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Abstract Collaborative filtering is concerned with making recommendations about items

to users. Most formulations of the problem are specifically designed for predicting user

ratings, assuming past data of explicit user ratings is available. However, in practice we

may only have implicit evidence of user preference; and furthermore, a better view of the

task is of generating a top-N list of items that the user is most likely to like. In this regard,

we argue that collaborative filtering can be directly cast as a relevance ranking problem.

We begin with the classic Probability Ranking Principle of information retrieval, proposing

a probabilistic item ranking framework. In the framework, we derive two different ranking

models, showing that despite their common origin, different factorizations reflect two

distinctive ways to approach item ranking. For the model estimations, we limit our dis-

cussions to implicit user preference data, and adopt an approximation method introduced in

the classic text retrieval model (i.e. the Okapi BM25 formula) to effectively decouple

frequency counts and presence/absence counts in the preference data. Furthermore, we

extend the basic formula by proposing the Bayesian inference to estimate the probability of

relevance (and non-relevance), which largely alleviates the data sparsity problem. Apart

from a theoretical contribution, our experiments on real data sets demonstrate that the

proposed methods perform significantly better than other strong baselines.
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1 Introduction

Collaborative filtering aims at identifying interesting information items (e.g. movies,

books, websites) for a set of users, given their user profiles. Different from its counterpart,

content-based filtering (Belkin and Croft 1992), it utilizes other users’ preferences to

perform predictions, thus making direct analysis of content features unnecessary.

User profiles can be explicitly obtained by asking users to rate items that they know.

However these explicit ratings are hard to gather in a real system (Claypool et al. 2001). It

is highly desirable to infer user preferences from implicit observations of user interactions

with a system. These implicit interest functions usually generate frequency-counted pro-

files, like ‘‘playback times of a music file’’, or ‘‘visiting frequency of a web-site’’ etc.

So far, academic research into frequency-counted user profiles for collaborative filtering

has been limited. A large body of research work for collaborative filtering by default

focuses on rating-based user profiles (Adomavicius and Tuzhilin et al. 2005; Marlin 2004).

Research started with memory-based approaches to collaborative filtering (Herlocker et al.

1999; Sarwar et al. 2001; Wang et al. 2006; Xue et al. 2005) and lately came with model-

based approaches (Hofmann 2004; Jin et al. 2006; Marlin 2004).

In spite of the fact that these rating-based collaborative filtering algorithms lay a solid

foundation for collaborative filtering research, they are specifically designed for rating pre-

diction, making them difficult to apply in many real situations where frequency-counted user

profiling is demanded. Most importantly, the purpose of a recommender system is to suggest

to a user items that he or she might be interested in. The user decision on whether accepting a

suggestion (i.e. to review or listen to a suggested item) is a binary one. As already demon-

strated in (Deshpande and Karypis 2004; McLaughlin and Herlocker et al. 2004), directly

using predicted ratings as ranking scores may not accurately model this common scenario.

This motivated us to conduct a formal study on probabilistic item ranking for collab-

orative filtering. We start with the Probability Ranking Principle of information retrieval

(Robertson 1997) and introduce the concept of ‘‘binary relevance’’ into collaborative

filtering. We directly model how likely an item might be relevant to a given user (profile),

and for the given user we aim at presenting a list of items in rank order of their predicted

relevance. To achieve this, we first establish an item ranking framework by employing the

log-odd ratio of relevance and then derive two ranking models from it, namely an item-
based relevance model and user-based relevance model. We then draw an analogy between

the classic text retrieval model (Robertson and Walker et al. 1994) and our models,

effectively decoupling the estimations of frequency counts and (non-)relevance counts

from implicit user preference data. Because data sparsity makes the probability estimations

less reliable, we finally extend the basic log-odd ratio of relevance by viewing the prob-

abilities of relevance and non-relevance in the models as parameters and apply the

Bayesian inference to enforce different prior knowledge and smoothing into the probability

estimations. This proves to be effective in two real data sets.

The remainder of the paper is organized as follows. We first describe related work and

establish the log-odd ratio of relevance ranking for collaborative filtering. The resulting

two different ranking models are then derived and discussed. After that, we provide an

empirical evaluation of the recommendation performance and the impact of the parameters

of our two models, and finally conclude our work.
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2 Related work

2.1 Rating prediction

In the memory-based approaches, all rating examples are stored as-is into memory (in

contrast to learning an abstraction), forming a heuristic implementation of the ‘‘Word of

Mouth’’ phenomenon. In the rating prediction phase, similar users or (and) items are sorted

based on the memorized ratings. Relying on the ratings of these similar users or (and)

items, a prediction of an item rating for a test user can be generated. Examples of memory-

based collaborative filtering include user-based methods (Breese et al. 1998; Herlocker

et al. 1999; Resnick et al. 1994), item-based methods (Deshpande and Karypis 2004;

Sarwar et al. 2001) and unified methods (Wang et al. 2008; Wang et al. 2006). The

advantage of the memory-based methods over their model-based alternatives is that less

parameters have to be tuned; however, the data sparsity problem is not handled in a

principled manner.

In the model-based approaches, training examples are used to generate an ‘‘abstrac-

tion’’ (model) that is able to predict the ratings for items that a test user has not rated

before. In this regard, many probabilistic models have been proposed. For example, to

consider user correlation, (Pennock et al. 2000) proposed a method called personality

diagnosis (PD), treating each user as a separate cluster and assuming a Gaussian noise

applied to all ratings. It computes the probability that a test user is of the same ‘‘per-

sonality type’’ as other users and, in turn, the probability of his or her rating to a test

item can be predicted. On the other hand, to model item correlation, (Breese et al. 1998)

utilizes a Bayesian Network model, in which the conditional probabilities between items

are maintained. Some researchers have tried mixture models, explicitly assuming some

hidden variables embedded in the rating data. Examples include the aspect models

(Hofmann 2004; Jin et al. 2006), the cluster model (Breese et al. 1998) and the latent

factor model (Canny 2002). These methods require some assumptions about the

underlying data structures and the resulting ‘compact’ models solve the data sparsity

problem to a certain extent. However, the need to tune an often significant number of

parameters has prevented these methods from practical usage. For instance, in the aspect

models (Hofmann 2004; Jin et al. 2006), an EM iteration (called ‘‘fold-in’’) is usually

required to find both the hidden user clusters or/and hidden item clusters for any new

user.

2.2 Item ranking

Memory-based approaches are commonly used for rating prediction, but they can be easily

extended for the purpose of item ranking. For instance, a ranking score for a target item can

be calculated by a summation over its similarity towards other items that the target user

liked (i.e. in the user preference list). Taking this item-based view, we formally have the

following basic ranking score:

ouk
ðimÞ ¼

X

im0 2Luk

sIðim0 ; imÞ ð1Þ

where uk and im denote the target user and item respectively, and im0 2 Luk
denotes any item

in the preference list of user uk. SI is the similarity measure between two items, and in

practice cosine similarity and Pearson’s correlation are generally employed. To specifically
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target the item ranking problem, researchers in (Deshpande and Karypis. 2004) proposed

an alternative, TFxIDF-like similarity measure, which is shown as follows:

sIðim0 ; imÞ ¼
Freqðim0 ; imÞ

Freqðim0 Þ � FreqðimÞa
ð2Þ

where Freq denotes the frequency counts of an item Freqðim0 Þ or co-occurrence counts for

two items Freqðim0 ; imÞ: a is a free parameter, taking a value between 0 and 1. On the basis

of empirical observations, they also introduced two normalization methods to further

improve the ranking.

In Wang et al. (2006), we proposed a language modelling approach for the item ranking

problem in collaborative filtering. The idea is to view an item (or its presence in a user

profile) as the output of a generative process associated with each user profile. Using a

linear smoothing technique (Zhai and Lafferty 2001), we have the following ranking

formula:

ouk
ðimÞ ¼

X

im0 2Luk

ln kPðim0 jimÞ þ ð1� kÞPðim0 Þð Þ þ ln PðimÞ ð3Þ

where the ranking score of a target item is essentially a combination of its popularity

(expressed by the prior probability P(im)) and its co-occurrence with the items in the

preference list of the target user (expressed by the conditional probability Pðim0 jimÞ).
k [ [0, 1] is used as a linear smoothing parameter to further smooth the conditional

probability from a background model (Pðim0 Þ).
Nevertheless, our formulations in Wang et al. (2006) only take the information about

presence/absence of items into account when modelling implicit user preference data,

completely ignoring other useful information such as frequency counts (i.e. the number of

visiting/playing times). We shall see that the probabilistic relevance framework proposed

in this paper effectively extends the language modelling approaches of collaborative fil-

tering. It not only allows us to make use of frequency counts for modelling implicit user

preferences but has room to model non-relevance in a formal way. They prove to be crucial

to the accuracy of recommendation in our experiments.

3 A probabilistic relevance ranking framework

The task of information retrieval aims to rank documents on the basis of their relevance

(usefulness) towards a given user need (query). The Probability Ranking Principle (PRP) of

information retrieval (Robertson 1997) implies that ranking documents in descending order

by their probability of relevance produces optimal performance under a ‘‘reasonable’’

assumption, i.e. the relevance of a document to a user information need is independent of

other documents in the collection (van Rijsbergen 1979).

By the same token, our task for collaborative filtering is to find items that are relevant

(useful) to a given user interest (implicitly indicated by a user profile). The PRP applies

directly when we view a user profile as a query to rank items accordingly. Hereto, we

introduce the concept of ‘‘relevancy’’ into collaborative filtering. By analogy with the rel-

evance models in text retrieval (Lafferty et al. 2003; Robertson and Sparck Jones et al. 1976;

Taylor et al. 2003), the top-N recommendation items can be then generated by ranking items

in order of their probability of relevance to a user profile or the underlying user interest.

To estimate the probability of relevance between an item and a user (profile), let us first

define a sample space of relevance: UR and let R be a random variable over the relevance
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space UR. R is either ‘relevant’ r or ‘non-relevant’ �r: Secondly, let U be a discrete random

variable over the sample space of user id’s: UU ¼ fu1; . . .; uKg and let I be a random

variable over the sample space of item id’s: UI ¼ fi1; . . .; iMg; where K is the number of

users and M the number of items in the collection. In other words, U refers to the user

identifiers and I refers to the item identifiers.

We then denote P as a probability function on the joint sample space UU 9 UI 9 UR. The

PRP now states that we can solve the ranking problem by estimating the probability of

relevance P(R = r|U, I) and non-relevance PðR ¼ �rjU; IÞ: The relevance ranking of items in

the collection UI for a given user U = uk can be formulated as the log odds of the relevance:

ouk
ðimÞ ¼ ln

Pðrjuk; imÞ
Pð�rjuk; imÞ

ð4Þ

For simplicity, the propositions R ¼ r;R ¼ �r;U ¼ uk and I = im are denoted as r; �r; uk; and

im, respectively.

3.1 Item-based relevance model

Two different models can be derived if we apply the Bayes’ rule differently. This section

introduces the item-based relevance model, leaving the derivations of the user-based rel-

evance model in Sect. 3.2.

By factorizing P(•|uk, im) with P(uk|im, •)P(•|im)/P(uk|im), the following log-odds ratio

can be obtained from Eq. 4:

ouk
ðimÞ ¼ ln

Pðukjim; rÞ
Pðukjim; �rÞ

þ ln
PðrjimÞ
Pð�rjimÞ

ð5Þ

Notice that, in the ranking model shown in Eq. 5, the target user is defined in the user id
space. For a given new user, we do not have any observations about his or her relevancy

towards an unknown item. This makes the probability estimations unsolvable. In this

regard, we need to build a feature representation of a new user by his or her user profile so

as to relate the user to other users that have been observed from the whole collection.

This paper considers implicit user profiling: user profiles are obtained by implicitly

observing user behavior, for example, the web sites visited, the music files played etc., and

a user is represented by his or her preferences towards all the items. More formally, we

treat a user (profile) as a vector over the entire item space, which is denoted as a bold letter

l :¼ ðl1; . . .; lm0 ; . . .; lMÞ; where lm
0
denotes an item frequency count, e.g., number of times a

user played or visited item im0 : Note that we deliberately used the item index m0 for the

items in the user profile, as opposed to the target item index m. For each user uk, the user

profile vector is instantiated (denoted as lk) by assigning this user’s item frequency counts

to it: lm0 ¼ cm0
k ; where cm0

k 2 f0; 1; 2. . .g denotes number of times the user uk played or

visited item im0 : Changing the user presentation from Eq. 5, we have the following:

ouk
ðimÞ ¼ ln

Pðlkjim; rÞ
Pðlkjim; �rÞ

þ ln
PðrjimÞ
Pð�rjimÞ

¼
X

8m0
ln

Pðlm0 ¼ cm0
k jim; rÞ

Pðlm0 ¼ cm0
k jim; �rÞ

þ ln
PðrjimÞ
Pð�rjimÞ

ð6Þ

where we have assumed frequency counts of items in the target user profile are condi-

tionally independent, given relevance or non-relevance.1 Although this conditional

1 The underlying model assumption might be weaker and more plausible by adopting Cooper’s linked
dependence assumptions instead of conditional independence (Cooper 1995).

Inf Retrieval (2008) 11:477–497 481

123



independent assumption does not hold in many real situations, it has been empirically

shown to be a competitive approach (e.g., in text classification (Eyheramendy et al. 2003)).

It is worthwhile noticing that we only ignore the item dependency in the profile of the

target user, while for all other users, we do consider their dependence. In fact, how to

utilise the correlations between items is crucial to the item-based approach.

For the sake of computational convenience, we intend to focus on the items (im0 ; where

m0 [ {1, M}) that are present in the target user profile (cm0

k [ 0). By splitting items in the

user profile into two groups, i.e. presence and absence, we have:

ouk
ðimÞ ¼

X

8m0:cm0
k

[ 0

ln
Pðlm0 ¼ cm0

k jim; rÞ
Pðlm0 ¼ cm0

k jim; �rÞ
þ

X

8m0:cm0
k
¼0

ln
Pðlm0 ¼ 0jim; rÞ
Pðlm0 ¼ 0jim; �rÞ

þ ln
PðrjimÞ
Pð�rjimÞ

ð7Þ

Both subtracting

X

8m0:cm0
k

[ 0

ln
Pðlm0 ¼ 0jim; rÞ
Pðlm0 ¼ 0jim; �rÞ

; ð8Þ

to the first term and adding it from the second (where lnx� lny ¼ ln x
y) gives

ouk
ðimÞ ¼

X

8m0:cm0
k

[ 0

ln
Pðlm0 ¼ cm0

k jim; rÞPðlm0 ¼ 0jim; �rÞ
Pðlm0 ¼ cm0

k jim; �rÞPðlm0 ¼ 0jim; rÞ

0
@

1
Aþ

X

8m0
ln

Pðlm0 ¼ 0jim; rÞ
Pðlm0 ¼ 0jim; �rÞ

 !

þ ln
PðrjimÞ
Pð�rjimÞ

ð9Þ

where the first term only deals with those items that are present in the user profile.

Pðlm0 ¼ cm0
k jim; rÞ is the probability that item im0 occurs cm0

k times in a profile of a user who

likes item im (i.e. item im is relevant to this user). In other words, it means, given the

evidence that a user who likes item im, what is the probability that this user plays item im0

ck
m0 times.

In summary, we have the following ranking formula:

ouk
ðimÞ ¼ Wuk ;im þ Xim þ Yim ð10Þ

where

Wuk ;im ¼
X

8m0:cm0
k

[ 0

ln
Pðlm0 ¼ cm0

k jim; rÞPðlm0 ¼ 0jim; �rÞ
Pðlm0 ¼ cm0

k jim; �rÞPðlm0 ¼ 0jim; rÞ

0
@

1
A ð11Þ

Xim ¼
X

8m0
ln

Pðlm0 ¼ 0jim; rÞ
Pðlm0 ¼ 0jim; �rÞ

ð12Þ

Yim ¼ ln
PðrjimÞ
Pð�rjimÞ

ð13Þ

From the final ranking score, we observe that the relevance ranking of a target item in the

item-based model is a combination between the evidence that is dependent on the target

user profile (Wuk ;im ) and that of the target item itself (Xim þ Yim ). However, we shall see in

Sect. 3.2 that, due to the asymmetry between users and items, the final ranking of the user-

based model (Eq. 27) only requires the ‘‘user profile’’-dependent evidence.
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3.1.1 Probability estimation

Let us look at the weighting function Wuk ;im (Eq. 11) first. Item occurrences within user

profiles (either Pðlm0 ¼ cm0
k jim; rÞ or Pðlm0 ¼ cm0

k jim; �rÞ) can be modeled by a Poisson dis-

tribution. Yet, an item occurring in a user profile does not necessarily mean that this user

likes this item: randomness is another explanation, particularly when the item occurs few

times only. Thus, a better model would be a mixture of two Poisson models, i.e. a linear

combination between a Poisson model coping with items that are ‘‘truly’’ liked by the user

and a Poisson model dealing with some background noise. To achieve this, we introduce a

hidden random variable Em0 2 fe; �eg for each of the items in the user profile, describing

whether the presence of the item in a user profile is due to the fact that the user truly liked it

(Em0 = e), or because the user accidentally selected it (Em0 ¼ �e). A graphical model

describing the probabilistic relationships among the random variables is illustrated in

Fig. 1a. More formally, for the relevance case, we have

Pðlm0 ¼ cm0

k jim; rÞ ¼ Pðlm0 ¼ cm0

k jeÞPðejim; rÞ þ Pðlm0 ¼ cm0

k j�eÞPð�ejim; rÞ

¼ k
ðcm0

k Þ
1 expð�k1Þ
ðcm0

k Þ!
pþ k

ðcm0
k Þ

0 expð�k0Þ
ðcm0

k Þ!
ð1� pÞ ð14Þ

where k1 and k0 are the two Poisson means, which can be regarded as the expected item

frequency counts in the two different cases (e and �e) respectively. p : P(e|im, r) denotes

the probability that the user indeed likes item i0m; given the condition that he or she liked

another item im. A straight-forward method to obtain the parameters of the Poisson mix-

tures is to apply the Expectation-Maximization (EM) algorithm (Dempster et al. 1977). To

illustrate this, Fig. 1b plots the histogram of the item frequency distribution in the Last.FM

data set as well as its estimated Poisson mixtures by applying the EM algorithm.

IR

m'
E

m'
l

m'
km':c

0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Estimation

(a) (b)

Fig. 1 A Poisson mixture model for modelling the item occurrences in user profiles. (a) A graphical model
of the Poisson mixtures. (b) An estimation of the Poisson mixtures for the Last.FM data set in the relevance
case (k0 = 0.0028, k1 = 6.4691 and p = 0.0046)
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The same can be applied to the non-relevance case. Incorporating the Poisson mixtures

for the both cases into Eq. 11 gives

Wuk ;im ¼
X

8m0:cm0
k

[0

Wi0m;im

¼
X

8m0:cm0
k

[0

ln

k
ðcm0

k Þ
1 expð�k1Þpþ k

ðcm0
k Þ

0 expð�k0Þð1� pÞ
� �

expð�k1Þqþ expð�k0Þð1� qÞð Þ

k
ðcm0

k
Þ

1 expð�k1Þqþ k
ðcm0

k
Þ

0 expð�k0Þð1� qÞ
� �

expð�k1Þpþ expð�k0Þð1� pÞð Þ

¼
X

8m0:cm0
k

[0

ln
pþ ðk0=k1Þðc

m0
k Þ expðk1 � k0Þð1� pÞ

� �
expðk0 � k1Þqþ ð1� qÞð Þ

qþ ðk0=k1Þðc
m0
k
Þ
expðk1 � k0Þð1� qÞ

� �
expðk0 � k1Þpþ ð1� pÞð Þ

ð15Þ

where, similarly, q � Pðejim; �rÞ denotes the probability of the true preference of an item in

the non-relevance case, while Wi0m;im denotes the ranking score obtained from the target

item and the item in the user profile.

For each of the item pairs ði0m; imÞ; we need to estimate four parameters (p, q, k0 and k1),

making the model difficult to apply in practice. Furthermore, it should be emphasised that

the component distributions estimated by the EM algorithm may not necessarily corre-

spond to the two reasons that we mentioned for the presence of an item in a user profile,

even if the estimated mixture distribution may fit the data well.

In this regard, this paper takes an alternative approach, approximating the ranking

function by a much simpler function. In text retrieval, a similar two-Poisson model has

been proposed for modeling within-document term frequencies (Harter 1975). To make it

applicable also, (Robertson and Walker et al. 1994) introduced an approximation method,

resulting in the widely-used BM25 weighting function for query terms. Following the same

way of thinking, we can see that the weighting function for each of the items in the target

user profile Wi0m;im (Eq. 15) has the following characteristics: (1) Function Wi0m;im increases

monotonically with respect to the item frequency count cm0

k ; and (2) it reaches its upper-

bound, governed by log(p(1 - q)/q(1 - p)), when cm0

k becomes infinity ? (Sparck et al.

2000, Sparck et al. 2000). Roughly speaking, as demonstrated in Fig. 2, the parameters k0

and k1 can adjust the rate of the increase (see Fig. 2a), while the parameters p and q mainly

control the upper bound (see Fig. 2b).

Therefore, it is intuitively desirable to approximate these two characteristics sepa-

rately. Following the discussion in (Robertson and Walker 1994), we choose the

function cm0
k =ðk3 þ cm0

k Þ (where k3 is a free parameter), which increases from zero to an

asymptotic maximum, to model the monotonic increase with respect to the item fre-

quency counts. Since the probabilities q and p cannot be directly estimated, a simple

alternative is to use the probabilities of the presence of the item, i.e. Pðlm0 [ 0jim; rÞ
and Pðlm0 [ 0jim; �rÞ to approximate them respectively. In summary, we have the fol-

lowing ranking function:

Wuk ;im �
X

8m0:cm0
k

[ 0

cm0

k

k3 þ cm0
k

ln
Pðlm0 [ 0jim; rÞPðlm0 ¼ 0jim; �rÞ
Pðlm0 [ 0jim; �rÞPðlm0 ¼ 0jim; rÞ

0
@

1
A ð16Þ

where the free parameter k3 is equivalent to the normalization parameter of within-query

frequencies in the BM25 formula (Robertson and Walker 1994) (also see Appendix A), if

we treat a user profile as a query. Pðlm0 [ 0jim; rÞ (or Pðlm0 [ 0jim; �rÞ) is the probability that
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item m0 occurs in a profile of a user who is relevant (or non-relevant) to item im. Equa-

tion 16 essentially decouples frequency counts cm0

k and presence (absence) probabilities

(e.g. P(lm
0
[ 0 |im, r)), thus largely simplifying the computation in practice.

Next, we consider the probability estimations of presence (absence) of items in user

profiles. To handle data sparseness, different from the Robertson-Sparck Jones probabi-

listic retrieval (RSJ) model (Robertson and and Sparck Jones 1976), we propose to use

Bayesian inference (Gelman et al. 2003) to estimate the presence (absence) probabilities.

Since we have two events, either an item is present (lm
0
[ 0) or absent (lm

0
= 0), we

assume that the probability follow the Bernoulli distribution. That is, we define

hm0;m � Pðlm0 [ 0jim; rÞ, where hm0;m is regarded as the parameter of a Bernoulli distribu-

tion. For simplicity, we treat the parameter as a random variable and estimate its value by

maximizing an a posteriori probability. Formally we have

ĥm0;m ¼ argmax
hm0 ;m

pðhm0;mjrm0;m;Rm; ar; brÞ ð17Þ

where Rm denotes the number of user profiles that are relevant to an item im, and among

these user profiles, rm0;m denotes the number of the user profiles where an item im0 is

present. This establishes a contingency table for each item pair (shown in Table 1). In

addition, we choose the Beta distribution as the prior (since it is the conjugate prior for the

Bernoulli distribution), which is denoted as Beta(ar, br). Using the conjugate prior, the

posterior probability after observing some data turns to the Beta distribution again with

updated parameters.
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Fig. 2 The relationship between weighting function Wi0m ;im and its four parameters k0, k1, p and q. We plot
ranking score Wi0m ;im against various item frequency counts cm0

k from 0 to 20. (a) We fix k0 = 0.02, p = 0.02
and q = 0.010, and vary k1 [ {0.03, 0.04, 0.1, 0.4, 5}. (b) We fix k0 = 0.02, k1 = 0.04 and p = 0.02, and
vary q [ {0.020, 0.018, 0.016, 0.014, 0.012, 0.010}

Table 1 Contingency table of relevance vs. occurrence: item model

Item im is relevant Item im is NOT relevant

Item im0 Contained in UP rm0 ;m nm0 � rm0 ;m nm0

Item im0 NOT Contained in UP Rm � rm0 ;m ðN � RmÞ � ðnm0 � rm0 ;mÞ K � nm0

Rm K - Rm K
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pðhm0;mjrm0;m;Rm; ar; brÞ / h
rm0 ;mþar�1

m0;m ð1� hm0;mÞRm�rm0 ;mþbr�1 ð18Þ

Maximizing an a posteriori probability in Eq. 18 (i.e. taking the mode) gives the estimation

of the parameter (Gelman et al. 2003)

ĥm0;m ¼
rm0;m þ ar � 1

Rm þ ar þ br � 2
ð19Þ

Following the same reasoning, we obtain the probability of item occurrences in the non-

relevance case.

Pðlim0 [ 0jim; �rÞ � ĉi ¼
nm0 � rm0;m þ a�r � 1

K � Rm þ a�r þ b�r � 2
ð20Þ

where we used ĉi to denote Pðlim0 [ 0jim; �rÞ: a�r and b�r are again the parameters of the

conjugate prior (Betaða�r; b�r)), while nm0 denotes the number of times that item im0 is present

in a user profile (See Table 1). Replacing Eqs. 19 and 20 into Eq. 16, we have

Wuk ;im �
X

8m0:cm0
k

cm0

k

k3 þ cm0
k

ln
ĥið1� ĉiÞ
ĉið1� ĥiÞ

¼
X

8m0:cm0
k

cm0
k

k3 þ cm0
k

ln
ðrm0;m þ ar � 1ÞððK � RmÞ � ðnm0 � rm0;mÞ þ b�r � 1Þ
ðnm0 � rm0;m þ a�r � 1ÞðRm � rm0;m þ br � 1Þ ð21Þ

The four hyper-parameters ðar; a�r; br; b�rÞ can be treated as pseudo frequency counts.

Varying choices for them leads to different estimators (Zaragoza et al. 2003). In the

information retrieval domain (Robertson and and Sparck Jones et al. 1976; Robertson and

Walker 1994), adding an extra 0.5 count for each probability estimation has been widely

used to avoid zero probabilities. This choice corresponds to set tiny constant values ar ¼
a�r ¼ br ¼ b�r ¼ 1:5: We shall see that in the experiments collaborative filtering needs

relatively bigger pseudo counts for the non-relevance and/or absence estimation (a�r; br and

b�r). This can be explained because using absence to model non-relevance is noisy, so more

smoothing is needed. If we define a free parameter v and set it to be equal to ar - 1, we

have the generalized Laplace smoothing estimator. Alternatively, the prior can be fit on a

distribution of the given collection (Zhai and Lafferty 2001).

Applying the Bayesian inference similarly, we obtain Xim as follows:

Xim ¼
X

im0

ln
Pðlim0 ¼ 0jim; rÞ
Pðlim0 ¼ 0jim; �rÞ

¼
X

im0

ln
ðK � Rm þ ar þ br � 2ÞðRm � rm0;m þ br � 1Þ

ðRm þ ar þ br � 2ÞðK � Rm � ðnm0 � rm0;mÞ þ b�r � 1Þ ð22Þ

For the last term, the popularity ranking Yim ; we have

Yim ¼ ln
PðrjimÞ
Pð�rjimÞ

¼ ln
Rm

K � Rm
ð23Þ

Notice that in the initial stage, we do not have any relevance observation of item im. We

may assume that if a user played the item frequently (say played more than t times), we

treat this item being relevant to this user’s interest. By doing this, we can also construct the

contingency table to be able to estimate the probabilities.
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3.2 User-based relevance model

Applying the Bayes’ rule differently results in the following formula from Eq. 4:

ouk
ðimÞ ¼ ln

Pðimjuk; rÞ
Pðimjuk; �rÞ

þ ln
PðrjukÞ
Pð�rjukÞ

ð24Þ

Similarly, using frequency counts over a set of users ðl1; . . .; lk0 ; . . .; lKÞ to represent the

target item im, we get

Suk
ðimÞ ¼

X

8k0:cm
k0 [ 0

ln
Pðlk0 ¼ cm

k0 juk; rÞPðlk
0 ¼ 0juk; �rÞ

Pðlk0 ¼ cm
k0 juk; �rÞPðlk0 ¼ 0juk; rÞ

þ
X

8k0
ln

Pðlk0 ¼ 0juk; rÞ
Pðlk0 ¼ 0juk; �rÞ

þ ln
PðrjukÞ
Pð�rjukÞ

ð25Þ

where the last two terms in the formula are independent of target items, they can be

discarded. Thus we have

Suk
ðimÞ /uk

X

8k0:cm
k0 [ 0

ln
Pðlk0 ¼ cm

k0 juk; rÞPðlk0 ¼ 0juk; �rÞ
Pðlk0 ¼ cm

k0 juk; �rÞPðlk0 ¼ 0juk; rÞ
ð26Þ

where /uk
denotes same rank order with respect to uk.

Following the same steps (the approximation to two-Poisson distribution and the MAP

probability estimation) as discussed in the previous section gives

Suk
ðimÞ /uk

X

8k0:cm
k0 [ 0

cm
k0

K þ cm
k0

ln
Pðlk0 [ 0juk; rÞPðlk0 ¼ 0juk; �rÞ
Pðlk0 [ 0juk; �rÞPðlk0 ¼ 0juk; rÞ

¼
X

8k0:cm
k0 [ 0

cm
k0

K þ cm
k0

ln
ðrk0;k þ ar � 1ÞðM � nk0 � Rk þ rk0;k þ b�r � 1Þ
ðnk0 � rk0;k þ ar�r � 1ÞðRk � rk0;k þ br � 1Þ

ð27Þ

whereK ¼ k1ðð1� bÞ þ bLmÞ: k1 is the normalization parameter of the frequency counts for

the target item, Lm is the normalized item popularity (how many times the item im has been

‘‘used’’) (i.e. the popularity of this item divided by the average popularity in the collection),

and b [ [0, 1] denotes the mixture weight. Notice that if we treat an item as a document, the

parameter k1 is equivalent to the normalization parameter of within-document frequencies in

the BM25 formula (see Appendix A). Table 2 shows the contingency table of user pairs.

3.3 Discussion

Previous studies on collaborative filtering, particularly memory-based approaches, make a

distinction between user-based (Breese et al. 1998; Herlocker et al. 1999; Resnick et al.

Table 2 Contingency table of relevance vs occurrence: user model

User uk is Relevant User uk is NOT Relevant

User uk0 Contained in UP rk0 ;k nk0 � rk0 ;k nk0

User uk0 NOT Contained in UP Rk � rk0 ;k ðM � RkÞ � ðnk0 � rk0 ;kÞ M � nk0

Rk M - Rk M
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1994) and item-based approaches (Deshpande and Karypis 2004; Sarwar et al. 2001). Our

probabilistic relevance models were derived with an information retrieval view on col-

laborative filtering. They demonstrated that the user-based (relevance) and item-based

(relevance) models are equivalent from a probabilistic point of view, since they have

actually been derived from the same generative relevance model. The only difference

corresponds to the choice of independence assumptions in the derivations, leading to the

two different factorizations. But statistically they are inequivalent because the different

factorizations lead to the different probability estimations; In the item-based relevance

model, the item-to-item relevancy is estimated while in the user-based one, the user-to-user

relevancy is required instead. We shall see shortly in our experiments that the probability

estimation is one of the important factors influencing recommendation performance.

4 Experiments

4.1 Data sets

The standard data sets used in the evaluation of collaborative filtering algorithms (i.e.

MovieLens and Netflix) are rating-based, which are not suitable for testing our method

using implicit user profiles. This paper adopts two implicit user profile data.

The first data set comes from a well known social music web site: Last:FM: It was

collected from the play-lists of the users in the community by using a plug-in in the users’

media players (for instance, Winamp, iTunes, XMMS etc). Plug-ins send the title (song

name and artist name) of every song users play to the Last.FM server, which updates the

user’s musical profile with the new song. For our experiments, the triple {userID, artistID,

Freq} is used.

The second data set was collected from one well-known collaborative tagging Web site,

del:icio:us: Unlike other studies focusing on directly recommending contents (Web

sites), here we intend to find relevance tags on the basis of user profiles as this is a crucial

step in such systems. For instance, the tag suggestion is needed in helping users assigning

tags to new contents, and it is also useful when constructing a personalized ‘‘tag cloud’’ for

the purpose of exploratory search (Wang et al. 2007). The Web site has been crawled

between May and October 2006. We collected a number of the most popular tags, found

which users were using these tags, and then downloaded the whole profiles of these users.

We extracted the triples {userID, tagID, Freq} from each of the user profiles. User IDs are

randomly generated to keep the users anonymous. Table 3 summarizes the basic charac-

teristics of the data sets.2

Table 3 Characteristics of the test data sets

Last:FM del:icio:us

Num. of users 2408 1731

Num. of items 1399 3370

Zero occurrences in UP (%) 96.8% 96.7%

2 The two data sets can be downloaded from http://ict.ewi.tudelft.nl/*jun/CollaborativeFiltering.html.

488 Inf Retrieval (2008) 11:477–497

123

http://ict.ewi.tudelft.nl/~jun/CollaborativeFiltering.html


4.2 Experiment protocols

For 5-fold cross-validation, we randomly divided this data set into a training set (80% of

the users) and a test set (20% of the users). Results are obtains by averaging 5 different

runs (sampling of training/test set). The training set was used to estimate the model. The

test set was used for evaluating the accuracy of the recommendations on the new users,

whose user profiles are not in the training set. For each test user, 5, 10, or 15 items of a test

user were put into the user profile list. The remaining items were used to test the

recommendations.

In information retrieval, the effectiveness of the document ranking is commonly

measured by precision and recall (Baeza-Yates and Ribeiro-Neto 1999). Precision mea-

sures the proportion of retrieved documents that are indeed relevant to the user’s

information need, while recall measures the fraction of all relevant documents that are

successfully retrieved. In the case of collaborative filtering, we are, however, only inter-

ested in examining the accuracy of the top-N recommended items, while paying less

attention to finding all the relevant items. Thus, our experiments here only consider the

recommendation precision, which measures the proportion of recommended items that are

ground truth items. Note that the items in the profiles of the test user represent only a

fraction of the items that the user truly liked. Therefore, the measured precision under-
estimates the true precision.

4.3 Performance

We choose the state-of-the-art item ranking algorithms that have been discussed in Section

2.2 as our baselines. For the method proposed in (Deshpande and Karypis 2004), we adopt

their implementation, the top-N suggest recommendation library3 which is denoted as

SuggestLib: We also implement the language modelling approach of collaborative fil-

tering in (Wang et al. 2006) and denote this approach as LM�LS while its variant using the

Bayes’ smoothing (i.e., a Dirichlet prior) is denoted as LM�BS: To make a comparison, the

parameters of the algorithms are set to the optimal ones.

We set the parameters of our two models to the optimal ones and compare them with

these strong baselines. The item-based relevance model is denoted as BM25�Item while the

user-based relevance model is denoted as BM25�User: Results are shown in Figs. 3 and 4

over different returned items. Let us first compare the performance of the BM25�Item and

BM25�User models. For the Last:FM data set (Fig. 3), the item-based relevance model

consistently performs better than the user-based relevance model. This confirms a previous

observation that item-to-item similarity (relevancy) in general is more robust than user-to-

user similarity (Sarwar et al. 2001). However, if we look at the del:icio:us data (Fig. 4),

the performance gain from the item-based relevance model is not clear any more—we

obtain a mixture result and the user-based one even outperforms the item-based one when

the number of items in user preferences is set to 15 (see Fig. 4c). We think this is because

the characteristics of data set play an important role for the probability estimations in the

models. In the Last:FM data set, the number of users is larger than the number of items (see

Table 3). It basically means that we have more observations from the user side about the

item-to-item relevancy while having less observations from the item side about user-to-user

relevancy. Thus, in the Last:FM data set, the probability estimation for the item based

relevance model is more reliable than that of the user-based relevance model. But in the

3 http://glaros.dtc.umn.edu/gkhome/suggest/overview.
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del:icio:us data set (see Table 3), the number of items is larger than the number of users.

Thus we have more observations about user-to-user relevancy from the item side, causing a

significant improvement for the user-based relevance model.

Since the item-based relevance model in general outperforms the user-based relevance

model, we next compare the item-based relevance model with other methods (shown in

Table 4 and 5). From the tables, we can see that the item-based relevance model performs

consistently better than the SuggestLib method over all the configurations. A Wilcoxon

signed-rank test (Hull 1993) is done to verify the significance. We also observe that in most

of the configurations our item-based model significantly outperforms the language mod-

elling approaches, both the linear smoothing and the Bayesian smoothing variants. We

believe that the effectiveness of our model is due to the fact that the model naturally

integrates frequency counts and probability estimation of non-relevance into the ranking

formula, apart from other alternatives.

4.4 Parameter estimation

This section tests the sensitivity of the parameters, using the del:icio:us data set. Recall

that for both the item-based relevance model (shown in Eq. 10) and the user-based
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relevance model (shown in Eq. 27), we have frequency smoothing parameter k1 (and b) or

k3, and co-occurrence smoothing parameters a and b. We first test the sensitivity of the

frequency smoothing parameters. Figure 5 shows recommendation precision against the

parameters k1 and b of the user-based relevance model while Fig. 6 shows recommenda-

tion precision varying the parameter k3 of the item relevance model. The optimal values in

the figures demonstrate that both the frequency smoothing parameters (k1 and k3) and the

length normalization parameter b, inspired by the BM25 formula, indeed improve the

recommendation performance. We also observe that these parameters are relatively

insensitive to different data sets and their different sparsity setups.

Next we fix the frequency smoothing parameters to the optimal ones and test the

co-occurrence smoothing parameters for both models. Figures 7 and 8 plot the smoothing

parameters against the recommendation precision. More precisely, Figs. 7a and 8a plot

the smoothing parameter for the relevance part v1 = ar - 1 while Figs. 7b and 8b plot

that of the non-relevance or absence parts; all of them are set to be equal

(v2 ¼ a�r � 1 ¼ br � 1 ¼ b�r � 1) in order to minimize the number of parameters while

still retaining comparable performance. From the figures, we can see that the optimal

smoothing parameters (pseudo counts) of the relevance part v1 are relatively small,

compared to those of the non-relevance part. For the user-based relevance model, the

pseudo counts of the non-relevance estimations are in the range of (Deshpande and

Karypis 2004; Hofmann 2004) (Fig. 7b) while for the item-based relevance model, they
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are in the range of [50,100] (Fig. 8b). It is due to the fact that the non-relevance

estimation is not as reliable as the relevance estimation and thus more smoothing is

required.

Table 4 Comparison with the other approaches. Precision is reported in the Last:FM data set

Top-1 Top-3 Top-10

(a) User profile length 5

BM25-Item 0.620* 0.578* 0.497*

LM-LS 0.572 0.507 0.416

LM-BS 0.585 0.535 0.456

SuggestLib 0.547 0.509 0.421

(b) User Profile Length 10

BM25-Item 0.715* 0.657* 0.553*

LM-LS 0.673 0.617 0.517

LM-BS 0.674 0.620 0.517

SuggestLib 0.664 0.604 0.503

(c) User Profile Length 15

BM25-Item 0.785* 0.715* 0.596*

LM-LS 0.669 0.645 0.555

LM-BS 0.761 0.684 0.568

SuggestLib 0.736 0.665 0.553

The best results are in bold type. A Wilcoxon signed-rank test is conducted and the significant ones over the
second best are marked as*

Table 5 Comparison with the other approaches. Precision is reported in the del:icio:us data set

Top-1 Top-3 Top-10

(a) User profile length 5

BM25-Item 0.306 0.251 0.205

LM-LS 0.306 0.253 0.208

LM-BS 0.253 0.227 0.173

SuggestLib 0.168 0.141 0.107

(b) User profile length 10

BM25-Item 0.329 0.279* 0.222*

LM-LS 0.325 0.256 0.207

LM-BS 0.248 0.226 0.175

SuggestLib 0.224 0.199 0.150

(c) User profile length 15

BM25-Item 0.357* 0.292* 0.219*

LM-LS 0.322 0.261 0.211

LM-BS 0.256 0.231 0.177

SuggestLib 0.271 0.230 0.171

The best results are in bold type. A Wilcoxon signed-rank test is conducted and the significant ones over the
second best are marked as*
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5 Conclusions

This paper proposed a probabilistic item ranking framework for collaborative filtering,

which is inspired by the classic probabilistic relevance model of text retrieval and its

variants (Robertson and and Sparck Jones et al. 1976; Robertson and Walker 1994; Sparck

et al. 2000; Sparck et al. 2000). We have derived two different models in the relevance

framework in order to generate top-N item recommendations. We conclude from the

experimental results that the proposed models are indeed effective, and significantly

improve the performance of the top-N item recommendations.

In current settings, we fix a threshold when considering frequency counts as relevance

observations. In the future, we may also consider graded relevance with respect to the

number of times a user played an item. To do this, we may weight (sampling) the

importance of the user profiles according to the number of times the user played/reviewed

an item when we construct the contingency table. In current models, the hyperparameters

are obtained by using cross-validation. In the future, it is worthwhile investigating the

evidence approximation framework (Bishop and 2006) by which the hyperparameters can

be estimated from the whole collection; or we can take a full Bayesian approach that

integrates over the hyperparameters and the model parameters by adopting variational

methods (Jordan 1999).

It has been seen in this paper that relevance is a good concept to explain the corre-

spondence between user interest and information items. We have setup a close relationship

between the probabilistic models of text retrieval and these of collaborative filtering. It

facilitates a flexible framework to tryout more of the techniques that have been used in text

retrieval to the related problem of collaborative filtering. For instance, relevance obser-

vations can be easily incorporated in the framework once we have relevance feedback from

users. An interesting observation is that, different from text retrieval, relevance feedback

for a given user in collaborative filtering is not dependent of this user’s ‘‘query’’ (a user

profile) only. It instead has a rather global impact, and affects the representation of the

whole collection; Relevance feedback from one user could influence the ranking order of

the other users. It is also worthwhile investigating query expansion by including more

relevant items as query items or re-calculating (re-constructing) the contingency table

according to the relevance information.
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Finally, a combination of the two relevance models is of interest (Wang et al. 2008,

2006). This has some analogies with the ‘‘unified model’’ idea in information retrieval

(Robertson et al. 1982). However, there are also some differences: in information retrieval,

based on explicit features of items and explicit queries, simple user relevance feedback

relates to the current query only, and a unified model is required to achieve the global

impact which we have already identified in the present (non-unified) models for collabo-

rative filtering. These subtle differences make the exploration of the unified model ideas

particularly attractive.

Appendix A: The Okapi BM25 document ranking score

To make the paper self-contained and facilitate the comparison between the proposed

model and the BM25 model of text retrieval (Robertson and Walker 1994; Sparck et al.

2000), here we summarise the Okapi BM25 document ranking formula. The commonly-

used ranking function Sq(d) of a document d given a query q is expressed as follows:

SqðdÞ ¼
X

8t:ct
q [ 0

ðk3þ 1Þct
q

k3þ ct
q

ðk1þ 1Þct
d

Kþ ct
d

log
ðrt þ 0:5ÞðN � nt � Rþ rt þ 0:5Þ
ðnt � rt þ 0:5ÞðR� rt þ 0:5Þ ð28Þ

where

– ct
q denotes the within query frequency of a term t at query q, while ct

d denotes the with

document frequency of a term t at document d.

– k1 and k3 are constants. The factors k3 + 1 and k1 + 1 are unnecessary here, but help

scale the weights. For instance, the first component is 1 when ct
q ¼ 1:

– K � k1ðð1� bÞ þ bLdÞ: Ld is the normalised document length (i.e. the length of this

document d divided by the average length of documents in the collection). b [ [0, 1] is

constant.

– nt is the number of documents in the collection indexed by this term t.
– N is the total number of documents in the collection.

– rt is the number of relevant documents indexed by this term t.
– R is the total number of relevant documents.

For detailed information about the model and its relationship with the Robertson-Sparck

Jones probabilistic retrieval (RSJ) model (Robertson and and Sparck Jones 1976), we refer

to (Robertson and Walker 1994; Sparck et al. 2000).
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