 define how we resolve these issues.

As well as expanding with synonyms, hypernyms, hyponyms and abbreviations, we use

a ‘‘term variant’’ generation tool to generate all the possible variants for both original query

terms and expanded terms. Our segmentation rules are similar to those used by (Buttcher

et al. 2004). We describe our rules as follows:

Given a gene name, we define a split point to be: (1) any hyphen or punctuation

occurring in the name; (2) any change from lower case to upper case, or (3) any change

from a character to a number (or vice versa) or a Greek character (e.g. ‘‘alpha’’). A word is

split according to all its split points, and all variants are generated by concatenating all

these split parts, optionally with a space inserted. Greek characters are also mapped to

English variants, e.g. alpha is mapped to ‘‘a’’.

For example, for the query term ‘‘Sec61alpha’’, we would generate the following lexical

variants which are also commonly used forms of this term in the collection: ‘‘Sec

61alpha’’, ‘‘Sec61 alpha’’, ‘‘Sec 61 alpha’’, ‘‘Sec 61a’’, ‘‘Sec61 a’’, ‘‘Sec 61 a’’, ‘‘Sec61a’’.

In query phrases, we replace any hyphens (‘‘-’’), slashes (‘‘/’’) and asterisks (‘‘*’’) with a

space. For example, ‘‘subunit 1 BRCA1 BRCA2 containing complex’’ would be generated

as a variant of ‘‘subunit 1 BRCA1/BRCA2-containing complex’’.

4.3 Concept-based query normalisation

Our paragraph ranking method is based on the Okapi model (Robertson et al. 1994). Many

participant systems at the TREC Genomics Track uses the Okapi method for ranking

15 Since no manual intervention occurred in the query parsing process, we consider our runs to be auto-
matic. For example, if PubMed’s parsing tool returned an incorrect parse, we did not manually modify the
query. This PubMed tool was also used in the official automatic runs submitted by Zhou et al. (2006b).
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paragraphs with respect to their similarity to the query. However, there are two funda-

mental problems with using this model on TREC Genomics queries.

The first problem regards Okapi not differentiating between concept terms and general

query terms in the query. For example, consider two paragraph, one containing the terms

‘‘mad cow disease’’ and ‘‘PrnP’’, and the other containing the terms ‘‘role’’ and ‘‘PrnP’’.

Clearly the first paragraph containing the two biological concepts is more relevant; how-

ever, Okapi does not make the required distinction. The second problem occurs because

TREC 2006 topics contain more than one concept term. It is possible that a short paragraph

Table 3 Table showing the rules used for automatically expanding queries with terms from domain-
specific knowledge resources

Res Name Expansion type Rules

ADAM Abbreviation Find the entries which have at least one term in any of the
fields exactly matching the original term. Then, choose all
the terms in the Abbreviation and Variants fields as
expansion terms.

Entrez Gene Gene synonym Find the top ranked entry retrieved that belongs to the species
type Homo sapien. Then choose all the terms in the Official
Symbol, Name, Other Aliases and Other Designations fields
from this entry as expansion terms.

MeSH General term synonym Choose all the terms in MeSH Heading and Entry Term fields.

General term specialisation Find all the direct children in all its MeSH Tree Structures.

General term generalisation Find all the direct parents in all its MeSH Tree Structures.

OMIM Gene synonym From the OMIM site, search for the query term and choose all
terms in the Alternative Titles and Symbols fields as
expansion terms.

UniProt Gene synonym In Protein Knowledgebase (UniProtKB), find the first entry
whose Organism field is Homo sapiens (Human). Then
choose all the terms in Protein names and Gene names from
this entry.

MTH General term synonym Find the concept id corresponding to the query term in the
MRCONSO datafile. Then extract all synonyms (as defined by
the SY, RQ and RL field identifiers) from the MRREL data
file.

General term specialisation Find Children for a given Concept id, where all direct children
of the concept are extracted from the data file MRCONSO. We
also find children in the MRREL data file by searching for the
CHD or RN field identifiers for the given concept.

General term generalisation Find Parents of given Concept id, by searching for the direct
parents of the concept in the data file MRHIER. Also from
MRREL data file, look for terms in the field identifiers PAR
and RB associated with the concept. For more information
on the UMLS data files and field identifiers see
http://www.nlm.nih.gov/research/umls/metab3.html

HUGO Gene synonym Same as MTH.

SNOMEDCT General term synonym Same as MTH.

General term specialisation Same as MTH.

General term generalisation Same as MTH.

UMLS General term synonym The union of all MTH, MeSH, SNOMEDCT synonyms.

General term specialisation The union of all MTH, MeSH, SNOMEDCT specialisations.

General term generalisation The union of all MTH, MeSH, SNOMEDCT generalisations.
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that discusses only one concept will be ranked higher than a longer paragraph which

mentions two concepts. Again this is an undesirable outcome.

To overcome these problems, a Conceptual IR model was proposed in Zhou et al.

(2006b). In this paper, we use another method called concept-based query normalisation,

first introduced in Stokes et al. (2007a), which is a modified version of the geographic
query normalisation model presented in Li et al. (2006).

The first problem mentioned above is solved by dividing query terms into two types:

concept terms tc (e.g., ‘‘mad cow disease’’), and non-concept terms tn (e.g., ‘‘role’’).16 More

specifically, we define non-concept terms as query terms that do not have an entry in one of

our genomic expansion resources; while concept terms, on the other hand, do. Conse-

quently, non-concept query terms are not expanded. So given a query with both concept

and non-concept terms, the similarity between a query Q and a paragraph Pp is measured as

follows:

simðQ;PpÞ ¼ nsimðQ;PpÞ þ csimðQ;PpÞ

where nsim(Q, Pp) is the non-concept query similarity score and csim(Q, Pp) is the concept
similarity score. The non-concept similarity score is defined by:

nsimðQ;PpÞ ¼
X

t2Qn

simtðQ;PpÞ ¼
X

t2Qn

rp;t � wt � rq;t

where Qn is the aggregation of all non-concept terms in the query, and

rp;t ¼
ðk1 þ 1Þ � fp;t

k1 � ð1� bÞ þ b � Wp

avgWp

h i
þ fp;t

wt ¼ log
N � ft þ 0:5

ft þ 0:5

rq;t ¼
ðk3 þ 1Þ � fq;t

k3 þ fq;t

where k1 and b are usually set to 1.2 and 0.75 respectively, and k3 can be taken to be ?.

Variable Wp is the length of the paragraph p in bytes; avgWp is the average paragraph

length in the entire collection; N is the total number of paragraphs in the collection; ft is the

number of paragraphs in which term t occurs; and f{p,q},t is the frequency of term t in either

a paragraph p or query q. The concept similarity score is given by:

csimðQ;PpÞ ¼
X

C2Qc

simcðQ;PpÞ

¼
X

C2Qc

Normðsimtc1
ðQ;PpÞ; . . .; simtcN

ðQ;PpÞÞ

¼
X

C2Qc

simtc1
þ simtc2

a
þ � � � þ simtcN

aN�1

� �

where Qc is the aggregation of all concepts in the query, C is one concept in Qc, and tci is a

query or expanded term belonging to concept C; the tci are listed in descending order

according to their Okapi similarity scores simtc1
; . . .; simtcN

: Without this geometric

16 For readability purposes, we refer to both a single term unit and a multi-term unit (that is, a phrase) as a
term, since the latter is treated in the same manner as the former in the following equations.
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progression normalisation, a document with more synonyms belonging to the same concept

will be favoured against another document which has fewer synonyms. The similarity

score simt of a concept term t is calculated as:

simtðQ;PpÞ ¼ rp;t � w0t � rq;t

where rp,t and rq,t are defined in nsim(Q, Pp), and w0t is defined as:

w0t ¼ log
N �maxðft; ftqÞ þ 0:5

maxðft; ftqÞ þ 0:5
ð1Þ

Note that (1) is an adjustment of the calculation for the weight wt

0
of an expanded term t

appearing in the query: for expanded term t, its own term frequency ft and the corre-

sponding original query term’s frequency ft_q are compared, and the larger value used—

this ensures the term contributes an appropriately normalised ‘‘concept weight’’.

To solve the second problem, we use the following rules to ensure that for two para-

graphs P 1 and P 2 , where one contains more unique query concepts than the other, the

number of concepts ConceptNumðP iÞ will override the Okapi score ScoreðP iÞ and

assign a higher rank to the paragraph with more unique query concepts:

if ConceptNumðP 1Þ[ ConceptNumðP 2Þ then
RankðP 1Þ[ RankðP 2Þ

else if ConceptNumðP 1Þ\ConceptNumðP 2Þ then
RankðP 2Þ[ RankðP 1Þ

else if ScoreðP 1Þ[ ¼ ScoreðP 2Þ then
RankðP 1Þ[ RankðP 2Þ

else

RankðP 2Þ[ RankðP 1Þ

4.4 Relevant n-gram feedback

So far we have described how hand annotated external resources can be used for expan-

sion. In this work, we also investigate an N-gram feedback method. The following is an

overview of how this pseudo relevance feedback step contributes to the retrieval process:

1. Retrieve the first 1,000 paragraphs which include at least one instance of each concept

in the query.

2. From this subset of paragraphs, find all unigrams, bigrams and trigrams by using a

(in-house) tokenisation tool. All stop words are excluded.

3. Among these n-grams, calculate their TF � IDF scores, and find the top 20 with the

highest scores. Add these into the query as additional expansion terms, and re-run the

passage retrieval step.

4.5 Passage extraction and re-ranking

As already mentioned the 2006 Genomics Track defined a new question answering-type

task that requires short full-sentence answers to be retrieved in response to a particular

query. However, before answer passages can be generated, we first retrieve the top 1,000

ranked paragraphs for each topic, and use the following simple rules to reduce these

paragraphs to answer spans.
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The passage extraction method can be best described by an example. Consider a par-

agraph consisting of a sequence of sentences h(s1, i), (s2, i), (s3, r), (s4, r), (s5, i), (s6, r),

(s7, i), (s8, i), (s9, r), (s10, i) i, where r is a relevant sentence (that is, mentions at least one

query term) and i is an irrelevant one. Our passage extraction method removes all the

irrelevant sentences from both ends of the paragraph and splits a paragraph if there are two

or more consecutive irrelevant sentences within this span. Hence, it would produce the

following two passages from this paragraph: h(s3, r), (s4, r), (s5, i), (s6, r)i and h(s9, r) i.
After the passage extraction technique has been applied for a particular topic, we

re-rank passages by re-indexing them, and re-querying the topic against this new index,

using global statistics obtained from the original indexed collection, i.e. using term fre-

quency ft and the average paragraph length avgWp.

4.6 Document context combination

In earlier experiments, we found that even when passage extraction and re-ranking resulted

in a significant increase in Passage level MAP, we would still see a significant drop in the

Document and Aspect level MAP for the same run. Zhou et al. (2006b) also witnessed this

negative impact on Document and Aspect level MAPs when applying their passage

reduction technique. To overcome this problem, we employed the following linear docu-

ment context combination method:

1. Use passage extraction and re-ranking to find the top 1,000 passages for each topic.

2. Divide these 1,000 passages into different concept level groups according to the

number of concepts they include. This is straightforward since our concept-based

retrieval model has already ranked all the paragraphs according to (firstly) their

concept numbers, and then similarity scores.

3. Within each group, re-rank the passages by combining their similarity scores with their

containing documents’ similarity scores.

The following rules tell us how to combine the two scores: for a passage i which has a

similarity score Pi and whose containing document has a similarity score Di, the final

combination score Si is calculated as:

Si ¼ Pi þ a� Di

Dmax
� Pmax

where Pmax and Dmax are the maximum similarity scores of all the 1,000 passages and their

containing documents, and a controls the weight of importance of the document similarity

score, which was set to 0.5 in our experiments.

5 Query expansion frameworks at the TREC Genomics Track

In Sect. 2, we briefly discussed related work on query expansion for medical IR. Early

work in this area tended to focus on the information needs of clinicians (that is, medical

professionals interacting directly with patients). Despite the differences in query view point

between TREC and this work, we still find that many of the same query expansion tech-

niques and resources have been used by Genomics Track participants.

In this section, our aim is to briefly summarise the most popular approaches to IR

system design employed at TREC 2006 Genomics, and contrast these with our framework

presented in the previous section. While the Genomics Track system papers also describe a
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broad spectrum of solutions to collection preprocessing and passage reduction, we will

limit our discussion here to IR frameworks. The pre- and post-processing methods

described in the previous section can be viewed as a good merge of the best solutions for

these tasks.

One of the key aspects of our system is the implementation of a concept-based passage

ranking algorithm. A similar idea was explored by the University of Chicago, Illinois

(Zhou et al. 2007) who also recognised the significance of re-ranking documents with

respect to the number of unique concepts they mention. However, we use a term weighting

normalisation technique to ensure that the weights of expansion terms do not ‘‘drown out’’

the contribution of original query terms in the ranking metric; while they explicitly modify

the weight of expansion term types based on their strength of association with the query

term. For example, the weight associated with a hypernym (specialisation) expansion term

is reduced by 5%. Zhou et al.’s post-submission results are the highest reported effec-

tiveness scores on the 2006 data. These results are compared with our best performing

expansion run in Sect. 8. Other modified Okapi approaches described in TREC system

reports do not come near the performance gains achieved by Zhou et al. and those pre-

sented later in our paper. These included submissions by Abdou and Savoy (2006) and

Huang et al. (2006).

The Indri retrieval engine17 (part of the Lemur project) was also a popular choice of IR

framework at 2006 Genomics workshop. Advantages of this framework include the inte-

gration of language modelling and inference networks. Indri also supports structured

querying (using an extended set of operators) which facilitates more sophisticated ranking

and filtering of candidate documents during the retrieval process.

An example of the flexibility of the Indri operators can be found in the University of

Wisconsin system report (Goldberg et al. 2006) which defines their ranking strategy using

the Indri operators as follows: first retrieve all documents using the #band constraint that

contains at least one reference to all query concepts represented by either an original term

or any synonyms as defined by the #syn operand. This subset of the collection is then

ranked using the #combine operand, which considers the frequency of occurrence of any

of the original and expanded terms in its ranking score.

It is not surprising that this ranking strategy performed poorly, given that the first

filtering step often results in a ranked list length that is considerable shorter than the

required 1,000 passages for the TREC evaluation metrics, which can lead to lower

effectiveness scores.

CMU (Si et al. 2006) make more effective use of the Indri’s structured querying lan-

guage as follows: each original term and its expanded terms are combined using the

weighted synonym operator #wsyn, where different weights are assigned to expanded

terms depending on their word type (aliases, synonyms, acronyms, function word) and

expansion source. These different #wsyn expression are then combined into a single score

for a document using the #weight belief operator, which ensures that highly reliable

operators (in this case acronyms from AcroMed) will contribute more to the final document

rank.

CMU also use Indri’s language modelling IR capabilities. Indri’s default mode com-

bines language modelling and Dirichlet smoothing. Variations on the Language Modelling

(LM) approach to IR were explored by many research groups at the Genomics Track. The

LM approach to IR is based on the observation that we can estimate the relevance of a

document with respect to a query by computing the probability of generating each query

17 http://www.lemurproject.org/indri/.
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term from the document model. The product of these probabilities is then used to rank the

document. Smoothing methods are used to tackle the problem of zero query term proba-

bilities in this calculation. Smoothing addresses the data sparseness problem by assigning

small amounts of probability mass to all unseen query terms in the document language

model. A more detailed explanation of the language modelling paradigm for IR can be

found in Croft and Lafferty (2003).

Data sparseness is an even greater problem when the language model is generated for a

passage rather than a full-text document. CMU (Si et al. 2006) use a modified version of

the Dirichlet smoothing method which incorporates query term probability evidence from

the passage, document and collection level for calculating passage relevance. The Uni-

versity of Guelph (Song et al. 2006) use two different smoothing techniques, Good-
Turning estimates and curve-fitting functions, and a combination of various language

models similar to the CMU approach: passage, document, journal and collection models.

They state that borrowing information from outside the passage model helps to further

differentiate the contribution of unseen terms.

The University of Illinois at Urbana-Champaign (Jiang et al. 2006) investigate the

performance of a Kullback-Leibler (KL) divergence retrieval framework, another language

modelling approach, and use vocabulary retrieved from pseudo-relevance feedback to

improve the estimation of the query model. UMass (Smucker 2006) use a similar approach

called relevance modelling (Lavrenko and Croft 2001) to incorporate pseudo-relevance

feedback information into the language modelling framework. They also investigated

query-biased pseudo-relevance feedback, which generates a document model from the

terms surrounding the query term occurrences in a document.

Of these four LM approaches, CMU performs best followed by Urbana-Champaign,

Guelph, and UMass. One reason for CMU’s strong performance may be its use of ter-

minology resources during query expansion, while UMass and Urbana-Champaign use

relevance feedback. The Guelph result is impressive given that no explicit query expansion

is used. In Sect. 7, we compare our baseline (no-expansion) concept normalisation

framework with the Guelph LM results, as it is one of the few reported examples where a

baseline system beats the median Genomics Track values for effectiveness.

All of the systems discussed so far are classed as automatic runs, i.e. no human

intervention contributed to final ranked list of results. However, a number of groups

submitted interactive runs. The most effective example of an interactive run was reported

in Demner-Fushman et al. (2006). This group collected manually expanded queries from a

computational biologist and a medical librarian for one of their official runs. This inter-

active run is one of the top ranked systems at TREC 2006. It achieved the highest passage-

based Mean Average Precision score of all official TREC 2006 runs (Hersh et al. 2006).

While their effectiveness scores are impressive, our results in Sect. 8 demonstrate that even

domain experts can be outperformed by a competent automatic query expansion system.

6 Experimental methodology

As already stated, this work focusses on the TREC 2006 Genomics passage-level retrieval

task. The TREC collection for this task consists of 162,259 full-text documents from 49

journals published electronically via the Highwire Press website.18 With the collection

comes 28 topics expressed as natural language questions, formatted with respect to seven

18 More information on the TREC dataset can be found at: http://ir.ohsu.edu/genomics/2006data.html.
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general topic templates (see Sect. 3). A list of these queries and their corresponding topic

numbers, which are referenced in Sects. 7 and 8, can be found in the track overview paper

(Hersh et al. 2006).

As with other TREC tasks, participating systems must submit the first 1,000 retrieved

passages for each topic (Hersh et al. 2006). Passages in this task are defined as text

sequences that cannot cross paragraph boundaries (delimited by HTML tags), and are

subsets of the original paragraphs in which they occur. As is the custom at TREC, human

judges were used to decide the relevance of passages in the pooled participating system

results. These judges also defined exact passage boundaries, and assigned topic tags called

aspects from a control vocabulary of MeSH terms to each relevant answer retrieved.

System results are evaluated with respect to three distinct versions of the Mean Average

Precision (MAP) score calculated at different levels of answer granularity: Document,
Passage and Aspect. Traditionally the MAP score is defined as follows: first, the average of

all the precision values at each recall point on a topic’s document ranked list is calculated;

then, the mean of all the topic average precision scores is determined.

Since the retrieval task at the Genomics Track is a question answering-style task, a

metric that is sensitive to the length of the answer retrieved was developed. Passage MAP

is similar to document MAP except average precision is calculated as the fraction of

characters in the system passage overlapping with the gold standard answer, divided by the

total number of characters in every passage retrieved up to that point in the ranked list.

Hence, a system is penalised for all additional characters retrieved that are not members of

the human evaluated answer passages.

For the TREC 2007 Track, Passage MAP was modified in response to 2006 participant

reports that the score could be increased by simply halving passages without any con-

sideration to content (Smucker 2006). For example, consider a topic with one relevant

passage, 100 characters long, and two ranked lists. The first list ranked this relevant

passage at position 1, but also retrieves 50 extra characters so the AP for the topic is 0.25

(or 100/400). The second list, retrieves 75 correct and 125 irrelevant characters at position

1, and at rank 4 it retrieves the remaining correct 25 characters and 500 characters in total

up to this point in the ranked list. This results in an overall MAP score for this topic of 0.29

(or (75/200 ? 100/500)/2)). It is clear from this contrived example that the second ranked

list will achieve a higher score than the first, which contradicts our intuitive understanding

of how a MAP score should work. The improved Passage2 MAP scores, on the other hand,

calculates MAP as if each character in each passage were a ranked document. Using this

modified version, the first ranked list is guaranteed to obtain a higher MAP score at the

passage level.

Despite these enhancements, Passage2 MAP (like passage MAP) is a very harsh metric

for evaluating system performance. Given the utility of the task, it is questionable whether

users would be considerably hampered if they were presented with additional text sur-

rounding a relevant answer. In fact it has been shown that, in general, users prefer

paragraph size chunks to exact answers in question answering applications (Lin et al.

2003). Hence, as an alternative to Passage-level MAP, we define a Paragraph MAP score

which calculates the fraction of paragraphs retrieved that contain a correct passage, divided

by the total number of paragraphs retrieved. As before, the average of these scores at each

recall point is the final score for that topic. We use this metric to evaluate the effectiveness

of different system parameters (knowledge sources and expansion framework), but also

report a set of Passage2 MAP scores for our final, best run in order to evaluate the

effectiveness of our passage reduction method described in Sect. 4.
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The final metric defined by the track is used to measure to what extent a particular

passage captures all the necessary information required in the answer. Judges were asked to

assign at least one MeSH heading to all relevant passages. Aspect average precision is then

calculated as the number of aspects (MeSH headings) captured by all the relevant docu-

ments up to this recall point in the ranked list for a particular query. Relevant passages that

do not contribute any new aspect to the aspects retrieved by higher ranked passages are

removed from the ranking. Aspect MAP is defined as the mean of these average topic

precision scores. In essence, it captures the completeness of an answer, but doesn’t reward

redundant answer removal as repeated aspects are not penalised.

7 Experimental results

This section reports on the findings of our experimental evaluation of three important

factors in effective query expansion. Firstly, we discuss baseline performance without

query expansion by comparing our modified-Okapi ranking algorithm with other baseline

approaches reported at TREC. We then investigate the effectiveness of different corpus-

based and manual-derived expansion resources that have been used by TREC participants.

As many of the ontological resources provide more than one type of semantic relationship,

we also look at which relationship types, as defined in Sect. 3, provide the most gain. All of

these results are then used in Sect. 8 to derive a list of optimal conditions for successful

query expansion in the genomic domain. A paired Wilcoxon signed-rank test at the 0.05

confidence level was used in all our experiments to determine significance. When a sig-

nificant result is reported in a table we use the following symbol y:

7.1 Comparing baseline IR frameworks

The objective of this experiment is to show that the improvements in effectiveness reported

later in this section are achieved on a strong baseline system; that is, a system which uses

no external resources for query expansion. Table 4 presents Paragraph, Aspect and Doc-

ument MAP scores for a baseline Okapi approach (Okapi), our concept-based

normalisation baseline approach (Baseline) as discussed in Sect. 5, and a baseline

Language Modelling (LM) run with the official run name UofG0 (see Sect. 5 for more

details). This LM approach was chosen for comparison purposes since it is one of the few

non-expansion runs that outperforms the median MAP scores at the 2006 track. This

comparison confirms that our baseline system is competitive. This helps to motivate the

significance of our results, since reports of incremental increases in effectiveness on weak

baselines are not always repeatable on stronger baseline systems. Table 4 shows that the

Baseline run is significantly better than the Okapi run across all MAPs. The significance

scores reported for the LM run are based on a comparison with the Baseline run rather

than Okpai. We can see that UofG0 is significantly worse than Baseline for Aspect and

Paragraph MAP.

The final result presented in Table 4 shows how critical phrase-based querying is in the

genomic domain. The No Phrase run (which treats each constituent word of a phrase as an

independent query term) shows a 13.8% drop in performance when compared to the

Baseline run. This result is consistent with domain-independent IR experiments reported

by Pickens and Croft (2000). Consequently, all subsequent runs reported in this section use

phrase-based querying.
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7.2 Gene and biomedical expansion with lexical variation

In Sect. 3, we outlined four distinct query expansion term types: lexical variation (e.g.,

‘‘HIV-1’’, ‘‘HIV 1’’, ‘‘HIV1’’), synonymy (e.g., ‘‘sonic hedgehog gene’’, ‘‘HHG1’’),

ontologically related words (e.g., ‘‘lupus’’ is a type of ‘‘autoimmune disorder’’), and co-

occurring terms (e.g., ‘‘cancer’’, ‘‘chemotherapy’’). In the following subsection, we will

explore the effect of these expansion term types on retrieval. In this subsection, our

experiments focus on the strongest relationship type: term equivalence through lexical

variation. In Sect. 4, we described a term variation generation tool that splits words at

appropriate breakpoints such as a hyphen or change in case. Our intention in this section

was also to explore the value of variants in UMLS Specialist Lexicon which lists plural

forms and alternative spellings for biomedical terms. Unfortunately, our experiments show

that for the 2006 queries no benefit was gained from expansion with the Specialist Lexicon.

While alternative spellings are sure to have high impact on appropriate queries (for

example, a query containing ‘‘estrogen’’ will benefit from the term ‘‘oestrogen’’), there

were no 2006 query terms that contained an alternative spelling in this lexicon. We note

that the addition of morphological variations, in contrast, would have been appropriate for

some queries, e.g., the nominalisations of verbs (‘‘mutate’’ to ‘‘mutation’’). However, one

of the failings of the lexicon is that no explicit links between these variants exist, hence

fuzzy term matching is needed to make these inferences. This would be an interesting

avenue for future research, but is not pursued any further here.

Table 5 shows the positive impact of the lexical variation generation tool, where Par-

agraph MAP increases by 16.5%, which is statistically significant. Improvements in

Document and Aspect MAP scores are also observed. Later in this section, we report on the

impact of the generation tool after query expansion has been applied, that is, after both

original query terms and expanded terms are expanded using this tool.

7.3 Gene and biomedical synonym expansion

In this subsection, we consider expanding original queries with synonyms, i.e., terms that

can be swapped without change of meaning in a given context. Hence, like lexical vari-

ation, query expansion has much to gain from this term relationship type.

The following experiments are divided into two parts: first we compare sources of gene

synonyms, followed by the expansion of general biomedical concepts (such as disease

names) with another selection of terminology resources. Detailed descriptions of these

knowledge bases are provided in Sect. 3.

In Table 6, the rows from E Gene (Entrez Gene) to OMIM show MAP performance

increases after gene synonyms from these resources have been used. Entrez Gene mar-

ginally outperforms the other resources with a nearly statistically significant increase in

effectiveness over the baseline for its Paragraph and Aspect MAP scores, which amounts to

a 20.9% improvement over baseline Paragraph MAP.

The second half of Table 6, shows the performance gains when general biomedical

terms in the query are expanded. We observe that the impact of these synonyms is much

lower than for gene synonyms. A manual examination of the gold standard passages shows

that there are fewer examples of general biomedical terms from the original query being

referred to by their synonyms, where as the opposite is true for gene names. Hence, adding

gene synonyms has more potential for impact than for other biomedical term-type

expansion.

Inf Retrieval (2009) 12:17–50 35

123



T
a

b
le

4
T

ab
le

co
m

p
ar

in
g

o
u

r
b

as
el

in
e

sy
st

em
(B
a
s
e
l
i
n
e

)
ag

ai
n
st

an
O

k
ap

i
b

as
el

in
e

(O
k
a
p
i

)
an

d
a

st
ro

n
g

la
n

g
u

ag
e

m
o
d

el
li

n
g

b
as

el
in

e
(U
o
f
G
0

)
th

at
al

so
b

ea
ts

th
e

m
ed

ia
n

M
A

P
sc

o
re

ac
h
ie

v
ed

at
th

e
T

R
E

C
2
0
0
6

G
en

o
m

ic
s

T
ra

ck

R
u

n
P

ar
ag

ra
p

h
M

A
P

A
sp

ec
t

M
A

P
D

o
cu

m
en

t
M

A
P

O
k
a
p
i

0
.1

3
7

0
.1

8
4

0
.3

3
6

B
a
s
e
l
i
n
e

0
:2

2
8
y

?
6

5
.9

%
P

\
0

.0
1

0
:2

8
8
y

?
5

6
.6

%
P

\
0

.0
1

0
:4

1
4
y

?
2

3
.2

%
P

\
0

.0
1

U
o
f
G
0

0
:1

4
9
y

-
3

4
.6

%
P

=
0

.0
3

0
:1

8
6
y

-
3

5
.5

%
P

\
0

.0
1

0
.3

5
2

-
1

5
.0

%
P

=
0

.0
9

N
o

P
h
r
a
s
e

0
:1

9
7
y

-
1

3
.8

%
P

\
0

.0
1

0
.2

5
9

-
1

0
.1

%
P

=
0

.1
2

0
:3

7
3
y

-
9

.7
9
%

P
\

0
.0

1

T
ab

le
5

T
ab

le
co

m
p
ar

in
g

th
e

ef
fe

ct
iv

en
es

s
o
f

th
e

le
x
ic

al
v
ar

ia
ti

o
n
-b

as
ed

q
u
er

y
ex

p
an

si
o
n

ru
n

(V
A
R

)
w

it
h

th
e
B
a
s
e
l
i
n
e

ru
n

R
u
n

P
ar

ag
ra

p
h

M
A

P
A

sp
ec

t
M

A
P

D
o

cu
m

en
t

M
A

P

B
a
s
e
l
i
n
e

0
.2

2
8

0
.2

8
8

0
.4

1
4

V
A
R

0
:2

6
6
y

?
1

6
.5

%
P

\
0

.0
1

0
.3

0
9

?
7

.4
9

%
P

=
0

.0
6

0
.4

4
4

?
7

.3
9
%

P
=

0
.1

4

36 Inf Retrieval (2009) 12:17–50

123



As explained in Sect. 3, UMLS is a concatenation of ontological and terminology

resources. In our experiments we use a subset of these: MeSH, SNOMED Clinical Terms

(SNOMEDCT), the NCBI thesaurus, and UMLS’s own homegrown resource the MetaThe-

saurus (MTH). Considering the standalone resources, SNOMEDCT provides the greatest

improvement over the baseline. However, the combined resource run (UMLS) marginally

outperforms the baseline at the Paragraph, Aspect and Document level. Like gene synonym

expansion this improvement is not statistically significant. From these results we also see

that the inclusion of UMLS’s own thesaurus, MTH, provides little or no value to the

experiment, as its coverage of synonymous terms for the 2006 queries is poor. SNOMED is

perhaps the surprise winner in this category of ontologies, as it outperforms its more

popular competitor MeSH. SNOMED was only released in 2004 (available as part of

UMLS) and so reports on the usefulness of this resource are limited in both the IR and NLP

communities. Given the lack of contribution from MTH, the UMLS run is basically a com-

bination of MeSH and SNOMEDCT. This run performs as well as individual runs for

SNOMEDCT and MeSH, indicating a high degree of overlap between these two resources.

In Sect. 3, we discussed ambiguity and its observed negative effect on IR performance.

As already stated, we perform no explicit disambiguation. Our general rule for biomedical

term expansion is to expand with the first ranked concept returned by the knowledge

resource, where in the case of genes the first ranked human reference to the gene is the

expansion seed. The results of our synonym expansion experiments reported here provide

strong evidence that, in a terminology-specific domain such as genomics, ambiguity is

negligible. More specifically, negative effects are drowned out by the large boosts in

performance that the correct synonymous expansion terms provide.

7.4 Expansion with abbreviation databases

Another special instance of synonymy is abbreviation. In domain-specific documents,

particularly in the Sciences, abbreviations are used prolificly as a shorthand version of

important concepts that are frequently repeated in a particular publication. As already

stated, there are three options for addressing abbreviations: automatically generate a col-

lection of longform-shortform pairs (see Schwartz and Hearst 2003); use a static resource

(in our case we use the ADAM database); or resolve all abbreviations in the document

collection to their longforms. Table 7 shows that resolving abbreviations (Rsolve) in the

Table 6 Table comparing the effectiveness of gene and biomedical query term expansion with synonyms
from various knowledge resources

Run Paragraph MAP Aspect MAP Document MAP

Baseline 0.228 0.288 0.414

E Gene 0.276 ?20.9% P = 0.07 0.343 ?19.1% P = 0.06 0.466 ?12.7% P = 0.13

HUGO 0.229 ?0.32% P = 0.6 0.291 ?1.01% P = 0.8 0.411 -0.51% P = 0.2

UniProt 0.261 ?14.4% P = 0.3 0.334 ?15.9% P = 0.15 0.446 ?7.80% P = 0.20

OMIM 0.267 ?16.9% P = 0.3 0.320 ?11.2% P = 0.4 0.452 ?9.29% P = 0.2

MeSH 0.232 ?1.72% P = 0.6 0.302 ?4.90% P = 0.7 0.412 -0.27% P = 0.06

MTH 0.228 -0.07% P = 0.3 0.288 -0.05% P = 0.3 0.412 -0.40% P = 0.3

SNOMEDCT 0.243 ?6.65% P = 0.4 0.311 ?8.09% P = 0.5 0.424 ?2.57% P = 0.5

UMLS 0.245 ?7.34% P = 0.4 0.314 ?9.06% P = 0.4 0.419 ?1.24% P = 0.9
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document collection is more effective than adding shortforms to the query from a static

resource (ADAM).

From a manual analysis of the results it appears that abbreviation expansion is one instance

where ambiguity becomes an issue. For example, looking at the gold standard passages for

topic 161 (What is the role of IDE in Alzheimer’s disease?), abbreviation ‘‘AD’’ is a com-

monly used reference to ‘‘Alzheimer’s disease’’. Hence, the addition of ‘‘AD’’ to the query

should boost performance; however, according to the ADAM database, ‘‘AD’’ can refer to 35

unique longform concepts, such as ‘‘after discharge’’, ‘‘autosomal dominant’’, ‘‘autistic

disorder’’. In contrast, replacing abbreviations with longforms in the collection (Rsolve) is a

low-risk expansion strategy that provides an impressive boost in Paragraph MAP (28.6% over

the baseline). This improvement even exceeds the contribution made from gene synonym

expansion reported in the previous subsection (20.9%). Later in this section, we discuss the

results of an extension to this ADAM experiment, whereby abbreviations for expansion terms

are also added to the query. This experiment provides additional evidence that abbreviations

expansion can be a dangerous pursuit.

7.5 Gene and biomedical hierarchical term expansion

In this section we evaluate the effect of ontological relationships, specialisations and

generalisations, on retrieval performance. The following extracted sentence from a gold

standard passage is a typical example of how these ontological relationships can benefit

passage ranking:

Huntington’s disease (HD)1 is an autosomal-dominant neurodegenerative disorder
caused by a CAG expansion in the huntingtin gene (htt) (1), and is characterized by
involuntary movements, personality changes, dementia, and early death.

More specifically, since ‘‘Huntington’s disease’’ is a type of ‘‘neurodegenerative dis-

order’’ and a form of ‘‘dementia’’, when these hierarchically related terms are added to the

query, they can provide a positive ranking boost for the passage. However, gold standard

passages where original query terms (such as a disease) are referred to solely by their more

general or specific terms are rarer. Hence, we don’t expect expansion with hierarchical

terms to have as significant an effect on paragraph retrieval performance as synonyms do.

Results shown in Table 8 confirm this; however, in all instances, except for MeSH parents

(that is, MeSH_Gener which consists of generalised terms), expansion with hierarchial

terms has a negative effect on Paragraph, Aspect and Document MAP. In some cases this

under-performance is statistically significant compared to the baseline. The worse per-

forming resources are the MetaThesaurus (MTH) and the combined resource UMLS.

A close examination of the individual topic performance for MeSH hierarchical

expansion shows that there are no topics where specialised terms outperformed baseline

performance (MeSHSpec vs. Baseline). On the other hand, there are three topics which

show improved Paragraph MAP scores after generalised terms have been added to the

query (MeSH Gener). For example, topic 163 on ‘‘colon cancer’’ benefits from the gen-

eralised term ‘‘colorectal cancer’’. Drops in performance are rare for MeSH Gener; topic

181 is one such example where the generalised form of ‘‘mutation’’, according to MeSH, is

‘‘variation’’ which is perhaps too broad and ambiguous to be beneficial. While our nor-

malisation technique, described in Sect. 4, ensures that multiple references to the same

concepts are not given undue weight by our ranking metric, it might also pay to weight

hierarchical terms more conservatively than other expansion terms types. We leave this for

future investigation.
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7.6 Expansion with related and cooccurring terms

Up to this point, our experiments have focussed on the effectiveness of query expansion

using ontological resources. We turn our attention now to the final expansion term type:

cooccurring terms. Two sources of cooccurring terms are examined here: those derived

from MEDLINE and those acquired from pseudo-relevance feedback. Our feedback

method was described in Sect. 4. Our MEDLINE cooccurring terms are uni-, bi- and tri-

grams, extracted from all 8 million abstracts. After all n-grams containing a stopword are

removed, as well as n-grams with frequency less than two, the following breakdown of n-

grams and their corresponding MEDLINE abstract ids are obtained and stored in a data-

base: 127 million uni-gram, 30 million bi-grams, and 5 million tri-grams. Then, for a

given general biomedical query term we calculate the top 20 strongest (statistically)

associated phrases using a log-likelihood association metric (Dunning 1993), where the

window size for a cooccurrence pair is the length of an abstract. These cooccurring terms

are then added to the query in the same fashion as ontologically related terms are.

Table 9 shows the results from our expansion experiments using cooccurring terms.

While most approaches to relevance feedback use uni-grams from top ranked documents,

we also compare this run (RelF uni) with a bi- and tri-gram run (RelF bi� tri). For

each of these we see a non-statistically significant improvement over the baseline across

Paragraph and Document MAPs, where the use of bi and tri-grams result in marginally

better performance. In contrast, MEDLINE cooccurring terms, whose addition to the query

is similar in concept to query expansion using an automatically derived thesaurus (Srini-

vasan 1996), consistently underperformed compared to the baseline run. For Paragraph

MAP, the drop in performance is 22.4%. One possible explanation for the strength of

Relevance Feedback is the query collocation effect, where top ranked documents in many

instances will contain two or more query concepts which mutually disambiguate each

other. This increases the likelihood that feedback terms will be appropriate query expan-

sion terms. MEDLINE cooccurring terms, on the other hand, are calculated without

knowledge of additional query terms, and in many cases cooccurring terms relate to

multiple distinct senses of the term.

7.7 Combining query expansion term sources

In this subsection, we combine the most effective sources of expanded terms as determined

by the experiments reported in our paper so far. Our criteria for including an expansion

source is: all three MAP scores must improve baseline performance. Table 10 compares

baseline performance with this optimal combination of query terms from the following

positive runs: E Gene, UniProt, OMIM, SNOMEDCT and Gener MeSH. We can see that the

All Source run achieved a 45.3% Paragraph MAP increase in performance over the

baseline with similar large gains over Aspect (40.1%) and Document MAP (20.6%).

In Sects. 7.2 and 7.4, we explored the effectiveness of adding lexical variants and

abbreviations as expansion terms. These expansion terms were derived with respect to the

original query terms only. We repeated these experiments on our optimal expanded queries

to measure the effect of adding variants and abbreviations for expansion terms as well.

Table 11 shows that expansion term variants Allþ V provides a smaller benefit to para-

graph MAP (4.54% increase) than they did when applied to original query terms. However,

for abbreviation expansion using the ADAM database, performance significantly drops

(Allþ Vþ Adam). This confirms our previous observation that the addition of abbrevia-

tions to queries can be more harmful than good, due to the effects of ambiguous shortforms
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(Stokes et al. 2007b). Again we see that the most effective method of dealing with

abbreviations is to resolve them in the collection before retrieval is performed, where our

Allþ Vþ Rsolve run consistently increases MAP scores (by up to 5.45%) when com-

pared with Allþ V.

This concludes our experiments on issues regarding expansion resources. The next

subsection focusses on the final step in the retrieval process: the reduction of candidate

paragraphs to exact answer passages.

7.8 Passage reduction

Previously we have described our approach to reducing paragraphs to answer passages. In

brief, our method searches for the longest span of query terms (occurring in consecutive

sentences) in each of our retrieved candidate paragraphs for a particular topic (see Sect. 4

for more details).

Table 12 compares the performance of our best expansion run (Allþ Vþ Rsolve,

abbreviated to AVR in this table) when passage reduction (AVRþ PSG) and passage

reduction with document context is considered in the answer re-ranking process

(AVRþ PSGþ Ctxt). Runs up to this point have been evaluated with our paragraph MAP

score. As already stated, paragraph MAP does not penalise a run for returning additional

text surrounding a correct answer passage. Since the focus of the experiments in this

section is to evaluate our passage reduction approach, we will evaluate our runs with the

official TREC Passage2 MAP metric.

The results in Table 12 show that while passage reduction has a positive effect on

Passage2 MAP, slight drops in Aspect and Document MAP occur (AVRþ PSG). Similar

drops were reported by other TREC participants (Zhou et al. 2006b, 2007). In Sect. 4, we

proposed a new passage re-ranking method that as well as considering the relevance of the

passage to the query, also incorporates the relevance score of the document containing that

passage. Our results show that this run (AVRþ PSGþ Ctxt) counteracts the tradeoff

between Passage2 MAP increases and Aspect/Document MAP decreases. In addition,

document context further increases our Passage2 and Document MAP scores.

8 Discussion

The objective of this section is threefold. First, we present a detailed topic analysis of our

optimal run AVRþ PSGþ Ctxt which we now refer to as NICTA Best. Second, we

motivate the contribution of this work by presenting it in the context of other reported

results on the TREC 2006 data. And thirdly, we collate the findings of our experiments, and

present a list of optimal criteria necessary for successful query expansion in the genomic

domain.

8.1 Topic-based discussion of results

In Sect. 7, we drew conclusions regarding system effectiveness from mean Average Pre-

cision scores across all 28 topics in the TREC 2006 Genomics evaluation. In this

subsection, we provide a deeper understanding of the strengths and weaknesses of our best

run in comparison with our baseline concept retrieval system (described in Sect. 4) by

analysing performance on a topic by topic basis.
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In Fig. 2, we see that NICTA Best outperforms the baseline system on all but 4 topics:

169, 181, 183 and 185. This observation concurs with our statistical significance tests, thus

confirming that the increase in performance is contributed to by the majority of topics

rather than a few very high scoring ones. We now consider each of the under-performing

topics, and attempt to explain their sub-optimal performance compared to the baseline:

• Topic 169 (How does adenomatous polyposis coli (APC) affect actin assembly?):

Looking at the top ranked passages returned by the expanded query, we see a number

of long, irrelevant chunks of text from the Reference Sections of papers. Like many

other TREC participants we took the decision to index references, since human judges

have added many such instances to the gold standard passages. So it is possible that,

while the content of a document is irrelevant, it may contain a relevant reference to a

paper that has been judged to contain an answer to the query.

• Topic 181 (How do mutations in the Huntingtin gene affect Huntington’s disease?): The

expansion of the Huntingtin gene to ‘‘HD’’ causes problems for this topic as there are a

number of references in the text to a paper containing this abbreviation in its title

(‘‘Behavioral abnormalities and selective neuronal loss in HD’’). This paper is represented

4 times in the top 20 retrieved passages (as it is referenced by multiple documents), but has

not been judged relevant. This problem is similar in spirit to topic 169. However, it also

highlights the need for some redundancy removal on the ranked list: that is, lower ranking

passages that look distinctly similar to a higher ranked one should be removed from the

answer list. The performance of this topic drops by around 60% compared to the baseline,

which is the biggest drop of the four under-performing topics.

• Topic 183 (How do mutations in the NM23 gene affect tracheal development?): Here

we see a slight drop in performance by the NICTA Best run as a number of irrelevant

passages are retrieved that contain references to the following expansion terms: NM23-

H1, NM23/AWD, ASP/NM23-M1, NM23-M1, AWD. These gene expansion terms are

correct; however, we must assume that these passage were not judged relevant as they

made no reference to the concept ‘‘tracheal development’’.

• Topic 185 (How do mutations in the hypocretin receptor 2 gene affect narcolepsy?):

The performance of this topic drops slightly because one high ranked passage contains

the gene expansion term ‘‘orexin receptor’’, but is not considered relevant.
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Fig. 2 Passage2 AP scores per topic for two system runs: Baseline and NICTA Best
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In summary then, it appears that the indexing of reference sections in papers is a bigger

problem than the addition of irrelevant expansion terms due to ambiguity.

8.2 Performance comparison with TREC participants

In this subsection, we motivate the significance of our results with respect to official TREC

2006 MAP scores, and the highest reported post-submission scores, achieved by the

University of Illinois, Chicago (UIC). Table 13 shows that the NICTA Best run has the

highest MAP score at each level of granularity (Passage2, Paragraph, Aspect and Docu-

ment), except for the now defunct Passage MAP score. A brief description of the UIC and

National Library of Medicine (NLM) approach (the only interactive run presented here)

can be found in Sect. 5. The THU2 run, submitted by Tsinghua University, does not have a

corresponding participant workshop paper, so it is unclear which techniques they have used

to achieve these impressive results. The median values of each MAP score, for the official

TREC results, are also reported (TREC MEDIAN). Since we don’t have access to the ranked

lists of the UIC SIGIR run (Zhou et al. 2007), the Passage2 and Paragraph values are

missing. Overall, our NICTA Best run achieves a 185% increase in performance (Passage2

MAP, 0.137 vs. 0.048) over a baseline Okapi approach (Okapi).

8.3 Criteria for successful query expansion

As stated at the beginning, and throughout this paper, our aim here is to suggest some

necessary criteria for optimising the effectiveness of query expansion for genomic-based

search. In Sect. 7, our experiments isolated and investigated factors affecting system

performance. These experiments focussed around two specific aspects of the retrieval

framework presented in Sect. 4: knowledge resource and relationship type used in

expansion; and IR ranking algorithm.

Before we formally state our criteria for effective query expansion, it is worth pointing

out that there are many other parameters that significantly affect performance. For

example, our decision to index references in journal papers was based on the observation

that cited papers appear in gold standard passages for the task. More specifically, of the

3,451 gold standard passages, 458 (13.3%) of them are references.

Table 13 Table showing performance of our best Passage MAP scoring run NICTA Best with the top
performing TREC systems on the Genomics track data

Run Passage2 Passage Paragraph Aspect Document
MAP MAP MAP MAP MAP

UIC GenRun3 0.123 0.148 0.342 0.349 0.532

THU2 0.099 0.149 0.265 0.304 0.434

NLMinter 0.084 0.083 0.272 0.405 0.473

TREC MEDIAN 0.037 0.035 0.124 0.158 0.308

�NICTA Best 0.137 0.127 0.384 0.407 0.543

UIC SIGIR NA 0.182 NA 0.381 0.539

Okapi 0.048 0.048 0.137 0.184 0.336

Official TREC run results are listed in the top half of the table (i.e., first four runs), while post-submission
results are presented in the second half (i.e., last three runs)
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Similarly, other researchers have shown that small changes in tokenisation of the col-

lection (a preprocessing step) can significantly improve performance (Trieschnigg et al.

2006). To the best of our ability, we have tried to optimise these additional factors to

ensure that performance losses by, for example, the addition of specialised terms to the

query, can be solely attributed to this term type rather than an unfortunate side-effect of,

say, our tokenisation strategy.

Figure 3 summarises the findings of our experiments in Sect. 7, where clearly our

concept normalisation ranking method (Con) provides more performance gains than any of

the individual expansion term types, and slightly more than the optimal combination of

expansion terms (ALLEXP).

So the principal conclusions of this paper are as follows:

• Without doubt the single biggest contributing factor to the success of our experiments

can be attributed to the modified Okapi ranking algorithm we have developed, which is

based around concept re-ranking, and the normalisation of expansion terms. The

former ensures that a passage that contains multiple distinct query concepts will be

ranked higher than a passage that contains multiple instances of the same query

concept. The latter, the normalisation technique, ensures that expansion terms

contribute less to the ranking process than original query terms do.

• Phrase-based querying is essential, and becomes more critical as additional expansion

terms are added.

• In general, expansion terms gleaned from ontologies are more effective than those
provided by corpus-based analysis methods, such as pseudo relevance feedback and

cooccurrence statistics derived from MEDLINE. Our results show that while relevance

feedback achieves small non-statistical gains, MEDLINE cooccurring terms signif-

icantly decrease performance.
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Fig. 3 Graph comparing the relative improvement in Passage2 MAP performance achieved by various
system parameters (factors). These factors are: Concept Normalisation (Con), Phrase Retrieval (Phr),
Lexical Variation (VAR), Gene Synonyms (GeSyn), General term synonyms (GTSyn), Generalised
ontological terms (Gnr), Abbreviation resolution in collection (Res), Adam abbreviations (Adm), Relevance
feedback (Rel), Passage reduction (Psg). The factor ALLEXP is a combination of all the following expansion
factors: VAR, GeSyn, GTSyn, Gnr and Res
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• Gene synonym expansion provides larger performance improvements than general
biomedical synonym term expansion. Entrez Gene provides the largest improvement for

gene expansion, while UMLS (a combination of SNOMED_CT, MeSH and the

Metathesaurus) is the best option for general biomedical terms.

• Ontological relationships such as parents and children of the original query term
produce little or no improvement to the retrieval process. However, adding parent

terms from MeSH showed some minor improvement, where a limited number of topics

performed better and all other topics experienced a neutral rather than negative effect,

making it a useful expansion term type. Other sources of generalised terms

(SNOMED_CT, the MetaThesaurus and UMLS) did not exhibit this characteristic.

• Abbreviation expansion is an ineffective form of query expansion, especially when

shortforms of expanded terms are also added (see Sect. 7.4). This is due to the

additional ambiguity that shortforms with multiple semantically distinct longform

concepts contribute. We show that abbreviation resolution in the collection eliminates
the need for abbreviation query expansion, and produces a statistically significant
improvement over the baseline.

• Since none of the expansion term resources examined differ greatly in their effect on

performance, we can conclude that the differences in expansion effectiveness reported
at TREC are caused by the use of an inappropriate IR framework rather than from a
poor source of the ontological expansion terms.

• Passage Reduction helps improve Passage2 MAP scores. However, as reported by

other participants this increase can negatively impact Document MAP. We have shown

that considering document context in the ranking algorithm can alleviate this trade-off.

9 Conclusions

The aim of this paper was to explore the criteria necessary for successful query expansion

in the genomic domain. We presented a set of controlled experiments that isolated and

evaluated two important aspects of system design: passage ranking strategy, and knowl-

edge resources for query expansion. Our experiments showed that the single biggest factor

affecting the accuracy of the retrieval process is the ranking metric used.

We presented a novel concept normalisation ranking strategy that addresses two

problems with the standard Okapi ranking algorithm: first, the concept re-ranking strategy

ensures that documents containing multiple unique concepts are ranked higher than doc-

uments that make reference to the same concept multiple times; and secondly, the query-

term normalisation strategy ensures that expansion terms for the same concept are not

given undue influence by the ranking metric.

Our results also conclusively show that query expansion has a positive effect on

genomic retrieval performance; with the added caveat that expansion terms should be

gleaned for manually-derived domain specific resources rather than automatically-gener-

ated corpus-derived terms. Our results also demonstrate that expansion with synonyms and

lexical variants is much more effective than with hierarchical terms from ontologies. The

only exceptions to the ‘‘synonym efficacy rule’’ are abbreviations, whose utility is ques-

tionable due to their innate ambiguity (that is, shortforms may refer to multiple concepts).

Our experiments establish that resolving abbreviations in the collection (replacing them

with their longforms) provides a more effective alternative to using abbreviations to

expand the query.
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An interesting direction for future work would be to investigate the importance of

weighting expansion terms according to their strength of semantic association with the

original query term. This idea is similar in vein to work on weighted query terms by Aronson

and Rindflesch (1997) and Zhou et al. (2007), and work by Liu and Chu (2005) on thesaurus

guided relevance feedback. In addition, we have only examined expansion in the context of

two ranking metrics: Okapi and our own modified version of this metric. It would be inter-

esting to repeat these experiments on other IR models, such as Language Modelling

approaches, which have shown some promise at the TREC 2006 Genomics track.

In conclusion then, this paper demonstrates that query expansion has a positive effect on

retrieval performance in the genomic domain, when the basic criteria, regarding system

design issues, are adhered to as outlined in this paper.
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