Inf Retrieval (2007) 10:1-33
DOI 10.1007/s10791-006-9001-9

Lightweight natural language text compression

Nieves R. Brisaboa - Antonio Fariia -
Gonzalo Navarro - José R. Parama

Received: 6 September 2005 / Accepted: 31 March 2006 / Published online: 9 September 2006
© Springer Science + Business Media, LLC 2006

Abstract Variants of Huffman codes where words are taken as the source symbols are cur-
rently the most attractive choices to compress natural language text databases. In particular,
Tagged Huffman Code by Moura et al. offers fast direct searching on the compressed text and
random access capabilities, in exchange for producing around 11% larger compressed files.
This work describes End-Tagged Dense Code and (s, ¢)-Dense Code, two new semistatic
statistical methods for compressing natural language texts. These techniques permit simpler
and faster encoding and obtain better compression ratios than Tagged Huffman Code, while
maintaining its fast direct search and random access capabilities. We show that Dense Codes
improve Tagged Huffman Code compression ratio by about 10%, reaching only 0.6% over-
head over the optimal Huffman compression ratio. Being simpler, Dense Codes are generated
45% to 60% faster than Huffman codes. This makes Dense Codes a very attractive alternative
to Huffman code variants for various reasons: they are simpler to program, faster to build, of
almost optimal size, and as fast and easy to search as the best Huffman variants, which are
not so close to the optimal size.

Keywords Text databases - Natural language text compression - Searching compressed text

N. R. Brisaboa (<)) A. Farifia- J. R. Parama

Database Lab., Univ. da Coruiia, Facultade de Informatica,
Campus de Elviia s/n, 15071 A Coruiia, Spain

e-mail: brisaboa@udc.es

A. Farifia
e-mail: fari@udc.es

J. R. Parama
e-mail: parama@udc.es

G. Navarro

Center for Web Research, Dept. of Computer Science,
Univ. de Chile, Blanco Encalada 2120, Santiago, Chile
e-mail: gnavarro@dcc.uchile.cl

@ Springer

2 Inf Retrieval (2007) 10:1-33

1. Introduction

Text compression (Bell et al., 1990) permits representing a document using less space.
This is useful not only to save disk space, but more importantly, to save disk transfer and
network transmission time. In recent years, compression techniques especially designed
for natural language texts have not only proven extremely effective (with compression ra-
tios! around 25%-35%), but also permitted searching the compressed text much faster (up
to 8 times) than the original text (Turpin and Moffat, 1997; Moura et al., 1998, 2000).
The integration of compression and indexing techniques (Witten et al., 1999; Navarro
et al., 2000; Ziviani et al., 2000) opened the door to compressed text databases, where
texts and indexes are manipulated directly in compressed form, thus saving both time and
space.

Not every compression method is suitable for a compressed text database. The compressed
text should satisfy three basic conditions: (1) it can be directly accessed at random positions,
(2) it can be decompressed fast, and (3) it can be searched fast. The rationale of conditions (1)
and (2) is pretty obvious, as one wishes to display individual documents to final users without
need of decompressing the whole text collection preceding it. Moreover, in many cases it is
necessary to display only a snippet of the text around an occurrence position, and thus it must
be possible to start decompression from any position of the compressed text, not only from
the beginning of a document or even from the beginning of a codeword. Condition (3) could
be unnecessary if an inverted index pointing to all text words were available, yet such indexes
take up significant extra space (Baeza- Yates and Ribeiro-Neto, 1999). Alternatively, one can
use inverted indexes pointing to whole documents, which are still able of solving one-word
queries without accessing the text. Yet, more complex queries such as phrase and proximity
queries will require some direct text processing in order to filter out documents containing all
the query terms in the wrong order. Moreover, some space-time tradeoffs in inverted indexes
are based on grouping documents into blocks, and therefore sequential scanning is necessary
even on single-word queries (Manber and Wu, 1994; Navarro et al., 2000). Although partial
decompression followed by searching is a solution, direct search of the compressed text is
much more efficient (Ziviani et al., 2000).

Classic compression techniques are generally unattractive for compressing text databases.
For example, the well-known algorithms of Ziv and Lempel (1977, 1978) permit searching
the text directly, without decompressing it, in half the time necessary for decompression
(Navarro and Tarhio, 2000, 2005). Yet, as any other adaptive compression technique, it
does not permit direct random access to the compressed text, thus failing on Condition
(1). Semistatic techniques are necessary to ensure that the decoder can start working from
any point of the compressed text without having seen all the previous text. Semistatic
techniques also permit fast direct search of the compressed text, by (essentially) com-
pressing the pattern and searching for it in the compressed text. This does not work on
adaptive methods, as the pattern does not appear in the same form across the compressed
text.

Classic semistatic compression methods, however, are not entirely satisfactory either. For
example, the Huffman (1952) code offers direct random access from codeword beginnings and
decent decompression and direct search speeds (Miyazaki et al., 1998), yet the compression
ratio of the Huffman code on natural language is poor (around 65%).

! The size of the compressed file as a percentage of the original size.

@ Springer

Inf Retrieval (2007) 10:1-33 3

The key to the success of natural language compressed text databases is the use of a
semistatic word-based model by Moffat (1989), so that the text is regarded as a sequence
of words (and separators). A word-based Huffman code (Turpin and Moffat, 1997), where
codewords are sequences of bits, achieves 25% of compression ratio, although decompression
and search are not so fast because of the need of bit-wise manipulations. A byte-oriented word-
based Huffman code, called Plain Huffman Code (PHC) by Moura et al. (2000), eliminates
this problem by using 256-ary Huffman trees, so that codewords are sequences of bytes. As a
result, decompression and search are faster, although compression ratios rise to 30%. As the
compression ratio is still attractive, they also propose Tagged Huffinan Code (THC), whose
compression ratio is around 35% but permits much faster Boyer-Moore-type search directly
in the compressed text, as well as decompression from any point of the compressed file (even
if not codeword-aligned).

In this paper, we improve the existing tradeoffs on word-based semistatic compression,
presenting two new compression techniques that allow direct searching and direct access
to the compressed text. Roughly, we achieve the same search performance and capabili-
ties of Tagged Huffman Code, combined with compression ratios similar to those of Plain
Huffman Code. Our techniques have the additional attractiveness of being very simple to
program.

We first introduce End-Tagged Dense Code (ETDC), a compression technique that allows
(i) efficient decompression of arbitrary portions of the text (direct access), and (ii) efficient
Boyer-Moore-type search directly on the compressed text, just as in Tagged Huffman Code.
End-Tagged Dense Code improves both Huffman codes in encoding/decoding speed. It also
improves Tagged Huffman Code in compression ratio, while retaining similar search time
and capabilities.

We then present (s,c)-Dense Code (SCDC), a generalization of End-Tagged Dense Code
which achieves better compression ratios while retaining all the search capabilities of End-
Tagged Dense Code. (s,c)-Dense Code poses only a negligible overhead over the optimal?
compression ratio reached by Plain Huffman Code.

Partial early versions of this paper were presented in Brisaboa et al. (2003a,b) and Farifia
(2005).

The outline of this paper is as follows. Section 2 starts with some related work. Section 3
presents our first technique, End-Tagged Dense Code. Next, Section 4 introduces the second
technique, (s, ¢)-Dense Code. Encoding, decoding, and search algorithms for both compres-
sion techniques are presented in Section 5. Section 6 is devoted to empirical results. Finally,
Section 7 gives our conclusions and future work directions.

2. Related work

Text compression (Bell et al., 1990) consists of representing a sequence of characters
using fewer bits than its original representation. The text is seen as a sequence of source
symbols (characters, words, etc.). For the reasons we have explained, we are interested in
semistatic methods, where each source symbol is assigned a codeword (that is, a sequence
of target symbols), and this assignment does not change across the compression process.
The compressed text is then the sequence of codewords assigned to its source symbols. The
function that assigns a codeword to each source symbol is called a code. Among the possible

2 Optimal among all semistatic prefix-free byte-oriented codes.

@ Springer

4 Inf Retrieval (2007) 10:1-33

codes, prefix codes are preferable in most cases. A prefix code guarantees that no codeword
is a prefix of another, thus permitting decoding a codeword right after it is read (hence the
alternative name instantaneous code).

The Huffman (1952) code is the optimal (shortest total length) prefix code for any fre-
quency distribution. It has been traditionally applied to text compression by considering
characters as source symbols and bits as the target symbols. On natural language texts, this
yields poor compression ratios (around 65%). The key idea to the success of semistatic com-
pression on natural language text databases was to consider words as the source symbols
(Moffat, 1989) (as well as separators, defined as maximal text substrings among consecu-
tive words). The distribution of words in natural language is much more skewed than that
of characters, following a Zipf Law (that is, the frequency of the i-th most frequent word
is proportional to 1 /i?, for some 1 <0 <2 (Zipf, 1949; Baeza-Yates and Ribeiro-Neto,
1999)), and the separators are even more skewed. As a result, compression ratios get around
25%, which is close to what can be obtained with any other compression method (Bell et al.,
1990). The price of having a larger set of source symbols (which semistatic methods must
encode together with the compressed text) is not significant on large text collections, as the
vocabulary grows slowly (O(N#) symbols on a text of N words, for some 8 & 0.5, by Heaps
Law (Heaps, 1978; Baeza-Yates and Ribeiro-Neto, 1999)).

This solution is acceptable for compressed text databases. With respect to searching those
Huffman codes, essentially one can compress the pattern and search the text for it (Turpin
and Moffat, 1997; Miyazaki et al., 1998). However, it is necessary to process the text bits se-
quentially in order to avoid false matches. Those occur because the compressed pattern might
appear in a text not aligned to any codeword, that is, the concatenation of two codewords
might contain the pattern bit string, yet the pattern is not in the text. A sequential processing
ensures that the search is aware of the codeword beginnings and thus false matches are
avoided.

With such a large source vocabulary, it makes sense to have a larger target alphabet.
The use of bytes as target symbols was explored by Moura et al. (2000), who proposed
two byte-oriented word-based Huffman codes as a way to speed up the processing of the
compressed text.

The first, Plain Huffman Code (PHC), is no more than a Huffman code where the source
symbols are the text words and separators, and the target symbols are bytes. This obtains
compression ratios close to 30% on natural language, a 5% of overhead with respect the
word-based approach of Moffat (1989), where the target symbols are bits. In exchange,
decompression and in general traversal of the compressed text is around 30% faster with
Plain Huffman Code, as no bit manipulations are necessary (Moura et al., 2000). This is
highly valuable in a compressed text database scenario.

The second code, Tagged Huffiman Code (THC), is similar except that it uses the highest
bit of each byte to signal the first byte of each codeword. Hence, only 7 bits of each byte are
used for the Huffman code. Note that the use of a Huffman code over the remaining 7 bits
is mandatory, as the flag is not useful by itself to make the code a prefix code. Compared to
Plain Huffman Code, Tagged Huffman Code produces a compressed text around 11% longer
reaching 35% of compression ratio.

There are two important advantages to justify this choice in a compressed text database
scenario. First, Tagged Huffman Code can be accessed at any position for decompression,
even in the middle of a codeword. The flag bit permits easy synchronization to the next or
previous codeword. Plain Huffman Code, on the other hand, can start decompression only
from codeword beginnings. Second, a text compressed with Tagged Huffman Code can be
searched efficiently, by just compressing the pattern word or phrase and then running any

@ Springer

Inf Retrieval (2007) 10:1-33 5

classical string matching algorithm for the compressed pattern on the compressed text. In
particular, one can use those algorithms able of skipping characters (Boyer and Moore, 1977;
Navarro and Raffinot, 2002). This is not possible with Plain Huffman Code, because of the
false matches problem. On Tagged Huffman Code false matches are impossible thanks to the
flag bits.

It is interesting to point out some approaches that attempt to deal with the false matches
problem without scanning every target symbol. The idea is to find a synchronization point,
that is, a position in the compressed text where it is sure that a codeword starts. Recently,
Klein and Shapira (2005) proposed that once a match of the search pattern is found at position
i, a decoding algorithm would start at position i — K, being K a constant. It is likely that
the algorithm synchronizes itself with the beginning of a codeword before it reaches again
position i. However, false matches may still appear, and the paper analyzes the probability
of reporting them as true matches.

Another alternative, proposed by Moura et al. (2000), is to align the codeword beginnings
to block boundaries of B bytes. That is, no codeword is permitted to cross a B-byte boundary
and thus one can start decompression at any point by going back to the last position multiple
of B. This way, one can search using any string matching algorithm, and then has to rule out
false matches by retraversing the blocks where matches have been found, in order to ensure
that those are codeword-aligned. They report best results with B = 256, where they pay a
space overhead of 0.78% over Plain Huffman Code and a search time overhead of 7% over
Tagged Huffman Code.

Moura et al. (2000) finally show how more complex searches can be carried out. For
example, complex patterns that match a single word are first searched for in the vocabulary,
and then a multipattern search for all the codewords of the matching vocabulary words is
carried out on the text. Sequences of complex patterns can match phrases following the same
idea. It is also possible to perform more complex searches, such as approximate matching
at the word level (that is, search for a phrase permitting at most k insertions, deletions,
replacements, or transpositions of words). Overall, the compressed text not only takes less
space than the original text, but it is also searched 2 to 8 times faster.

The combination of this compressed text with compressed indexes (Witten et al., 1999;
Navarro et al., 2000) opens the door to compressed text databases where the text is always in
compressed form, being decompressed only for presentation purposes (Ziviani et al., 2000).

Huffman coding is a statistical method, in the sense that the codeword assignment is done
according to the frequencies of source symbols. There are also some so-called substitution
methods suitable for compressed text databases. The earliest usage of a substitution method
for direct searching we know of was proposed by Manber (1997), yet its compression ratios
were poor (around 70%). This encoding was a simplified variant of Byte-Pair Encoding (BPE)
(Gage, 1994). BPE is a multi-pass method based on finding frequent pairs of consecutive
source symbols and replacing them by a fresh source symbol. On natural language text, it
obtains a poor compression ratio (around 50%), but its word-based version is much better,
achieving compression ratios around 25%-30% (Wan, 2003). It has been shown how to
search the character-based version of BPE with competitive performance (Shibata et al.,
2000; Takeda et al., 2001), and it is likely that the word-based version can be searched as
well. Yet, the major emphasis in the word-based version has been the possibility of browsing
over the frequent phrases of the text collection (Wan, 2003).

Other methods with competitive compression ratios on natural language text, yet
unable of searching the compressed text faster than the uncompressed text, include
Ziv-Lempel compression (Ziv and Lempel, 1977, 1978) (implemented for example in
Gnu gzip), Burrows-Wheeler compression (Burrows and Wheeler, 1994) (implemented for

@ Springer

6 Inf Retrieval (2007) 10:1-33

example in Seward’s bzip2), and statistical modeling with arithmetic coding (Carpinelli et al.,
1999).

3. End-Tagged Dense Code

We obtain End-Tagged Dense Code (ETDC) by a simple change to Tagged Huffman Code
(Moura et al., 2000). Instead of using the highest bit to signal the beginning of a codeword,
it is used to signal the end of a codeword. That is, the highest bit of codeword bytes is 1 for
the last byte (not the first) and O for the others.

This change has surprising consequences. Now the flag bit is enough to ensure that the
code is a prefix code regardless of the content of the other 7 bits of each byte. To see this,
consider two codewords X and Y, where X is shorter than Y (| X| < |Y|). X cannot be a prefix
of Y because the last byte of X has its flag bit set to 1, whereas the | X |-th byte of Y has its flag
bit set to 0. Thanks to this change, there is no need at all to use Huffman coding in order to
ensure a prefix code. Rather, all possible combinations can be used over the remaining 7 bits
of each byte, producing a dense encoding. This is the key to improve the compression ratio
achieved by Tagged Huffman Code, which has to avoid some values of these 7 bits in each
byte, since such values are prefixes of other codewords (remember that the tag bit of THC is
not enough to produce a prefix code, and hence a Huffman coding over the remaining 7 bits
is mandatory in order to maintain a prefix code). Thus, ETDC yields a better compression
ratio than Tagged Huffman Code while keeping all its good searching and decompression
capabilities. On the other hand, ETDC is easier to build and faster in both compression and
decompression.

Example 1. Assume we have a text with a vocabulary of ten words and that we compress it
with target symbols of three bits. Observe in Table 1 the fourth most frequent symbol. Using
THC, the target symbol 111 cannot be used as a codeword by itself since it is a prefix of other
codewords. However, ETDC can use symbol 111 as a codeword, since it cannot be a prefix
of any other codeword due to the flag bit. The same happens with the seventh most frequent
word in THC: The target symbols 111 011 cannot be used as a codeword, as again they are
reserved as a prefix of other codewords.

In general, ETDC can be defined over target symbols of b bits, although in this paper we
focus on the byte-oriented version where b = 8. ETDC is formally defined as follows.

Table 1 Comparative example

among ETDC and THC, for Rank ETDC THC
b=3
1 100 100
2 101 101
3 110 110
4 111 111 000
5 000100 111001
6 000101 111010
7 000110 111011 000
8 000111 111011001
9 001100 111011010
10 001 101 111011011

@ Springer

Inf Retrieval (2007) 10:1-33 7

Definition 1. The b-ary End-Tagged Dense Code assigns to the i-th most frequent source
symbol (starting with i = 0), a codeword of k digits in base 2°, where
2(b—1)(k—l) —1 2(b—l)k -1
b—1 . b-1
2 T— <i<?2 T

i—20-1 % in base 2¢~!
(most to least significant digit), and we add 2°~! to the least significant digit (that is, the last
digit).

Those k digits are filled with the representation of number

That s, for b = 8, the first word (i = 0) is encoded as 10000000, the second as 10000001,
until the 128th as 11111111. The 129th word is encoded as 00000000:10000000, 130th as
00000000:10000001 and so on until the (128> + 128)th word 01111111:11111111.

The number of words encoded with 1, 2, 3, etc., bytes is fixed (specifically 128, 1282,
1283 and so on). Definition 1 gives the formula for the change points in codeword lengths

. h—1 2b—=Dk=1_q
(ranks i = 277" S=5——).

Note that the code depends on the rank of the words, not on their actual frequency. That is,
if we have four words A, B, C, D (ranked 1 to 4) with frequencies 0.36, 0.22, 0.22, and 0.20,
respectively, then the code will be the same as if their frequencies were 0.9, 0.09, 0.009, and
0.001. As aresult, only the sorted vocabulary must be stored with the compressed text for the
decompressor to rebuild the model. Therefore, the vocabulary will be basically of the same
size as in the case of Huffman codes, yet Huffman codes need some extra information about the
shape of the Huffman tree (which is nevertheless negligible using canonical Huffman trees).

As it can be seen in Table 2, the computation of the code is extremely simple: It is only
necessary to sort the source symbols by decreasing frequency and then sequentially assign
the codewords taking care of the flag bit. This permits the coding phase to be faster than
using Huffman, as obtaining the codewords is simpler.

On the other hand, it is also easy to assign the codeword of an isolated rank i. Following
Definition 1, itis easy to see that we can encode a rank and decode a codeword in O((logi)/b)
time. Section 5 presents those algorithms.

Table 2 Code assignment in end-tagged dense code

Word rank Codeword assigned #Bytes # Words
0 10000000 1
L. 27
27 —1=127 11111111 1
27 =128 00000000:10000000 2
256 00000001:10000000 2 2727
2727 427 —1=16511 O1111111:11111111 2
2727 +27 = 16512 00000000:00000000:10000000 3
@7

@Y +@H2+27—1 01111111:01111111:11111111 3

@ Springer

8 Inf Retrieval (2007) 10:1-33

Actually, the idea of ETDC is not new if we see it under a different light. What we are doing
is to encode the symbol frequency rank with a variable-length integer representation. The
well-known universal codes C,, C,, and C,, (Elias, 1975) also assign codewords to source
symbols in order of decreasing probability, with shorter codewords for the first positions.
Other authors proposed other codes with similar characteristics (Lakshmanan, 1981; Fraenkel
and Klein, 1996). These codes yield an average codeword length within a constant factor of
the optimal average length. Unfortunately, the constant may be too large for the code to be
preferable over one based on the probabilities such as Huffman, which is optimal but needs
to know the distribution in advance. The reason is that these codes adapt well only to some
probability distributions, which may be far away from those of our interest. More specifically,
C, is suitable when the distribution is very skewed (more than our vocabularies), while C,,
and C, behave better when no word is much more likely than any other. These codes do
not adjust well to large and moderately skewed vocabularies, as those of text databases.
Moreover, we show in Section 4 how ETDC can be adapted better to specific vocabulary
distributions.

It is possible to bound the compression performance of ETDC in terms of the text entropy
or in terms of Huffman performance. Let E;, be the average codeword length, measured in
target symbols,> using a b-ary ETDC (that is, using target symbols of b bits), and Hj, the same
using a b-ary Huffman code. As ETDC is a prefix code and Huffman is the optimal prefix
code, we have H, < E;,. On the other hand, as ETDC uses all the combinations on b — 1 bits
(leaving the other for the flag), its codeword is shorter than Hj,_;, where sequences that are
prefixes of others are forbidden. Thus H, < E, < Hj,_,. The average length of a Huffman
codeword is smaller than one target symbol over the zero-order entropy of the text (Bell et al.,
1990). Let ‘H be the zero-order entropy measured in bits. Thus, H < bH, < H + b, and the
same holds for H;,_;. We conclude that

% < Eb < b?—{j + 1.
While the first inequality is obvious, the second tells us that the average number of bits
used by a b-ary ETDC is at most bbT1 ‘H + b. It also means that E, < % H, + 1, which
upper bounds the coding inefficiency of ETDC with respect to a b-ary Huffman. Several
studies about bounds on Dense Codes and b-ary Huffman codes applied to Zipf (1949) and
Zipf-Mandelbrot (Mandelbrot, 1953) distributions can be found in Navarro and Brisaboa
(2006) and Farifia (2005).

As shown in Section 6, ETDC improves Tagged Huffman Code compression ratio by
more than 8%. Its difference with respect to Plain Huffman Code is just around 2.5%, much
less than the rough upper bound just obtained. On the other hand, the encoding time with
ETDC is just 40% below that of Plain Huffman Code, and one can search ETDC as fast as
Tagged Huffman Code.

4. (s, c)-Dense Code

Instead of thinking in terms of tag bits, End-Tagged Dense Code can be seen as using 2°~!
values, from 0 to 22! — 1, for the symbols that do not end a codeword, and using the

3 For example, if binary Huffman is used (b = 2), the target alphabet will be & = {0, 1}, while if it is byte
oriented (b = 8), the target alphabet will be ¥ = {0, ..., 255}.

@ Springer

Inf Retrieval (2007) 10:1-33 9

other 22~ ! values, from 2°~! to 22 — 1, for the last symbol of the codewords. Let us call
continuers the former values and stoppers the latter. The question that arises now is whether
that proportion between the number ¢ of continuers and s of stoppers is optimal. That is, for a
given text collection with a specific word frequency distribution, we want to use the optimal
number of continuers and stoppers. Those will probably be different from s = ¢ = 271,
Thus (s, ¢)-Dense Code is a generalization of ETDC, where any s + ¢ = 2° can be used (in
particular, the values maximizing compression). ETDC s actually a (22!, 22=1)-Dense Code.

This idea has been previously pointed out by Rautio et al. (2002). They presented an
encoding scheme using stoppers and continuers on a character-based source alphabet, yet
their goal is to have a code where searches can be efficiently performed. Their idea is to
create a code where each codeword can be split into two parts in such a way that searches
can be performed using only one part of the codewords.

Example 2 illustrates the advantages of using a variable rather than a fixed number of
stoppers and continuers.

Example 2. Assume that 5,000 distinct words compose the vocabulary of the text to compress,
and that b = 8 (byte-oriented code).

If End-Tagged Dense Code is used, that is, if the number of stoppers and continuers is
27 = 128, there will be 128 codewords of one byte, and the rest of the words would have
codewords of two bytes, since 128 + 1282 = 16, 512. That is, 16, 512 is the number of
words that can be encoded with codewords of one or two bytes. Therefore, there would be
16,512 — 5,000 = 11, 512 unused codewords of two bytes.

If the number of stoppers chosen is 230 (so the number of continuers is 256 — 230 = 26),
then 230 4 230 x 26 = 6, 210 words can be encoded with codewords of only one or two
bytes. Therefore all the 5,000 words can be assigned codewords of one or two bytes in
the following way: the 230 most frequent words are assigned one-byte codewords and the
remaining 5, 000 — 230 = 4, 770 words are assigned two-byte codewords.

It can be seen that words from 1 to 128 and words ranked from 231 to 5, 000 are assigned
codewords of the same length in both schemes. However words from 129 to 230 are assigned
to shorter codewords when using 230 stoppers instead of only 128.

This shows that it can be advantageous to adapt the number of stoppers and continuers to
the size and the word frequency distribution of the vocabulary.

4.1. Formalization

In this section, we formally define (s, c)-Dense Code and prove some of its properties.
Formally, this section contains the material of Section 3, yet we have chosen to present
ETDC first because it is more intuitively derived from the previous Tagged Huffman Code.
We start by defining (s, ¢) stop-cont codes as follows.

Definition 2. Given positive integers s and c, a (s, ¢) stop-cont code assigns to each source
symbol a unique target code formed by a sequence of zero or more digits in base ¢ (that is,
from O to ¢ — 1), terminated with a digit between c and ¢ + s — 1.

It should be clear that a stop-cont coding is just a base-c numerical representation, with
the exception that the last digit is between ¢ and ¢ + s — 1. Continuers are digits between 0
and ¢ — 1 and stoppers are digits between ¢ and ¢ + s — 1. The next property clearly follows.

@ Springer

10 Inf Retrieval (2007) 10:1-33

Property 1. Any (s, ¢) stop-cont code is a prefix code.

Proof: If one codeword were a prefix of the other, since the shorter codeword must have a
final digit of value not smaller than ¢, then the longer codeword should have an intermediate
digit which is not in base c. This is a contradiction. d

Among all possible (s, c¢) stop-cont codes for a given probability distribution, (s, ¢)-Dense
Code minimizes the average codeword length.

Definition 3. Given positive integers s and c, (s, ¢)-Dense Code ((s, ¢)-DC, or SCDC) is a
(s, c¢) stop-cont code that assigns the i-th most frequent source symbol (starting with i = 0)
to a codeword of k digits in base s + ¢ (most significant digits first), where

k=1 -1 ck—1

s — <i<s
c—1 c—1

Letx =i —s % Then, the first k — 1 digits are filled with the representation of number
Lx/s] in base ¢, and the last digit is ¢ + (x mod s).

To fix ideas, using bytes as symbols (s + ¢ = 23), the encoding process can be described
as follows:

e One-byte codewords from ¢ to ¢ + s — 1 are given to the first s words in the vocabulary.

e Words ranked from s to s + sc¢ — 1 are assigned sequentially to two-byte codewords. The
first byte of each codeword has a value in the range [0, ¢ — 1] and the second in the range
le,e+s —1].

e Words from s + sc to s 4 sc + sc? — 1 are assigned to three-byte codewords, and so on.

Table 3 summarizes this process. Next, we give an example of how codewords are assigned.

Example 3. The codewords assigned to twenty-two source symbols by a (2,6)-Dense Code
are the following (from most to least frequent symbol): (6), (7), (0,6), (0,7), (1,6), (1,7),
(2,6), (2,7), (3.6), (3.7), (4,6), (4.7), (5,6), (5,7) (0,0,6), (0,0,7), (0,1,6), (0,1,7), (0,2,6),
(0,2,7, (0,3,6), (0,3,7).

Table 3 Code assignment in

(s, ¢)-Dense Code Word rank Codeword assigned #Bytes # Words
0 [c] 1
. . s

s—1 [c+s—1] 1

s [0][c] 2

s+s—1 [0][c +s — 1] 2 sc
s+ [1][c] 2

s+sc—1 [c —1]lc+s —1] 2

s +sc [0][0][c] 3

o e sc?

s+sct+sct—1 [e=1][c=1][c+s—1] 3

@ Springer

Inf Retrieval (2007) 10:1-33 11

Notice that the code does not depend on the exact symbol probabilities, but only on their
ordering by frequency. We now prove that the dense coding is an optimal stop-cont coding.

Property 2. The average length of a (s, ¢)-Dense Code is minimal with respect to any other
(s, ¢) stop-cont code.

Proof: Let us consider an arbitrary (s, ¢) stop-cont code, and let us write all the possible
codewords in numerical order, as in Table 3, together with the source symbol they encode,
if any. Then it is clear that (i) any unused codeword in the middle could be used to represent
the source symbol with longest codeword, hence a compact assignment of target symbols is
optimal; and (ii) if a less probable source symbol with a shorter codeword is swapped with a
more probable symbol with a longer codeword then the average codeword length decreases,
