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Abstract We introduce a statistical measure of the coherence of a list of documents called

the clarity score. Starting with a document list ranked by the query-likelihood retrieval model,

we demonstrate the score’s relationship to query ambiguity with respect to the collection.

We also show that the clarity score is correlated with the average precision of a query

and lay the groundwork for useful predictions by discussing a method of setting decision

thresholds automatically. We then show that passage-based clarity scores correlate with

average-precision measures of ranked lists of passages, where a passage is judged relevant

if it contains correct answer text, which extends the basic method to passage-based systems.

Next, we introduce variants of document-based clarity scores to improve the robustness,

applicability, and predictive ability of clarity scores. In particular, we introduce the ranked

list clarity score that can be computed with only a ranked list of documents, and the weighted

clarity score where query terms contribute more than other terms. Finally, we show an

approach to predicting queries that perform poorly on query expansion that uses techniques

expanding on the ideas presented earlier.
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1. Introduction

With the increasing use of Web search engines to search the enormous, diverse, and dynamic

collection of text on the Web, it has become obvious to more people that some queries are

not as effective as others. The difficult part of finding a desired piece of information is often

the process of interactively guessing effective queries and repeatedly refining those guesses

using the knowledge gained of what confusable documents are present in the index at search

time. The process typically ends when a query is found that ranks a desired document in top

20, or so, documents.

The clarity score measures the coherence of a ranked list of documents, that is, the extent

to which they use similar language. A query yielding a ranked list containing a huge variety

of documents in word-usage at the top ranks can be distinguished from a query yielding a

list of top documents that use language similarly, since it will have a lower clarity score.

Thus clarity scores are related to the degree of query ambiguity in the collection, where

query ambiguity is defined as the degree to which the query retrieves documents in the given

collection with similar word usage.

Moreover, there is a relation between the coherence of a returned ranked list of documents

and the chances of that list containing many relevant documents. In particular, in a ranked list

containing documents of greatly differing word usage generally at most one of the documents
is relevant since they are all very different. However, in a coherent ranked list containing

documents with similar word usage, the likely options are that many of the documents are

relevant or none of them are relevant. If the document list was ranked using the query, it is

much more likely that many are relevant. Thus the more coherent a returned ranked list is,

in general, the more likely it is to contain many relevant documents. So high clarity score

(low ambiguity) queries are likely to perform better than low clarity score (high ambiguity)

queries. Though they can be computed without any reference to what is being searched for,

clarity scores are correlated with the effectiveness of the query in the given collection.

The use of a coherence-based score to predict retrieval effectiveness is particularly ap-

propriate for content-based queries, since even in cases where there is only one relevant

document, the system putting documents with similar content at the top of the list may

still help predict a satisfactory result. Other types of queries used in web searching, such

as “home-page” queries (Craswell and Hawking, 2003) often have only a single relevant

document and prediction using coherence scores will consequently be less effective.

Information retrieval systems may now be imagined that treat individual queries differently

depending on their predicted effectiveness. The correlation with average precision that may

make this possible is explored along with simple ideas for automatically setting decision

thresholds for decisions based on clarity score. In addition, the basic correlation is shown to

hold up in a weaker form in a passage-based system, and important variants of the clarity

scores are introduced.

Clarity scores are defined in Section 2 where they are based on documents as the unit

of text. We go on to explore the facets of clarity scores that establish their usefulness as a

research tool, their relation to ambiguity in Section 3 and their ability to predict retrieval

performance in Section 4. We then introduce passage-based clarity scores in Section 5. The

connection to ambiguity is the same for passage-based scores, so we move on to predicting

passage question answering performance in Section 6 where the predictive ability is less

than in the document context, but still intriguing. Next, we introduce important variants of

clarity score in Section 7 to increase the robustness, applicability, and predictive power of

document-based clarity scores. In particular, we introduce ranked list clarity scores, which

are independent of document retrieval scores, in Section 7.1 and a version that weights query
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terms in Section 7.2. In Section 8 we approach the task of predicting how the performance

of a query is effected by query expansion. This study is important since it provides a first

step towards a system trying to choose the best performing retrieval method for each query,

thereby improving system performance. Clarity score-related ideas are built on creatively in

this study, and Section 9 on other work bears out that clarity scores have not mainly been

used in research for straightforward performance prediction, but have been used as a source

of ideas to apply in information retrieval research.

2. Document-based clarity

The clarity score method was first introduced in Croft et al. (2001) and then studied more

thoroughly in Cronen-Townsend et al. (2002). Here we introduce the basic technique and

add improved estimation.

To calculate a clarity score for a query in a given collection, a relevance model is first

formed (Lavrenko and Croft, 2001, 2003). This model represents the language usage in

documents closely related to the query, and can be thought of as a collection-dependent

query model. The relevance model is then compared to the collection model, representing the

average language usage in the collection. The degree of difference between the two models

is the clarity score for the query. Under this scheme, a query matching documents using very

generic language (on average) receives a score near zero, and a query matching documents

using a certain specialized vocabulary (on average) receives a relatively high score. Since

not strongly preferencing documents of any common word usage is a good way to average

documents to get something like the collection model, incoherent ranked lists lead to low

clarity scores. Similarly, averaging with a bias for documents high in a coherent ranked list

leads to higher clarity scores.

In our case, the query and collection models are examples of statistical language models

(Croft and Lafferty, 2003). Our models approximate words as occurring independently and

therefore are simply probability distributions over all terms in the collection vocabulary.

2.1. Document processing

In order to present meaningful clarity scores while explaining our methodology, we must first

mention the processing of documents in this study to allow estimation of language models. All

the calculations and experiments presented in this paper use the Lemur Toolkit1 for language

modeling-based information retrieval (Ogilvie and Callan, 2002). We index collections with

all characters converted to lower case and punctuation characters replaced with spaces. We

then remove single characters and digits, and terms on the InQuery stop list (Broglio et al.,

1994).

We use Krovetz stemming (Krovetz, 1993) to attempt to put words with different suffixes,

for example, into the same class. As was noted in Cronen-Townsend et al. (2003), stemming

improves clarity scores by enabling them to better compute coherence. In particular, having

the system treat occurrences of “computer” as distinct from “computers” can lead to mean-

ingless variation in coherence measures due to variation in the relative usage of “computer”

and “computers” between documents.

1 Freely available from http://www.cs.cmu.edu/~lemur/.
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2.2. Calculating clarity

We first explain the simplest model, the collection model. The probability for each term in

the collection vocabulary is simply estimated as the relative frequency of the term in the

collection (the number of times the term occurs in the collection divided by the the total

number of term occurrences in the collection).

We discuss document models next, since documents form the large units of text in this

section. The relevance models used to compute clarity scores are formed by weighted mixtures

of document models.

We estimate the model for document, D, by relative frequencies of terms in the document

linearly combined with collection relative frequencies. In particular,

P(w|D) = λPml (w|D) + (1 − λ)Pcoll (w), (1)

where Pml (w|D) is the relative frequency of term w in document D, Pcoll (w) is the relative

frequency of the term in the collection as a whole. A constant value of λ gives Jelinek-

Mercer smoothing (Zhai and Lafferty, 2001), as was used in the original clarity score work

(Cronen-Townsend et al., 2002). Using a document-dependent value of λ, given by

λ = ‖D‖
‖D‖ + μ

, (2)

gives Dirichlet smoothing (Zhai and Lafferty, 2001) with prior μ, as can verified by substi-

tution. Both types of smoothing are used in this work.

The relevance model is given by

P(w|Q) =
∑

D

P(w|D)P(D|Q), (3)

where w is any term, Q the query, D is a document or the model estimated from the corre-

sponding single document, and summation is done over all documents. This can be interpreted

as a weighted average of document models, P(w|D), with weights given by P(D|Q).

For the weights, P(D|Q), in Eq. (3) we perform a query likelihood retrieval step (Song

and Croft, 1999). We estimate the likelihood of an individual document model generating

the query as

P(Q|D) =
∏
q∈Q

P(q|D), (4)

and obtain P(D|Q) by Bayesian Inversion with uniform prior probabilities for documents.

The document-independent term P(Q) is incorporated by requiring that P(D|Q) sum to one

over all documents in the collection.

The clarity score for the query is simply the relative entropy, or Kullback-Leibler (KL)

divergence (Cover and Thomas, 1991), between the query and collection language models

(probability distributions),

clarity score = D(P(w|Q)‖Pcoll (w)). (5)
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This is given by

D(P(w|Q)‖Pcoll (w)) =
∑
w∈V

P(w|Q) log2

P(w|Q)

Pcoll (w)
, (6)

where V is the entire vocabulary of the collection.

The efficiency of clarity score computation with Eq. (6) is dominated by the estimation

of the relevance model by Eq. (3), since the collection model is precomputed at index-time.

Throughout this paper we estimate relevance models for document-retrieval by truncating

the summation in Eq. (3) at the top 500 documents. Since P(D|Q) generally falls off sharply

well before this cutoff, this cutoff has very little effect on the clarity scores.

2.3. Smoothing

Clarity score computation uses document models in two separate steps. The first step is

estimating the likelihood of query generation by a model of each document using Eq. (4).

The second step uses mixing weights derived from those scores to combine document models

via Eq. (3).

The original clarity work used the same Jelinek-Mercer smoothing for both of these steps

with λ1 = λ2 ≡ 0.6 in Eq. (1) (Cronen-Townsend et al., 2002). We find it important for per-

formance to smooth the document models with Dirichlet smoothing for the first step (query

likelihood, subscript 1) and Jelinek-Mercer smoothing for the second step (mixing, subscript

2). This is consistent with what is found in relevance model retrieval, where the relevance

model forms the expanded query and is used for retrieval (Lavrenko, 2004). Our finding is

also consistent with Zhai and Lafferty (2001), who tested Jelinek-Mercer smoothing, Dirich-

let smoothing and absolute discounting for information retrieval and found that Dirichlet

smoothing outperforms Jelinek-Mercer smoothing on all of the 9 test collections they tested

with short queries. Since the first step to forming a relevance model is a query likelihood

retrieval step, it is not surprising that a better retrieval result (i.e. with Dirichlet smoothing)

leads to a better model for clarity score computation.

In this paper we use two smoothing conditions for clarity calculation. Both use μ1 = 1000

for the query likelihood retrieval step. Light smoothing uses λ2 = 0.9 for the document

models in the mixing step, and heavy smoothing uses λ2 = 0.1 in the mixing step. Thus,

in heavy smoothing, the probability estimate for each term is made up of only 10% of its

document relative frequency and 90% of its collection relative frequency.

The two smoothing conditions were chosen by exploring the variation of a performance

measure (rank correlation with average precision, see Section 4.1 for full details) as a function

of λ2 for all collections studied when μ1 ≡ 1000. As the λ2 is decreased from λ2 = 0.9, the

behavior of performance on all collections is similar. The performance increases slightly

(nearly monotonically) as λ2 is decreased to values below 0.1. At some small value of

λ2 (typically around 0.001) the performance starts falling off. Since the point where the

performance falls off varies somewhat by collection, we chose λ2 = 0.1 as a safe level of

smoothing that was far from the falling off point for all collections. Thus our heavy smoothing

condition of λ = 0.1 seems unlikely to be too much smoothing for untested collections and

should offer reliably good performance for untested collections.

We use heavy smoothing and refer to it as standard smoothing for the basic document-

based clarity scores described so far. Light smoothing clarity scores differ mainly in scale

(they are larger) and are used for some examples where ease reading score values, is desired.
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1. invasive

2. diagnosis

3. technique

4. enthesopathy

5. image

query B: What are the current and future
medical innovations and improvements?

1. innovate

3. improve

4. future

5. technology

2. medical

query A: How does computerized medical diagnosis circumvent
the need to use invasive techniques?
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Fig. 1 Term clarity score contributions for the top terms for two same-topic queries from the TREC Query
Track

The slight reordering that occurs in a query set ranked by clarity score when one changes

from light to heavy smoothing benefits the correlation with average precision slightly but

makes some displays of values harder to understand.

2.4. Two examples

Figure 1 shows the top 50 individual term contributions to the summation in Eq. (6) (clarity

score) for two related queries2 using our light smoothing settings (see Section 2.3) to make

the values larger and more readable. The queries are query A: “How does computerized

medical diagnosis circumvent the need to use invasive techniques?” with a clarity score of

3.53 and query B: “What are the current and future medical innovations and improvements?”

with a score of 0.73. Top contributing terms are those whose probabilities most stand out

in comparison to the collection model, such as “invasive” and “diagnosis” for query A. The

total clarity score is the total of all bars for the appropriate query if one imagines extending

the plot to include all vocabulary terms. The figure shows that the relevance model for query

A is much more unusual than the collection model, and shows the contributions for these

spikes. This is due to its highly-scoring documents using the same certain terms, what we

call coherence. Query B has much lower maximum contributions and a lower total (clarity

score). The fact that the medical term “enthesopathy” was one of the top contributing terms in

query A’s clarity score while the top terms of query B’s language model are all fairly general

is a good indicator that query A is a better performing query than query B. For Query A,

“Enthesopathy” occurred in documents that had high query likelihood scores, leading to an

estimate of its probability in the relevance model well above its collection model probability.

For Query B, by contrast, the only terms that stand out are fairly general terms, indicating

that P(D|Q) is less focussed (peaked) on a coherent set of documents. Without reference to

the information need (i.e. without having a system understand what the user wants) definitive

2 Both from the TREC 9 Query Track and designed for TREC topic 96.
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Fig. 2 Histogram of the standard clarity score for the 100 queries of TREC 7 + 8

prediction is impossible. However, the coherence of the ranked list for query A is a good

indicator, since the documents that use language similarly could mostly be relevant to the

user.

In Fig. 2 the clarity scores computed using standard (heavy smoothing) clarity scores on

TREC 7 + 8 are shown. TREC 7 + 8 refers to the documents from TREC disks 4 and 5

excluding Congressional Record and queries that are the titles of topics #351 − #450. This

test set was chosen since the standard clarity scores of its queries form the basis of many

later figures in this paper. The histogram serves to suggest a typical density distribution for

the clarity scores of a set of well-designed queries. The rightmost bar is for the single query

“anorexia nervosa bulimia” with clarity score 0.28. The query “postmenopausal estrogen

Britain” with clarity score 0.19 contributes to the next highest bar and “supercritical fluids,”

(clarity score 0.16) is one of the contributors to the third highest scoring bar. The query

“illegal technology transfer” with clarity score 0.019 is one of the lowest scoring queries

in the set and contributes to the leftmost bar. Note that the first three queries listed, with

relatively high clarity scores, all plausibly match coherent text in the collection. The query

“illegal technology transfer” consists of terms co-occurring in documents in varying contexts

and gets a relatively low clarity score.

3. Query ambiguity

Every query to an information retrieval system is ambiguous to some degree, in the sense

that it could specify the word usage in a relevant document to a greater or lesser extent. We

use the term query ambiguity to represent this nonspecificity. This usage is related strongly

to the common English usage of the term ambiguity, but is notably different from the term’s

meaning in linguistics, for example, where it relates to how difficult it is to decide the truth

of a statement. Since queries are not statements, our usage need not cause confusion.

One way of quantifying query ambiguity with respect to a collection of documents, is

with a measure of the coherence of the top retrieved documents. A query that has top-scoring

documents all using the same rare terms in similar proportions is taken to be a low ambiguity

query. Whereas a query returning a mixture of documents all using different rare terms is
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taken to be a high ambiguity query. Clarity scores can be thought of as a quantification of

query ambiguity in this way; high clarity score queries are low in ambiguity, and low clarity

score queries are high in ambiguity. Since coherence of the top documents has nothing to

do with relevance, the ambiguity of a query, thought of in this way, does not depend on the

notion of relevance or even on the existence of any relevant documents in the collection. This

interpretation also highlights the role of the collection in clarity scores, since a query can

only be scored using the documents present in a certain collection. The same query could

have a relatively high clarity score in one collection and a relatively low clarity score in a

different collection.

For example, imagine a user interested in news mentions of World Cup soccer issuing the

query “World Cup” to an information retrieval system accessing the TREC AP88 collection of

news articles from the Associated Press in 1988. Although there are articles mentioning World

Cup soccer in the collection, articles about World Cup chess tournaments are predominant

among the articles that use the terms “world” and “cup” most frequently. If those two query

terms are the only evidence the system has about what the user means, it is impossible for the

system to return the soccer articles consistently higher in the ranked list than the articles about

World Cup chess tournaments. In this example, the query’s ambiguity is greatly increased by

the particular documents that happen to be present; if the documents about World Cup chess

were not in the collection, the query would be less ambiguous.

Despite the fact that the user might not have known that there was a World Cup in anything

other than the sport of soccer, he or she would, typically, get a ranked list with chess articles

predominating near the top and with some soccer articles mixed in. Since the mixed list is

less coherent (and therefore closer to the collection model) than a list of documents all about

world cup soccer, the clarity score measure can detect such query ambiguity. Most real-world

query ambiguity is not between things as close as World Cup soccer and World Cup chess.

The relationship between clarity score and query ambiguity is further demonstrated in

Fig. 3. This figure shows the construction of an artificial highly ambiguous query (“fashion

model railroad”, bottom center) by adding single terms, and gives the (light smoothing) clarity

score for each related query. Light smoothing was chosen to make the figure more clear by

making the scores of order 1 and the score differences larger than if heavy smoothing were

used. To the left and right sides of the intentionally highly ambiguous query are related queries

with much less ambiguity. Arrows between boxes indicate the addition of a single query term.

The lowest clarity score query in Fig. 3 is the single term query “model”, but the score of

the most ambiguous three term query “fashion model railroad” is only negligibly higher. The

related three term queries “model railroad gauge” and “fashion model photographer” have

about double the clarity score. Moreover, the two two-term queries (sharing two of its three

model railroad gauge

1.97

1.16

model railroad

model

1.00

fashion model

1.31

fashion model railroad

1.04

fashion model photographer

2.23

Fig. 3 Standard Clarity scores some queries to TREC 1+2+3 related by addition of a single term (arrows)
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terms) are both significantly higher in clarity score. This example shows that combining the

two senses (left side and right side in Fig. 3) created a low clarity score query, relative to other

three term queries. Moreover, this example suggests that comparisons between clarity scores

of differing length queries are sensible, and not dominated by query length. This is consistent

with clarity scores being based on KL-divergence between probability distributions over the

same events, and hence on the same scale for queries of different lengths.

Further discussion of the relationship between clarity scores and ambiguity can be found

in Cronen-Townsend and Croft (2002).

4. Document retrieval prediction

A query with a relatively high clarity score is likely to be effective in retrieving relevant

documents in a simple information retrieval system. The aim of this section is substantiating

this claim.

4.1. Document retrieval

For document retrieval we use the query likelihood method. Scoring documents in this way

has already been described as the first step of constructing a relevance model in order to

compute a clarity score (Section 2.2). We use the identical query likelihood scores, again

with Dirchlet prior μ = 1000, for document retrieval.

4.2. Measuring performance

We measure the performance of each query by its average precision score with query likeli-

hood retrieval, computed by the trec eval package (Buckley, n.d.). The precision of a set of

documents is defined as the fraction of relevant documents in the set and the average precision

of a ranked list is the mean of the precision scores for ordered sets up to and including each

relevant document. Average precision is an overall measure of the quality of a ranked list.

Because the probability distributions of the scores are unknown, an appropriate,

distribution-free, test of correlation is the Spearman rank correlation test (Gibbons and

Chakraborty, 1992). A rank correlation of 1 indicates perfect agreement between the ranking

by average precision and the ranking by clarity score, and a rank correlation of −1 indicates

opposite rankings. The null distribution (the distribution of the score if the rankings are unas-

sociated) is well-approximated by a normal distribution for sample sizes as large as 50 (our

smallest sample size in this study), making estimation of p-values feasible.

4.3. Document-based clarity and average precision

The rank correlation between standard clarity scores and retrieval average precision (unin-

terpolated) is shown in column 5 of Table 1 for a variety of TREC collections. The seventh

line of the table, for example, means that using a combination of TREC 7 and 8 Ad Hoc

Tracks, with the documents of TREC disks 4 and 5 minus the Congressional Record, and

title queries from TREC topics 351-450, the rank correlation coefficient of the standard clar-

ity score with average precision is 0.62. Retrieval is done by ranking each document by its

model’s likelihood of generating the query, using Eq. (4). The document model, Eq. (1), is

estimated for each document using Dirichlet smoothing with μ = μ1 = 1000 in Eq. (2). Rele-

vance models are mixed from Jelinek-Mercer smoothed document models with λ = λ2 = 0.1
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Table 1 Correlation between
ranking queries by average
precision and by standard clarity
score

TREC Disks Topics Number Spearman R

1 + 2 + 3 1&2 51–150 100 0.50

4 2&3 201–250 50 0.49

5 2&4 251–300 50 0.46

6 4&5 301–350 50 0.61

7 4&5-CR 351–400 50 0.64

8 4&5-CR 401–450 50 0.61

7 + 8 4&5-CR 351–450 100 0.62

agg QT 1 51–100 1804 0.55

(heavy smoothing condition) in Eq. (1). Heavy smoothing is chosen for reliably high cor-

relation with average precision, as explained in Section 2.3. All queries are titles of TREC

topics (average length 2.9, sample standard deviation 1.1) except for the query track where

there are an average of about 36 unique queries (after processing) of varying length (average

4.8, sample standard deviation 2.3) for each of the topics 51–100 and TREC 4 where the

description fields are used instead (average length 8.4 terms). The highest p-value for a set of

standard standard clarity scores in this table is 0.0006 (TREC 5) and the lowest is 8 × 10−120

(aggregate Query Track), indicating that all correlations are statistically significant.

The strength of the correlations (shown in column 5 of Table 1) is their real importance.

The small p-values indicate that the correlation is extremely unlikely to occur by chance in

unrelated rankings. The extent of the correlation is also visible in Fig. 4 as a linear trend

for average precision of queries to increase as their score increases. The rightmost circled

point represents the query “anorexia nervosa bulimia” with clarity score 0.28. The circled

point with clarity score 0.19 and average precision near zero is “postmenopausal estrogen

Britain”, and the circled point at clarity score 0.16 and average precision nearly 0.9 represents

anorexia nervosa bullimia

supercritical fluids

illegal technology transfer

postmenopausal estrogen Britain
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Fig. 4 Scatter plot of average precision versus standard clarity score for the 100 queries of TREC 7 + 8
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“supercritical fluids.” The query “illegal technology transfer” is represented by the circled

point with clarity score 0.019 and average precision near zero.

4.4. Decisions using document-based clarity

An information retrieval system can now be imagined that treats queries predicted to be

ineffective differently than other queries. For example, such a system might suggest that the

user try improving a suspicious query, rather than simply showing search results for the query.

To make such a prediction based on clarity score, the system would need a decision threshold

to indicate how low a clarity score was sufficient to predict that the query was going to be

ineffective. Queries scoring below the threshold would be handled differently from those

scoring above the threshold. Computing such a threshold without relevance information is

addressed in this section. Such a system would make some errors, and the error rate would be

crucial in determining whether the prediction would be helpful or not. This further supports the

strength of the correlations (i.e., |R|) being the important statistic, since a higher correlation

leads to fewer predictive errors.

For straightforward use of clarity scores, a system must decide how high (or low) a clarity

score is sufficient to justify some decision about how to treat that query. Our basic idea is to

estimate the probability distribution over clarity scores using single term queries randomly

sampled from the collection vocabulary. Estimating the clarity score distribution in this way

can be done at index-time for any collection.

Continuing as in Cronen-Townsend et al. (2002), we set a threshold simply by requiring

that a query have a higher score than a certain set percentage of one-term queries. The exact

percentage can be set to roughly match estimates of an optimal threshold for the task at hand

determined using test collections.

To demonstrate the approach, we chose the “task” of deciding if a given query is in the

upper or lower half of queries in a given test set in average precision performance. We

compute estimated Bayes-optimal thresholds for classifying queries as in the upper half or

lower half of average precision for each test set as in Cronen-Townsend et al. (2002). Then,

for each of the test collections, we estimate a one-term query distribution of standard clarity

scores by randomly sampling the vocabulary to form queries. This sampling is independent

of any human-generated queries, and gives some sense of the distribution of clarity scores

for the collection at hand. We found that 80%-thresholds for standard clarity best matched

the Bayes-optimal thresholds for predicting whether a test query was in the upper or lower

half of the set in performance. The results are shown in Table 2. The “relative” column gives

the relative discrepancy between the automatic threshold value and the optimum threshold.

We are pleased to note that the use of an 80% threshold for document-based clarity scores

Table 2 Automatic and Bayes
optimal thresholds for standard
clarity scores

TREC auto:80% Optimal Relative

1+2+3 0.066 0.044 +50.%

4 0.047 0.082 −43%

5 0.054 0.050 +8.0%

6 0.053 0.074 −28%

7

8

7+8

⎫⎬⎭ 0.049 0.060 −18%

agg QT 0.053 0.046 +15%
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opt

supercritical fluids

illegal technology transfer

postmenopausal estrogen Britain

anorexia nervosa bullimia

50%

auto

 0.6

 0.7

 0.8

 0.9

 0  0.05  0.1  0.15  0.2  0.25  0.3

standard clarity score

 0.5

 0.4

 0.3av
er

ag
e 

p
re

ci
si

o
n

 0.2

 0.1

 0

Fig. 5 Scatter plot of average precision versus standard clarity score for the 100 queries of TREC 7 + 8 with
thresholds indicated

originally proposed for λ1 = λ2 ≡ 0.6 clarity still holds up for the new clarity scores with

our heavy smoothing condition (μ1 = 1000, λ2 = 0.1). We refer to this as the automatic

method for setting thresholds.

Figure 5 shows the 50% threshold in average precision (labeled “50%”) as well as the

Bayes-optimal threshold in clarity score (labeled “opt”). These lines divide the scatter plot

into four quadrants. Queries in the upper right quadrant and the lower left quadrant have

correct predictions while queries in the upper left and lower right quadrants have mistaken

performance predictions based on their clarity scores.

In Fig. 5 the automatic clarity score threshold is also indicated and labeled “auto.” It is

interesting to note that switching from the Bayes optimal threshold to the automatic threshold

for this data results in about the same number of queries switching from incorrect to correct

classification as switch from correct to incorrect classification. That is to say, there are about

as many high- as low-performing queries in the region between the optimal and automatic

thresholds, so the Bayes error is close to uneffected by changing from the optimal to the

automatic threshold in this case. Thus the relative discrepancy of −18% from the optimum

threshold value to the automatic threshold value is not very important.

5. Passage-based clarity scores

We seek to demonstrate that clarity scores function similarly with passages as the multiple-

word units of text as they do for document-based retrieval systems. To do this we demonstrate

the correlation of passage based clarity scores with overall measures of the quality of a ranked

list of passages.

In our case, passage retrieval is provided by a straightforward passage-based question an-

swering system using query likelihood retrieval (Corrada and Croft, 2004).3 Given a question,

3 With answer modeling turned off.
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the passage question-answering system first performs a document retrieval step and then cre-

ates highly-overlapping passages from the top documents. Finally, it scores the best passage

from each document to form a ranked list of passages. This list, with no processing, is the

output of the system.

5.1. Passage processing

As a first step in obtaining passages, an initial document retrieval is done with a Lemur

tf.idf retrieval with the question forming the query, in order to get a wide range of question-

related documents from which to extract passages. Passages are then created by sliding a 250

character window through each retrieved document with a one word increment and recording

a passage for each position of the window. For each document, all overlapping passages are

scored by query likelihood and the best scoring passage from each document is retained

for the ranked list. The ranked lists are truncated at the 90 top-scoring passages, since that

value attains near-optimum MRR performance over each of TREC 2000, TREC 2001, and

TREC 2002 question answering test beds with this system. These 90 passages are used for

estimating a relevance model for clarity score calculation.

5.2. Calculation

We calculate passage-based clarity scores as in the document-based case in Section 2.2, with

the 90 scored passages in the role of the documents, D. The collection model, C , still refers

to a model of all the collection’s documents aggregated together.

For the passage-based case we adjusted several parameters that are left fixed in the

document-based case. In particular, we adjusted the passage cutoff (restricted to be less

than or equal to 90) and the number of top terms compared to the collection model to form

clarity scores (a restriction on the number of terms summed over in Eq. (6)). We use a variety

of Dirichlet prior values significantly lower than the 1000 that is our fixed standard setting

for documents. Adjusting these parameters was necessary due to the smaller size of passages

(hence smaller Dirichlet priors) and the different patterns of word occurrence that occur

in answers to questions of a certain type (e.g. questions whose answer is a location). The

necessity of adjusting these parameters based on the test data, at times, to achieve meaning-

ful clarity scores indicates the passage-based scores are less robust than the document-based

scores. This is thought to be due to the smaller samples of text used to estimate the underlying

models.

6. Passage question answering prediction

It is desirable for an operational question answering system to have the ability to identify

questions that the system will not be able to answer well. Current systems are designed for

questions with short factual answers. Even within this restricted domain, there are many

questions that may cause a system to match diverse text from the collection, such as “What

time of year do most people fly?”. For the simple passage retrieval system we have described,

we now demonstrate that the coherence of the language use in a ranked list of passages is

correlated, in many cases, with the degree to which passages containing correct answer text

appear high in the ranked list.

In a full question answering system that goes on to extract brief answer text from the

ranked list of passages, this could be used to decide when not to answer a question, rather
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than giving an unreliable answer. This option would be taken in cases when passage retrieval

performance was predicted to be low enough that answer extraction is unlikely to succeed. A

version of this started being incorporated in the TREC QA track in 2002 (Voorhees, 2002).

In TREC evaluations a system is now allowed to answer “NIL” to a question indicating its

belief that no answer exists in the document collection.

In this study we focus on validating clarity scores as tool in passage retrieval question

answering, where the system returns a ranked list of passages. Passages are deemed relevant

if they contain correct answer text. We show that there exists an association between the

clarity score of a ranked list of passages and average-precision based measures of the ranked

list. This association is analogous to the association between between document-based clarity

scores of queries and average precision.

6.1. Passage retrieval

Questions have single characters and digits removed and are Krovetz stemmed (Krovetz,

1993) as is the collection, the same as was done in the document-based case. Passages are

scored for retrieval by query likelihood (Eq. (4)) with Dirichlet smoothing with prior μ

adjusted for each question type. As was already described in Section 5.1, the best scoring

passage from each document is retained and the ranked list truncated to the 90 top-scoring

passages. The redundancy in explanation is due to the fact that for passage-based systems,

as well as for document-based systems, a query likelihood retrieval is a necessary first step

in clarity score calculation, leading to its already having been described in that context.

6.2. Measuring performance

For evaluation purposes, passages that contain correct answer text within them (that is, they

match a NIST-supplied pattern) are judged relevant to the question. So passages take the role

of documents in a document-based system and matching a supplied answer text pattern takes

the role of relevance.

Mean reciprocal rank (MRR) is a standard metric for evaluating the performance of

question answering systems (Voorhees, 2000) but measures the list only down to the first

relevant document, and not overall. Since clarity scores measure the overall coherence of a

ranked list, they correlate best with an overall measure of ranked list quality.

As noted in Cronen-Townsend et al. (2003), average precision-based measures should

relate better to the ease of extracting one brief answer from the passages. This is because

answer extraction will be easier, in general, if the answer text is repeated often in the ranked

list. This repetition is something that does not effect MRR at all, but does increase average

precision based measures.

We measure performance by the average precision of the ranked list of answer passages.

The definition is the same as in document-based retrieval with the passages treated as small

documents. In our case, the set of relevant passages is all the highly overlapping passages

from the top ranked documents that contain the correct answer text. Consider, for example, a

document containing one instance of the answer. The system starts a window at the beginning

of the document and makes one passage for each position of the window as it advances a

word at a time. This process begins generating relevant passages as soon as all the correct

answer text is inside the window and continues to generate one relevant passage per window

position until some piece of the correct answer text exits the other side of the window. Since

the system only ranks one passage per document, it is penalized in average precision for not

returning all the other overlapping relevant passages from any document where the system
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Table 3 Correlations for TREC
2000, 2001, and 2002 QA Collection Num. R

TREC 2000 692 0.225

TREC 2001 500 0.196

TREC 2002 499 0.148

finds a relevant passage. We call this measure the overlap-penalized average precision. It

forms an overall measure of the quality of a ranked list of passages in our system, but with

values on a small scale.

Since there are about 50 relevant passages, on average, per document containing relevant

passages in our collections, the maximum overlap-penalized average precision is reduced by

about a factor of 50 from a typical document retrieval experiment. Having the system score

every overlapping passage would create a new source of variability in the clarity scores, since

the nearly identical passages in the ranked list with nearly identical scores would amount

to coherence in the ranked list. What is important for this study is that overlap-penalized

average precision measures the overall quality of the ranked list returned by the system, and

this is the same ranked and scored list that is used to compute clarity scores.

The other extreme for measuring performance is to only judge the ranked list based on

the relevance of passages it contains. This limits the degree to which the system is penalized

for a poor document retrieval step; as long as at least one relevant passage was extracted, a

perfect score of one is possible. We call this measure the reduced average precision, since

the number of passages counted as relevant is reduced.

6.3. Passage-based clarity scores and average precision

We begin examining the relationship between passage clarity scores and passage question

answering performance by considering the three entire test sets of questions for the TREC

2000, TREC 2001, and TREC 2002 Question Answering tracks. We use overlap-penalized

average precision (as defined in Section 6.2) as our primary performance measure.

Table 3 shows the correlation between question clarity score and overlap-penalized average

precision in our system in the three TREC test beds studied. The correlations are all significant

with the highest P-value (for TREC 2002) being 5 × 10−4.

Table 4 shows the system parameters used to obtain the Table 3 results. The “passages”

column refers to the number of passages mixed to form query models (cutoff in Eq. (3)).

It is analogous to the cutoff of 500 document models used in document retrieval and has a

maximum of 90 because the passaging system only returns 90 scored passages. The “terms”

column indicates the number of (truncated) terms in the relevance models, which are com-

pared with the collection model to form the clarity score in Eq. (6). “MRR” indicates mean

Table 4 Tuned system parameters and two measures of system performance on TREC 2000,
TREC 2001, TREC 2002 aggregate QA data

Question type μ1 λ2 Passages Terms MRR No correct

TREC 2000 440 0.2 90 10 0.402 33%

TREC 2001 230 0.2 90 10 0.319 45%

TREC 2002 140 0.2 20 10 0.288 52%
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Fig. 6 Scatter plot of the overlap-penalized average precision versus clarity score for the 109 “Location”
questions of the TREC 2000 QA Track

reciprocal rank with credit for first correct passages within the top 20, and “no correct” is

the number of queries with no correct answers among the passages extracted. We speculate

that small number of top terms (e.g. 10) helps correlations by exaggerating the difference

between the most focussed relevance models and those formed, for example, for questions

where none of the passages in the system are actually relevant (the “no correct” case).

The strength of the correlations in the aggregate question sets (Table 3) is significantly

lower than the correlations found with clarity scores in document retrieval, making it very

difficult to imagine using these correlations for predictive purposes. To explore this situation

and to uncover meaningful cases where clarity scores correlate more strongly with perfor-

mance, we study the TREC 2000 (TREC 9) data broken down by question answer type.

We use the University of Pennsylvania classification scheme for the TREC 2000 questions

(Morton, 2001) focusing on answer type. We use the questions in the categories “Amount,”

“Famous, “Location,” “Person,” “Time,” and “Miscellaneous” which each contain enough

questions for collecting meaningful statistics.

Figure 6 shows the scatter plot of overlap-penalized average precision versus clarity

score for each of the 109 “Location” questions in the TREC 2000 Question Answering

data. “Location” questions are the class where performance is most correlated with average

precision, with Spearman R = 0.358. Four extreme scoring queries are circled in the figure,

though two of the circles coincide. The highly scoring and highly performing question is

“What city is 94.5 KDGE Radio located in?” This question matches coherent passages

that usually contain the correct answer. The high-scoring and zero average precision circle

encloses two identically performing questions “What is Poe’s birthplace?” and “Where is

Poe’s birthplace?” and the low-scoring and zero average precision circled query is “What

is California’s capital?”. In these cases, the passaging system fails to create any passages

containing correct answer text, assuring that the average precision of the ranked list will

be zero. The clarity score calculation takes the same ranked list and gives it a coherence-

based score that is some positive value. These are what we refer to as system-unanswerable

questions.

Table 5 shows the correlations over the six question classes containing sizable numbers

of questions. By testing our system on each class separately we found interesting variations
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Table 5 Correlations broken
down by question type for TREC
2000 QA Track data

Question type Num. R P-value

A (amount) 53 uncorr −
F (famous) 83 0.133 0.11

L (location) 109 0.358 0.00010

P (person) 113 0.256 0.0033

T (time) 73 0.309 0.0044

X (misc) 168 0.254 0.00053

AFLPTX 599 0.233 6 × 10−9

Table 6 Tuned system parameters and two measures of system performance on TREC 2000 QA
data

Question type μ1 λ2 Passages Terms MRR No correct

A (amount) 450 0.1 90 10 0.185 53%

F (famous) 140 0.4 90 10 0.560 13%

L (location) 740 0.1 25 35 0.430 25%

P (person) 430 0.4 90 100 0.515 32%

T (time) 380 0.2 90 10 0.210 59%

X (misc) 670 0.6 30 10 0.386 31%

AFLPTX 440 0.4 90 10 0.402 33%

over the question types in clarity scores’ correlation with performance in our system. We

found no correlation for “Amount” questions, and the strongest correlation for “Location”

questions. By separating the questions in to classes we also gained the ability to tailor the

system slightly for each class of question. Table 6 shows the parameter settings used in the

calculation leading to Table 5.

We believe much of the variation over question type seen in Table 5 is due to intrinsic

statistical differences to correct answer passages in our systems for the different classes. These

rank correlations are comparable numerically to the results found with the original clarity

scores and a similar, but sentence-based passaging system with non-overlapping passages

(Cronen-Townsend et al., 2003). However, these results are significantly stronger since we

obtain similar rank correlation without removing system-unanswerable questions.

For example, in Fig. 6, there are 27 system-unanswerable questions, with no relevant

passages ranked by the system. These queries get zero average precision, and lie along the

x-axis, but they have non-zero clarity scores depending on the coherence of the ranked lists

they return. Such cases hurt the correlation of clarity with average precision by forming many

points tying for the lowest average precision rank, spread out over the x-axis in the scatter

plot. Despite the mid-ranking correction we apply, many ties in the rankings diminishes the

meaning of the Spearman R statistic (Gibbons and Chakraborty, 1992). Heuristically, they

are also consistent with a linear relationship of zero slope on the scatter plot, and being

mixed with answerable questions leads to lower correlation values and less ability to predict

retrieval performance.

The system having no correct passages for a given question is usually due to a shortcoming

of the system taking 1 best passage per document and selecting a (higher scoring) nonrelevant

passage rather than a relevant one, but it is sometimes a deficiency of the preliminary document
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retrieval step and occasionally a question with no correct answer in the entire collection. Since

a searcher does not generally know if a given collection or system contains an answer to a

factual question at the time the question is posed, the robustness of our technique (in the test

beds studied) to a small proportion of unanswerable questions is promising.

We next examine an alternative measure of our system’s performance, where the system

is still evaluated with average precision, but it is the reduced average precision where the

relevant passages are considered to be the passages that the system actually retains (best-

scoring passage in their document and one of the best 90 overall) that also contain correct

answer text. A system-unanswerable question (no relevant passages in the ranked list) still

receives a score of zero on this measure, but as long as there is at least one relevant passage for

the question in our system, a perfect score of 1 is possible. Here the system is not explicitly

penalized for any passages that are not returned (since they are all considered nonrelevant).

Figure 7 is a scatter plot of reduced average precision versus clarity score for the “Location”

questions in the TREC 2000 data. The same four queries are labeled as in Fig. 6. One can see

that a perfect score (reduced average precision equals 1) is sometimes obtained. The degree

of correlation is visually similar to that in Fig. 6 and the rank correlation is R = 0.320 which

is slightly less than for the overlap-penalized case. This is probably due to the increased

number of ties for the top average precision rank, hurting the meaningfulness of the statistic.

For this reason, we rely on overlap-penalized average precision for evaluating our system

and use it for all other tables and figures.

Studying the reduced average precision performance of our system offers one surprise.

The correlation for “Miscellaneous” questions in the TREC 2000 data that exists for overlap-

penalized average precision does not exist for the alternative measure. In all other question

classes the correlation is merely reduced from that observed with overlap-penalized average

precision. This seems to be an artifact of a large number of (tying) system-unanswerable

questions, a good proportion of them with relatively high clarity scores (due to relatively

coherent retrieval results) and some (tying) perfect-scoring questions with relatively low

clarity scores. The questions not receiving a reduced average precision score of zero or one

do exhibit correlation.

What city is 94.5 KDGE radio located in?

What is California's capital?

What/where is Poe's birthplace?
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Fig. 7 Scatter plot of the average precision judged only on returned passages versus clarity score for the 109
“Location” questions of the TREC 2000 QA Track
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6.4. Decisions using passage-based clarity

Even the highest correlation we observed in our question answering data is not comparable

to the best correlation we achieve with standard clarity scores in document retrieval. In

particular, the highest correlation in question answering is R = 0.36 for “Location” questions

in TREC 2000 (see Table 5) while the highest correlation observed for standard clarity score in

document retrieval is R = 0.64 for the TREC 7 test set (see Table 1, a superset of TREC 7 + 8

data is shown in Fig. 5). Achieving the reported level of correlation for “Location” questions

also required adjusting several parameters for the system, the questions being classified, and

“location” being a good class for exhibiting the correlation. For all of these reasons, it is hard

to imagine a straightforward use of precision prediction based on clarity scores in question

answering. The fact that the basic correlation has been demonstrated, however, paves the way

for creative use of clarity-related techniques in studying the question answering task.

7. Variants of clarity score

In this section we introduce two variants of document-based clarity scores called ranked list

clarity scores and weighted clarity scores. These variants have been developed for several

reasons.

Ranked list clarity was originally developed in a successful attempt to improve the ro-

bustness of clarity score correlations with average precision. Additionally, The ranked list

relevance models it uses only require document ranks (and not probability scores) and thus

the technique is applicable to any retrieval situation that results in a ranked list without accom-

panying probability scores, such as in cases of relevance feedback. Weighted clarity scores

were originally introduced in an attempt to increase clarity score correlations with average

precision. Though they succeed in that, their greatest effect may be in introducing the notion

of weighted divergences to information retrieval. Through that idea, they influenced our own

application to predicting query expansions, presented in Section 8, which also makes use of

ranked list relevance models.

7.1. Ranked list clarity scores

Ranked list clarity scores are an alternative technique for computing clarity scores that allow

them to be used with any retrieval model, extending their range of applicability considerably.

They do not use the documents’ probability scores from retrieval, merely the ranking (which

may or may not be based on such scores) to form a relevance model. The relevance model

in this approach is literally a model of the ranked list of documents returned by the query.

This ranked list can even be modified by user feedback or any other technique that results in

a ranked list.

For example, a system using relevance model retrieval (Lavrenko and Croft, 2001, 2003)

scores documents with Kullback-Leibler divergence between two distributions. The scores

are not probabilities and hence cannot be used as the mixing weights in Eq. (3). Additionally,

implementations typically use the rank-equivalent cross-entropy for scoring, and in this case

the scores are not even positive. But such a system does create a ranked list, which can be

used to form ranked list clarity scores.
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7.1.1. Calculation and smoothing

In our implementation of ranked list clarity scores, we simply replace P(D|Q) by a simple

function of the document’s rank. We have tried two schemes for this function. We refer to the

relevance models produced in this way as ranked list relevance models. The first scheme is

flat cutoff, where P(D|Q) is a constant if the rank is less than or equal to the cutoff rank and

zero otherwise. For the second scheme, linear cutoff, we use a linearly decreasing function

of the rank that goes to zero at the cutoff rank plus one. Specifically,

P(D | Q) =
⎧⎨⎩

2(c + 1 − r )

c(c + 1)
for r ≤ c,

0 for r > c
(7)

where r is the rank of document D and c is the cutoff rank.

Ranked list clarity behaves similarly to standard clarity with respect to choice of smoothing

methods and works well for the same heavy and light smoothing conditions on all tested

collections. So we generally use the standard, heavy smoothing, condition.

7.1.2. Ranked list clarity and average precision

The correlation results between ranked list clarity scores and average precision are shown

in Table 7 for eight TREC test collections. The clarity scores were computed using our

heavy smoothing condition (μ1 = 1000, λ2 = 0.1) and a linear cutoff with c = 60 in Eq.

(7). Heavy smoothing was used since, again, it offers high and reliable performance. A small

linear cutoff, like c = 60, is necessary in computing ranked list clarity in order to focus

estimation of the model on top-ranked documents. In case of the standard clarity, the focus

of estimation is determined by document likelihood scores, P(D|Q), which are gotten by

Bayesian inversion of query likelihood scores, and the high cutoff at 500 documents has little

effect on standard clarity scores.

The cases for which ranked list clarity outperforms standard clarity (compare Tables 1

and 7) are interesting. The ranked list clarity technique is significantly better on TREC

1 + 2 + 3, TREC 4, and the TREC 9 aggregate Query Track. These are all cases where there

are significant differences in the query sets, as compared to the title queries of the remaining

TREC Ad Hoc collections we tested. In the case of TREC 1 + 2 + 3 the difference is less

honed and consistent title queries, in TREC 4 it is long description queries, and in the

aggregate Query Track it is large a large variety of query lengths and styles. So there is some

evidence that ranked list clarity scores are more robust in the face of query variability.

Table 7 Correlation between
ranking queries by average
precision and by ranked list
clarity score

TREC Disks Topics Number Spearman R

1+2+3 1&2 51–150 100 0.60

4 2&3 201–250 50 0.67

5 2&4 251–300 50 0.49

6 4&5 301–350 50 0.53

7 4&5-CR 351–400 50 0.61

8 4&5-CR 401–450 50 0.51

7 + 8 4&5-CR 351–450 100 0.57

agg QT 1 51–100 1804 0.61
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Fig. 8 Scatter plot of average precision versus ranked list clarity score for the 100 queries of TREC 1 + 2 + 3

In fact, the reason we developed ranked list clarity scores is that clarity scores, as originally

defined (Cronen-Townsend et al., 2002), have very little correlation with average precision

in TREC 1 + 2 + 3. With λ1 = λ2 ≡ 0.6 we find R = 0.18 (P-value 0.039) for the rank

correlation with λ = 0.6 query likelihood retrieval. With Dirichlet smoothing of the query

likelihood retrieval with μ1 = 1000 and using λ2 = 0.1 this comes up to 0.50 (as listed in

Table 1). The ranked list clarity score technique brings the correlation (with μ = 1000 query

likelihood retrieval) up to 0.60 (as listed in Table 7). The scatter plot of this data is shown

in Fig. 8. Carefully smoothing the document models used in clarity calculation makes the

correlation in TREC 1 + 2 + 3 comparable to that in all other collections we have tested, but

ranked list clarity produces an even stronger correlation.

7.1.3. Decisions using ranked list clarity

Making a decision based on ranked list clarity score relies on having a suitable decision

threshold. We precede again as in Section 4.4. For the “task” of deciding whether a query is

in the upper- or lower-performing half of queries in a test set, this method leads to a uniform

heuristic to set a decision threshold at a clarity score higher than 40% of one term queries,

tuned on all the data. Table 8 shows the automatic threshold and the relative discrepancy from

the Bayes-optimal to the automatic threshold for each collection (in the “relative” column).

Table 8 Automatic and Bayes
optimal thresholds for ranked list
clarity scores

TREC auto:40% Optimal Relative

1 + 2 + 3 0.069 0.060 +15%

4 0.058 0.050 +16%

5 0.064 0.059 +8.5%

6 0.060 0.070 −14%

7

8

7 + 8

⎫⎬⎭ 0.059 0.062 −4.8%

agg QT 0.065 0.053 +23%
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Figure 8 shows the ranked list clarity scores for the TREC 1 + 2 + 3 collection using

heavy smoothing. The 50% threshold in average precision (labeled “50%”) as well as the

Bayes-optimal threshold in clarity score (labeled “opt”) and the automatic threshold (labeled

“auto”), are shown. The average precision threshold line and either of the clarity score

threshold lines divide the scatter plot into four quadrants. Queries in the upper right quadrant

and the lower left quadrant have correct predictions while queries in the upper left and lower

right quadrants have mistaken performance predictions based on their clarity scores.

The ranked list clarity score automatic threshold shown in Fig. 8 seems a significant

distance from the Bayes optimal threshold. However, switching from the Bayes optimal

threshold to the automatic threshold for this data, again results in about the same number of

queries switching from incorrect to correct classification as switch from correct to incorrect

classification. That is to say, there are about as many high- as low-performing queries in the

region between the optimal and automatic thresholds, so the Bayes error is close to uneffected

by changing from the optimal to the automatic threshold in this case.

7.2. Weighted clarity scores

Weighted clarity scores are based on the idea that differences in term usage between the query

model and collection model are not equally significant for all terms. Differences in the usage

of query terms are considerably more important than differences in the usage of other terms.

Taking this into account increases the correlation with average precision while introducing

theoretical machinery into information retrieval that opens up new research possibilities and

makes the prediction of query expansion possible (presented in Section 8).

7.2.1. Calculation and smoothing

The clarity score was defined in Eq. (5) as the relative entropy (or Kullback-Leibler diver-

gence) between a query’s relevance model in the collection, P(w|Q), and a model of the

entire collection P(w | coll). We extend clarity scores by using the weighted relative entropy

(Taneja and Tuteja, 1984; Arndt, 2001)

D(A||B; U ) = 1

E(A; U )

∑
events,i

ui ai log2

ai

bi
, (8)

where A and B represent probability distributions and U represents a vector of weights over

events. The normalization factor E(A; U ) is given by E(A; U ) = ∑
j a j u j , where ai and bi

represents the probability of event i according to the A and B distributions, respectively. The

weighted relative entropy is the expectation value of the quantity Log2
A
B using a weighted

version of the A distribution instead of the unmodified A distribution as in standard relative

entropy.

A generalized clarity measure is then defined by the weighted relative entropy from the

query model, P(w|Q), to the collection model P(w|coll)

clarity =
∑
w∈V

u(w)P(w|Q)∑
w′∈V u(w′)P(w′|Q)

log2

P(w|Q)

P(w|coll)
, (9)

where u(w) are the term weights. When u(w) ≡ 1 for all terms in the vocabulary this ex-

pression is just the usual KL divergence and leads to the clarity scores used previously
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Fig. 9 Rank correlation between clarity score and query likelihood document retrieval average precision as
a function of the query term weight for the TREC 9 Query Track aggregate

(Cronen-Townsend et al., 2002). The ordinary KL divergence is the expectation value in the

first distribution of the difference in the log probabilities of an event in the two distributions.

The weighted relative entropy is an expectation value of the same quantity with a weighted
version of the first distribution being used to calculate the expectation value.

Query terms are the most important terms in information retrieval systems. To reflect

this, we tried giving each query term weight u(q) = γ and all other terms weight u(w) = 1.

Here γ represents how many times more significant the occurrence of a query term is than

the occurrence of another term in a document. We also tried giving each query term q the

weight n(q)γ where n(q) is the number of times the given term appears in the query. Even in

test collections such as the TREC 9 Query Track aggregate where query terms do repeat on

occasions, the results of the two schemes are nearly identical. With either implementation,

a nearly identical improvement is seen in the Spearman rank correlation between the clarity

scores and the average precisions of the queries for all values of γ .

As shown in Fig. 9 for the aggregate TREC 9 Query Track (with light smoothing), the

weighted clarity score predicts average precision better as the weight γ of query terms in

measuring the degree of difference from the collection model is increased, until a peak is

reached (at γ = 40) and the correlation returns slowly to a value comparable the unweighted

value as γ is increased further. The value R = 0.54 at γ = 1 (unweighted) is significantly

higher than the value of R = 0.39 reported for the original clarity score method for the Query

Track aggregate (Cronen-Townsend et al., 2002). This difference is due to our use of Dirichlet

smoothing, rather than linear smoothing, for the scoring of documents by query likelihood.

As the relative importance of query terms to the comparison is increased, the correlation rises

to a maximum of R = 0.63 at γ = 40.

At γ = ∞, the clarity score is computed over just the terms that appear in the query. This

setting gives only slightly less correlation with retrieval performance (R = 0.53) than using

the entire relevance model for comparison and no weighting (R = 0.54). Thus, in applications

requiring retrieval precision prediction where a full relevance model is not needed, a reduced
relevance model may be computed solely for the purpose of clarity score computation. For

these reduced relevance models the probabilities only need be estimated for the query terms
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Fig. 10 Scatter plot of average precision versus weighted ranked list clarity score for the 50 queries of TREC
4

themselves. This calculation can be done with just the lists of documents containing each

query term and the number of term occurrences in each. Since this information is typically

stored in indices for information retrieval, this computation can be made extremely efficient.

The closeness of γ = ∞ and γ = 1 performance holds for all tested collections and usually

the γ = ∞ correlation is actually stronger than the γ = 1 correlation.

Weighted clarity scores behave in a complicated manner when mixed with heavy smooth-

ing. In plots like Fig. 9 but with heavy smoothing, a shoulder forms to the left of the main

peak which accounts for the increase in heavy smoothing correlation for γ = 1. But the dip

between the shoulder occurs at varying values of γ , making it impossible to set a uniform pol-

icy for choosing γ to achieve good performance across collections. For this reason weighted

clarity scores are best computed with light smoothing probability estimates; this policy is

followed throughout this work.

A scatter plot of weighted ranked list clarity scores for TREC 4 is shown in Fig. 10 for

light smoothing. Note the higher range of clarity score values than in previous scatter plots of

document-based clarity scores (see Figs. 5 and 8.). This is due to a combination of the light

smoothing and the query term weighting, which both increase clarity scores, on average.

7.2.2. Weighted clarity and average precision

Both the basic clarity score and the ranked list variant can be computed with weighting. For

either type of clarity score, The optimal value of γ for correlation with retrieval performance

does not vary much over the collections we tested. The peak of the curve is at slightly higher

values of γ for most collections other than the Query Track, leading to good performance at

γ = 100 for all collections. For ranked list clarity scores using γ = 70 leads to slightly better

performance. The results of applying these uniform settings across collections are shown in

Table 9. P-values for the rank correlation listed range from 0.0004 (TREC 6 ranked list clarity)

to 1 × 10−152 (aggregate Query Track ranked list clarity). Again all values are statistically

significant indicating clarity scores and average precision are related.
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Table 9 Correlation between ranking queries by average precision and by weighted version of
standard and ranked list clarity scores

Spearman R

Standard Ranked list

TREC Disks Topics Number γ = 100 γ = 70

1 + 2 + 3 1&2 51–150 100 0.56 0.62

4 2&3 201–250 50 0.65 0.75

5 2&4 251–300 50 0.61 0.56

6 4&5 301–350 50 0.58 0.48

7 4&5-CR 351–400 50 0.67 0.54

8 4&5-CR 401–450 50 0.70 0.63

7 + 8 4&5-CR 351–450 100 0.68 0.57

agg QT 1 51–100 1804 0.61 0.62

Figure 10 is a scatter plot of the weighted ranked list clarity for most correlated case,

TREC 4 with ranked list clarity. It is interesting that this highest correlation occurs with long,

description field, queries. The 50% threshold in average precision (labeled “50%”) as well

as the Bayes-optimal threshold in clarity score (labeled “opt”) are shown, and, as explained

before, divide the scatter plot into four quadrants. Queries in the upper right quadrant and

the lower left quadrant have correct predictions while queries in the upper left and lower

right quadrants have mistaken performance predictions based on their clarity scores. In this

case, very few queries fall into the two mistaken prediction quadrants. In fact, only one query

below the Bayes-optimal threshold score in Fig. 10 has an average precision that puts it in

the top half of the test queries, and only just barely.

7.2.3. Decisions using weighted clarity

To make simple decisions based on weighted clarity score, a decision threshold must be

set. The automatic thresholding method does not work well for weighted clarity scores,

unfortunately. This is why no automatic threshold is shown in Fig. 10. Sampled single term

queries no longer lead to a reasonable estimate of the score distribution on real queries, since

the weighting of query terms makes clarity scores extra sensitive to differences in query

length and composition. The weighting process itself makes the scores depend much more

highly on the query terms themselves. Thus unweighted clarity scores are currently a better

choice for applications in real systems because they can be automatically thresholded, despite

the slightly higher correlation with average precision found for weighted clarity scores.

8. Application: Query expansion

Query expansion is a well-known technique that has been shown to improve average retrieval

performance. This section describes an approach to the task of improving retrieval through

deciding automatically whether to use unexpanded retrieval results or expanded retrieval

results. Simple comparisons of clarity scores are not sufficient for the purpose, so we compare

ranked list relevance models directly. We are aided by calculating the top terms in clarity

score contribution (again the whole clarity score is overly averaged for our purposes). As we

will see in Section 9 on other work, the creative use of clarity-related ideas has proved useful

to other researchers, as well.
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Query expansion has not been used in many operational systems because of the fact

that it can greatly degrade the performance of a system for certain individual queries. Our

implementation is best suited to the task of predicting when a query will perform significantly

worse after query expansion than before expansion, thereby improving the consistency of

retrieval while having a small effect on the average performance, due to the small proportion

of significantly bad-to-expand queries.

We develop a method for deciding whether or not to apply query expansion to a particular

query. Our method requires a system to perform both the unexpanded and expanded retrieval

steps internally, and then compares the results of the two retrieval steps to decide which

results to present to the user. We make ranked list models of the unexpanded and expanded

ranked lists and compare the models directly, to sense poor expansions. Since our method

models the two ranked lists, it can be used to choose between any two retrieval techniques

whether they are based on language modeling, or not.

8.1. Document retrieval: unexpanded and expanded queries

The first step in sensing poor expansion results is performing both the unexpanded and

expanded retrieval steps. The change in average precision (expanded minus unexpanded)

becomes our figure-of-merit, which we term the improvement of a query. We seek to predict

when the improvement of a query will be significantly negative. In these cases a system

should use the unexpanded query results. We refer to a query with negative improvement as

bad-to-expand and a query with positive improvement as good-to-expand.

In our approach to the query expansion prediction task, we use query likelihood retrieval

(Song and Croft, 1999) for unexpanded retrieval and relevance models (Lavrenko and Croft,

2003) for expanded retrieval. Relevance model retrieval is a conceptually simple, principled,

and effective expansion technique. It simply uses the relevance model as the expanded query,

ranking documents by their similarity to it.

Query likelihood retrieval is a one step process. We use Dirichlet smoothing with μ1 =
1000 throughout this study. This uniform setting gives reasonable performance across all

TREC collections tested.

Relevance model retrieval is a three step process and each step requires individualized

smoothing for good performance (Lavrenko, 2004). The first two steps, query likelihood

scoring of documents and mixing of document models, construct the relevance model (query

model). The third step performs retrieval with this relevance model. For the first two steps

we use our light smoothing condition (μ1 = 1000, λ2 = 0.9). For the retrieval step we use

Jelinek-Mercer smoothing with λ = 0.2. We keep the parameters constant across all collec-

tions to keep the emphasis on applying our methods to other collections where relevance

information is not available.

Since we did not tune the parameters for each collection our results are not strictly com-

parable to those in previous papers on retrieval where the parameters are tuned for each test

collection to obtain best performance.

8.2. Model comparison scores

The precise task we are interested in is predicting queries that should not be expanded

(highly negative improvement) with a score that does not depend on relevance information.

To do this, we compare a ranked list model of the unexpanded retrieval ranked list (model

A) with a ranked list model of the ranked list produced with the expanded query (model B).

With this comparison, our goal is to sense when the expanded retrieval has strayed from the
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sense of the original query. Comparison scores focus on important terms in the unexpanded

query and are high when the documents in the expanded results use the terms much less

frequently than do the documents in the unexpanded results. This often indicates a poor

expansion outcome (highly negative improvement). In this case the system would show the

user the unexpanded retrieval results instead of the expanded retrieval results. We call this

strategy selective query expansion.

For models of the two retrieval results (unexpanded and expanded) we use the ranked list

models described previously with a flat cutoff 100 (i.e. top 100 documents all equally weighted

in the mixture). We use our light smoothing condition and no query term weighting, since

these settings provide marginally better prediction performance than other choices. Similarly,

more complicated weighting schemes for the documents, other than the simple flat cutoff,

provided no net benefit.

We compare the models with the weighted relative entropy, Eq. (8), as D(A||B; U ).

We have tried several different schemes for the weights U . Using equal weights over all

vocabulary terms (standard KL divergence) considers differences between models for each

vocabulary term as equally important.

An important insight toward achieving better prediction performance is that differences in

how two models use each vocabulary term are not all equally important. One wants to weight

“important” terms in the unexpanded model highly. But weighting terms based on their rela-

tive frequency leads to measures with no perceptible relationship to expansion performance

since it compares the two models primarily on generic and commonly occurring terms.

To choose important terms, we use the top T terms in contribution to the clarity score of

Model A. We compute score of each term as

contrib(w) = P(w) ∗ Log2

P(w)

P(w|coll)
, (10)

and take the T highest terms. These contributions measure how unusual a terms’ usage is in

the ranked list relative to generic language of the collections and are a suitable measure of

importance.

The top T terms are all given weight 1 and all other terms are given weight zero. Relative

insensitivity to the value of T as long as it is in the range 5 to 50 is observed in testing

over TREC 1 + 2 + 3, 5, 6, 7, 8, and aggregate Query Track. Query terms (after stopping)

generally are chosen as important terms, but are given the same weight in the comparison as

other important terms in the model of the unexpanded ranked list.

The comparison is sensitive to the choice of weights and we tried several other alternatives.

Methods basing importance on term probability, weight generic common terms too highly,

and methods basing a term’s clarity contribution seem to make poor choices of relative

weights. Choosing a fixed number of top terms by their clarity contribution and weighting

them all evenly is our best performing method.

Combining these consideration gives a model comparison score as

comparison score =
∑
w∈τ

P(w|A) log2

P(w|A)

P(w|B)
, (11)

where w represents a term, A represents the ranked list relevance model of the unexpanded

results, and B represents the same for the expanded results, and τ represents the set of T top

terms.

Interpreting Eq. (11), the model comparison score is an expectation of the difference in

log probabilities for the important unexpanded terms in models of the two ranked lists. It is an
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Fig. 11 A scatter plot of � average precision and model comparison scores for TREC 8

average (under the A distribution) of Log2 P(w|A) − Log2 P(w|B) when w is each of these

important terms. Thus a high and positive value indicates that the important terms are used

much less frequently in the in the expanded model. This often indicates an expansion that

has strayed from the original sense of the query. A negative score indicates that the expanded

retrieval uses the important terms more frequently, which often indicates a good result, and

a score of zero means the two ranked lists use the terms evenly.

8.3. Model comparison scores and delta average precision

The average precision change (improvement) versus model comparison score is shown in

Fig. 11 for the 50 queries of TREC 8 Ad Hoc Track, with extreme examples labeled. One

can see that extremely high scores are an indicator that the expansion may be performing

poorly and high magnitude negative scores are indeed an indication that expansion may be

performing well. The very high scores are well separated from the other queries’ scores.

An automatic threshold set to be above 95% of randomly sampled one term queries from

the vocabulary is shown.4 Different thresholds were tried an our system performed best

when the threshold was set high, so that queries with a higher comparison score were as

likely as possible to have negative delta average precision. This threshold also suits the task

of improving retrieval consistency by avoiding a small proportion of bad expansion.

Examining extreme cases sheds some light on these results. Of three highest scoring

queries in TREC 8, all three perform poorly on expansion. There are no good-to-expand

queries with positive scores close to these scores, suggesting that automatic decisions are a

possibility (the lowest scoring of the three is nearly 2 times as highly scoring as the next nearest

query). Also, the two lowest scoring queries (“tourists, violence” and “women clergy”) do

perform very well on expansion.

4 Computed the analogous way to clarity score thresholds.
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Table 10 Selective mean
average precision with estimated
Bayes optimum thresholds

Rel Perfect

TREC Queries model Model comp choice

1 + 2 + 3 51–150 title 0.2490 ident 0.2589

5 251–300 title 0.1609 0.1644(∗) 0.1837

6 301–350 title 0.2013 0.2115(∗) 0.2468

7 351–400 title 0.2524 0.2212 0.2711

8 401–450 title 0.2715 0.2756(∗) 0.3011

Agg QT 51–100: 1804 var 0.2219 0.2188 0.2387

There are bad-to-expand queries, however, that the method fails to detect. One is

“Milosevic, Mirjana Markovitch” where the TREC topic indicates that a document must

refer to some variant of Mirjana Markovitch’s name to be relevant. The name, however, is

drowned out by other important terms that occur more frequently in the expanded results,

producing a low comparison score. This is despite the fact that the expanded results do not use

the name as much and are hence irrelevant, leading to a highly negative improvement. The

other missed prediction is “Legionaires’ disease” where documents can contain the terms “le-

gionaire” (meaning soldier) and “disease” (and related words) yet not be about Legionaires’

disease, leading to a low comparison score despite its bad-to-expand status.

8.4. Decisions using model comparison scores

The decision we wish to make for each query is whether or not to use the expanded results or

drop them and use the unexpanded results. In this section we are concerned with implementing

this selective query expansion method.

Table 10 shows the comparison of the mean average precision for three retrieval methods.

The column “Relevance Model” shows results using relevance model retrieval for all queries.

The column “Perfect Choice” uses the relevance information and chooses expansion only

when it performs better. “Model Comp” is our selective query expansion procedure with a

95% threshold to decide not to expand a given query. The mean average precision marked

“(*)” are higher than using relevance model retrieval for every query, indicating our method

helps more than it hurts, on average, for these test sets.

Table 11 shows the breakdown of how queries higher than the threshold perform in

tests of our selective query expansion method. The threshold is set to a model comparison

score that exceeds 95% of one-term queries. Above-threshold queries are divided into three

Table 11 Breakdown of
above-95%-threshold query
performance for selective query
expansion

Above threshold
Rel

Collection model Model comp Good Neut Bad

TREC 5 0.1609 0.1621 0 2 1

TREC 6 0.2013 0.2197 0 3 3

TREC 8 0.2715 0.2812 0 0 3

TREC 1 + 2 + 3 0.2490 0.2451 1 0 0

TREC 7 0.2524 0.2394 2 1 1

QT agg 0.2219 0.2217 13 32 11
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performance classes: “good” where �, the improvement, is greater than 0.05, “neut” where

−0.05 < � < 0.05, and “bad” where � < −0.05. The method is successful in collections

above the line and unsuccessful in collection below the line. We do not expect to see large

mean average precision improvements since the method is tuned to detect a small percentage

of queries that perform very poorly on expansion. For certain collections (e.g. TREC 5, 6, 8),

the effect of the method with this high automatic thresholding is quite good: all the queries

above threshold are indeed bad to expand or neutral, hence some poor expansions are avoided.

For these collections, more consistency in retrieval results is obtained.

Two of the failures of the model comparison method with automatic thresholding (below

the line in 11) can be analyzed. In TREC 7, there are only 3 very bad-to-expand queries

(� < 0.1) using relevance model retrieval for expansion. Here the method is given very

little room to improve the retrieval. In the case of the aggregate Query Track, the queries

exhibit a high degree of variability. Queries range from titles to long natural language queries

(Buckley, 2000). We speculate that this variability makes the application of our method more

difficult.

9. Relationship to other work

9.1. Query performance prediction

Prediction of query performance has long been of interest in information retrieval, though

early attempts met with little success. The work of Cronen-Townsend et al. (2002) demon-

strated some of the first success at addressing this challenge.

A variety of work explores similar issues with a different focus. In work on automatic

query expansion, Carpineto et al. (2001) use a weight similar to individual term contributions

to the clarity score of a query (as shown in Fig. 1, for example) to rank and weight terms

within Rocchio query expansion. Pirkola and Jarvelin (2001) also focus on automatic query

expansion and examine individual term contributions to the retrieval effectiveness of queries.

They have success in using collection statistics to identify the most important query term

when there is no information as to the actual relevance of the documents to the query. Sullivan

(2001), in seeking to model the difficulty of questions, models long question text directly

and compares questions with an existing set of questions whose effectiveness at retrieving

relevant documents (when viewed as information retrieval-style queries) has been measured.

Rorvig (2000) speculates about using the dispersion of the top documents as a measure of

query difficulty. The idea is only tested averaged over all queries in a test set and averaged

over systems, a large difference from our measure on individual queries with respect to a

collection.

Recently, the Robust Track was proposed in TREC to investigate poorly-performing

queries Voorhees (2003). Amati et al. (2003) proposed a related measure to the clarity score

of a query to capture query difficulty in this context.

9.2. Clarity scores in other research

The initial studies of clarity scores in predicting document retrieval performance (Cronen-

Townsend and Croft, 2002) and quantifying query ambiguity (Cronen-Townsend and Croft,

2002) have led to various interesting applications. Clarity scores have been used to im-

prove performance in the link detection task in topic detection and tracking (Lavrenko et al.,

2002) by modifying the measure of similarity of two documents. The method judges two
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document models as more similar if they are also far from general English usage, in addition

to using words comparably to each other. Clarity scores have also been used to evaluate

an ambiguity reduction technique by Allan and Raghavan (2002). Turpin and Hersh (2004)

failed to find a correlation between clarity scores and user performance in the TREC In-

teractive Track and Diaz and Jones (2004) extended clarity scores to include time features.

Brants et al. (2002) uses clarity scores in document segmentation. Shah and Croft (2004)

use the clarity score contributions of query terms to select terms to expanded with WordNet,

boosting a query’s ability to get a the first relevant document in the ranked list as high as

possible.

9.3. Predicting query expansion

Automatic query expansion techniques have been researched extensively, for example

(Robertson, 1984; Buckley et al., 1994; Xu and Croft, 2000; Lavrenko and Croft, 2003).

The degree to which the techniques can lead to very poor performances for some queries

is a recognized issue in these studies. There also has been much work (Buckley and Salton

(1995) for example) on using user feedback to improve retrieval ranked lists. Such systems

can suffer from the same sort of straying from the original sense of the query as automatic

expansion systems, and are candidates for the use of techniques, such as ours, designed to

detect such straying. We know of no published works on predicting or sensing automatically

when such techniques fail and see our work as a small step in that direction.

10. Conclusions

We have extended the original clarity score method in important ways, including more careful

attention to smoothing which gives significant improvements in the correlation between

clarity scores and document retrieval performance. Further extensions of the original method

include ranked list clarity scores and query term weighting. The first provides additional

correlation in difficult test sets, and the second provides further increases in correlation,

though automatically thresholding weighted scores remains an unsolved problem. The basic

correlation has been shown to apply in passage question answering as well for a variety of

data sets. Clarity scores are a potentially useful tool for information retrieval researchers and

system designers.

As an additional application of these techniques, a novel framework is introduced for

predicting query expansion failures. Since this method is based on ranked list language

models it may be applied to any choice between retrieval methods. Though it provides only

the first steps of a solution to a very difficult problem in information retrieval, we believe this

framework can be built upon by other researchers. Through the use of clarity score techniques,

retrieval methods can begin to be chosen individually and automatically for each query. We

believe that this sort of approach provides a promising avenue for enhancing information

retrieval systems.
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