
Inf Retrieval (2007) 10:1–33

DOI 10.1007/s10791-006-9001-9

Lightweight natural language text compression

Nieves R. Brisaboa · Antonio Fariña ·
Gonzalo Navarro · José R. Paramá

Received: 6 September 2005 / Accepted: 31 March 2006 / Published online: 9 September 2006
C© Springer Science + Business Media, LLC 2006

Abstract Variants of Huffman codes where words are taken as the source symbols are cur-

rently the most attractive choices to compress natural language text databases. In particular,

Tagged Huffman Code by Moura et al. offers fast direct searching on the compressed text and

random access capabilities, in exchange for producing around 11% larger compressed files.

This work describes End-Tagged Dense Code and (s, c)-Dense Code, two new semistatic

statistical methods for compressing natural language texts. These techniques permit simpler

and faster encoding and obtain better compression ratios than Tagged Huffman Code, while

maintaining its fast direct search and random access capabilities. We show that Dense Codes

improve Tagged Huffman Code compression ratio by about 10%, reaching only 0.6% over-

head over the optimal Huffman compression ratio. Being simpler, Dense Codes are generated

45% to 60% faster than Huffman codes. This makes Dense Codes a very attractive alternative

to Huffman code variants for various reasons: they are simpler to program, faster to build, of

almost optimal size, and as fast and easy to search as the best Huffman variants, which are

not so close to the optimal size.

Keywords Text databases . Natural language text compression . Searching compressed text

N. R. Brisaboa (�)· A. Fariña· J. R. Paramá

Database Lab., Univ. da Coruña, Facultade de Informática,

Campus de Elviña s/n, 15071 A Coruña, Spain

e-mail: brisaboa@udc.es

A. Fariña

e-mail: fari@udc.es

J. R. Paramá

e-mail: parama@udc.es

G. Navarro

Center for Web Research, Dept. of Computer Science,

Univ. de Chile, Blanco Encalada 2120, Santiago, Chile

e-mail: gnavarro@dcc.uchile.cl

Springer

2 Inf Retrieval (2007) 10:1–33

1. Introduction

Text compression (Bell et al., 1990) permits representing a document using less space.

This is useful not only to save disk space, but more importantly, to save disk transfer and

network transmission time. In recent years, compression techniques especially designed

for natural language texts have not only proven extremely effective (with compression ra-

tios1 around 25%–35%), but also permitted searching the compressed text much faster (up

to 8 times) than the original text (Turpin and Moffat, 1997; Moura et al., 1998, 2000).

The integration of compression and indexing techniques (Witten et al., 1999; Navarro

et al., 2000; Ziviani et al., 2000) opened the door to compressed text databases, where

texts and indexes are manipulated directly in compressed form, thus saving both time and

space.

Not every compression method is suitable for a compressed text database. The compressed

text should satisfy three basic conditions: (1) it can be directly accessed at random positions,

(2) it can be decompressed fast, and (3) it can be searched fast. The rationale of conditions (1)

and (2) is pretty obvious, as one wishes to display individual documents to final users without

need of decompressing the whole text collection preceding it. Moreover, in many cases it is

necessary to display only a snippet of the text around an occurrence position, and thus it must

be possible to start decompression from any position of the compressed text, not only from

the beginning of a document or even from the beginning of a codeword. Condition (3) could

be unnecessary if an inverted index pointing to all text words were available, yet such indexes

take up significant extra space (Baeza-Yates and Ribeiro-Neto, 1999). Alternatively, one can

use inverted indexes pointing to whole documents, which are still able of solving one-word

queries without accessing the text. Yet, more complex queries such as phrase and proximity

queries will require some direct text processing in order to filter out documents containing all

the query terms in the wrong order. Moreover, some space-time tradeoffs in inverted indexes

are based on grouping documents into blocks, and therefore sequential scanning is necessary

even on single-word queries (Manber and Wu, 1994; Navarro et al., 2000). Although partial

decompression followed by searching is a solution, direct search of the compressed text is

much more efficient (Ziviani et al., 2000).

Classic compression techniques are generally unattractive for compressing text databases.

For example, the well-known algorithms of Ziv and Lempel (1977, 1978) permit searching

the text directly, without decompressing it, in half the time necessary for decompression

(Navarro and Tarhio, 2000, 2005). Yet, as any other adaptive compression technique, it

does not permit direct random access to the compressed text, thus failing on Condition

(1). Semistatic techniques are necessary to ensure that the decoder can start working from

any point of the compressed text without having seen all the previous text. Semistatic

techniques also permit fast direct search of the compressed text, by (essentially) com-

pressing the pattern and searching for it in the compressed text. This does not work on

adaptive methods, as the pattern does not appear in the same form across the compressed

text.

Classic semistatic compression methods, however, are not entirely satisfactory either. For

example, the Huffman (1952) code offers direct random access from codeword beginnings and

decent decompression and direct search speeds (Miyazaki et al., 1998), yet the compression

ratio of the Huffman code on natural language is poor (around 65%).

1 The size of the compressed file as a percentage of the original size.

Springer

Inf Retrieval (2007) 10:1–33 3

The key to the success of natural language compressed text databases is the use of a

semistatic word-based model by Moffat (1989), so that the text is regarded as a sequence

of words (and separators). A word-based Huffman code (Turpin and Moffat, 1997), where

codewords are sequences of bits, achieves 25% of compression ratio, although decompression

and search are not so fast because of the need of bit-wise manipulations. A byte-oriented word-

based Huffman code, called Plain Huffman Code (PHC) by Moura et al. (2000), eliminates

this problem by using 256-ary Huffman trees, so that codewords are sequences of bytes. As a

result, decompression and search are faster, although compression ratios rise to 30%. As the

compression ratio is still attractive, they also propose Tagged Huffman Code (THC), whose

compression ratio is around 35% but permits much faster Boyer-Moore-type search directly

in the compressed text, as well as decompression from any point of the compressed file (even

if not codeword-aligned).

In this paper, we improve the existing tradeoffs on word-based semistatic compression,

presenting two new compression techniques that allow direct searching and direct access

to the compressed text. Roughly, we achieve the same search performance and capabili-

ties of Tagged Huffman Code, combined with compression ratios similar to those of Plain

Huffman Code. Our techniques have the additional attractiveness of being very simple to

program.

We first introduce End-Tagged Dense Code (ETDC), a compression technique that allows

(i) efficient decompression of arbitrary portions of the text (direct access), and (ii) efficient

Boyer-Moore-type search directly on the compressed text, just as in Tagged Huffman Code.

End-Tagged Dense Code improves both Huffman codes in encoding/decoding speed. It also

improves Tagged Huffman Code in compression ratio, while retaining similar search time

and capabilities.

We then present (s,c)-Dense Code (SCDC), a generalization of End-Tagged Dense Code

which achieves better compression ratios while retaining all the search capabilities of End-

Tagged Dense Code. (s,c)-Dense Code poses only a negligible overhead over the optimal2

compression ratio reached by Plain Huffman Code.

Partial early versions of this paper were presented in Brisaboa et al. (2003a,b) and Fariña

(2005).

The outline of this paper is as follows. Section 2 starts with some related work. Section 3

presents our first technique, End-Tagged Dense Code. Next, Section 4 introduces the second

technique, (s, c)-Dense Code. Encoding, decoding, and search algorithms for both compres-

sion techniques are presented in Section 5. Section 6 is devoted to empirical results. Finally,

Section 7 gives our conclusions and future work directions.

2. Related work

Text compression (Bell et al., 1990) consists of representing a sequence of characters

using fewer bits than its original representation. The text is seen as a sequence of source
symbols (characters, words, etc.). For the reasons we have explained, we are interested in

semistatic methods, where each source symbol is assigned a codeword (that is, a sequence

of target symbols), and this assignment does not change across the compression process.

The compressed text is then the sequence of codewords assigned to its source symbols. The

function that assigns a codeword to each source symbol is called a code. Among the possible

2 Optimal among all semistatic prefix-free byte-oriented codes.

Springer

4 Inf Retrieval (2007) 10:1–33

codes, prefix codes are preferable in most cases. A prefix code guarantees that no codeword

is a prefix of another, thus permitting decoding a codeword right after it is read (hence the

alternative name instantaneous code).

The Huffman (1952) code is the optimal (shortest total length) prefix code for any fre-

quency distribution. It has been traditionally applied to text compression by considering

characters as source symbols and bits as the target symbols. On natural language texts, this

yields poor compression ratios (around 65%). The key idea to the success of semistatic com-

pression on natural language text databases was to consider words as the source symbols

(Moffat, 1989) (as well as separators, defined as maximal text substrings among consecu-

tive words). The distribution of words in natural language is much more skewed than that

of characters, following a Zipf Law (that is, the frequency of the i-th most frequent word

is proportional to 1/ i θ , for some 1 < θ < 2 (Zipf, 1949; Baeza-Yates and Ribeiro-Neto,

1999)), and the separators are even more skewed. As a result, compression ratios get around

25%, which is close to what can be obtained with any other compression method (Bell et al.,

1990). The price of having a larger set of source symbols (which semistatic methods must

encode together with the compressed text) is not significant on large text collections, as the

vocabulary grows slowly (O(Nβ) symbols on a text of N words, for some β ≈ 0.5, by Heaps

Law (Heaps, 1978; Baeza-Yates and Ribeiro-Neto, 1999)).

This solution is acceptable for compressed text databases. With respect to searching those

Huffman codes, essentially one can compress the pattern and search the text for it (Turpin

and Moffat, 1997; Miyazaki et al., 1998). However, it is necessary to process the text bits se-

quentially in order to avoid false matches. Those occur because the compressed pattern might

appear in a text not aligned to any codeword, that is, the concatenation of two codewords

might contain the pattern bit string, yet the pattern is not in the text. A sequential processing

ensures that the search is aware of the codeword beginnings and thus false matches are

avoided.

With such a large source vocabulary, it makes sense to have a larger target alphabet.

The use of bytes as target symbols was explored by Moura et al. (2000), who proposed

two byte-oriented word-based Huffman codes as a way to speed up the processing of the

compressed text.

The first, Plain Huffman Code (PHC), is no more than a Huffman code where the source

symbols are the text words and separators, and the target symbols are bytes. This obtains

compression ratios close to 30% on natural language, a 5% of overhead with respect the

word-based approach of Moffat (1989), where the target symbols are bits. In exchange,

decompression and in general traversal of the compressed text is around 30% faster with

Plain Huffman Code, as no bit manipulations are necessary (Moura et al., 2000). This is

highly valuable in a compressed text database scenario.

The second code, Tagged Huffman Code (THC), is similar except that it uses the highest

bit of each byte to signal the first byte of each codeword. Hence, only 7 bits of each byte are

used for the Huffman code. Note that the use of a Huffman code over the remaining 7 bits

is mandatory, as the flag is not useful by itself to make the code a prefix code. Compared to

Plain Huffman Code, Tagged Huffman Code produces a compressed text around 11% longer

reaching 35% of compression ratio.

There are two important advantages to justify this choice in a compressed text database

scenario. First, Tagged Huffman Code can be accessed at any position for decompression,

even in the middle of a codeword. The flag bit permits easy synchronization to the next or

previous codeword. Plain Huffman Code, on the other hand, can start decompression only

from codeword beginnings. Second, a text compressed with Tagged Huffman Code can be

searched efficiently, by just compressing the pattern word or phrase and then running any

Springer

Inf Retrieval (2007) 10:1–33 5

classical string matching algorithm for the compressed pattern on the compressed text. In

particular, one can use those algorithms able of skipping characters (Boyer and Moore, 1977;

Navarro and Raffinot, 2002). This is not possible with Plain Huffman Code, because of the

false matches problem. On Tagged Huffman Code false matches are impossible thanks to the

flag bits.

It is interesting to point out some approaches that attempt to deal with the false matches

problem without scanning every target symbol. The idea is to find a synchronization point,

that is, a position in the compressed text where it is sure that a codeword starts. Recently,

Klein and Shapira (2005) proposed that once a match of the search pattern is found at position

i , a decoding algorithm would start at position i − K , being K a constant. It is likely that

the algorithm synchronizes itself with the beginning of a codeword before it reaches again

position i . However, false matches may still appear, and the paper analyzes the probability

of reporting them as true matches.

Another alternative, proposed by Moura et al. (2000), is to align the codeword beginnings

to block boundaries of B bytes. That is, no codeword is permitted to cross a B-byte boundary

and thus one can start decompression at any point by going back to the last position multiple

of B. This way, one can search using any string matching algorithm, and then has to rule out

false matches by retraversing the blocks where matches have been found, in order to ensure

that those are codeword-aligned. They report best results with B = 256, where they pay a

space overhead of 0.78% over Plain Huffman Code and a search time overhead of 7% over

Tagged Huffman Code.

Moura et al. (2000) finally show how more complex searches can be carried out. For

example, complex patterns that match a single word are first searched for in the vocabulary,

and then a multipattern search for all the codewords of the matching vocabulary words is

carried out on the text. Sequences of complex patterns can match phrases following the same

idea. It is also possible to perform more complex searches, such as approximate matching

at the word level (that is, search for a phrase permitting at most k insertions, deletions,

replacements, or transpositions of words). Overall, the compressed text not only takes less

space than the original text, but it is also searched 2 to 8 times faster.

The combination of this compressed text with compressed indexes (Witten et al., 1999;

Navarro et al., 2000) opens the door to compressed text databases where the text is always in

compressed form, being decompressed only for presentation purposes (Ziviani et al., 2000).

Huffman coding is a statistical method, in the sense that the codeword assignment is done

according to the frequencies of source symbols. There are also some so-called substitution
methods suitable for compressed text databases. The earliest usage of a substitution method

for direct searching we know of was proposed by Manber (1997), yet its compression ratios

were poor (around 70%). This encoding was a simplified variant of Byte-Pair Encoding (BPE)

(Gage, 1994). BPE is a multi-pass method based on finding frequent pairs of consecutive

source symbols and replacing them by a fresh source symbol. On natural language text, it

obtains a poor compression ratio (around 50%), but its word-based version is much better,

achieving compression ratios around 25%–30% (Wan, 2003). It has been shown how to

search the character-based version of BPE with competitive performance (Shibata et al.,

2000; Takeda et al., 2001), and it is likely that the word-based version can be searched as

well. Yet, the major emphasis in the word-based version has been the possibility of browsing

over the frequent phrases of the text collection (Wan, 2003).

Other methods with competitive compression ratios on natural language text, yet

unable of searching the compressed text faster than the uncompressed text, include

Ziv-Lempel compression (Ziv and Lempel, 1977, 1978) (implemented for example in

Gnu gzip), Burrows-Wheeler compression (Burrows and Wheeler, 1994) (implemented for

Springer

6 Inf Retrieval (2007) 10:1–33

example in Seward’s bzip2), and statistical modeling with arithmetic coding (Carpinelli et al.,

1999).

3. End-Tagged Dense Code

We obtain End-Tagged Dense Code (ETDC) by a simple change to Tagged Huffman Code

(Moura et al., 2000). Instead of using the highest bit to signal the beginning of a codeword,

it is used to signal the end of a codeword. That is, the highest bit of codeword bytes is 1 for

the last byte (not the first) and 0 for the others.

This change has surprising consequences. Now the flag bit is enough to ensure that the

code is a prefix code regardless of the content of the other 7 bits of each byte. To see this,

consider two codewords X and Y , where X is shorter than Y (|X | < |Y |). X cannot be a prefix

of Y because the last byte of X has its flag bit set to 1, whereas the |X |-th byte of Y has its flag

bit set to 0. Thanks to this change, there is no need at all to use Huffman coding in order to

ensure a prefix code. Rather, all possible combinations can be used over the remaining 7 bits

of each byte, producing a dense encoding. This is the key to improve the compression ratio

achieved by Tagged Huffman Code, which has to avoid some values of these 7 bits in each

byte, since such values are prefixes of other codewords (remember that the tag bit of THC is

not enough to produce a prefix code, and hence a Huffman coding over the remaining 7 bits

is mandatory in order to maintain a prefix code). Thus, ETDC yields a better compression

ratio than Tagged Huffman Code while keeping all its good searching and decompression

capabilities. On the other hand, ETDC is easier to build and faster in both compression and

decompression.

Example 1. Assume we have a text with a vocabulary of ten words and that we compress it

with target symbols of three bits. Observe in Table 1 the fourth most frequent symbol. Using

THC, the target symbol 111 cannot be used as a codeword by itself since it is a prefix of other

codewords. However, ETDC can use symbol 111 as a codeword, since it cannot be a prefix

of any other codeword due to the flag bit. The same happens with the seventh most frequent

word in THC: The target symbols 111 011 cannot be used as a codeword, as again they are

reserved as a prefix of other codewords.

In general, ETDC can be defined over target symbols of b bits, although in this paper we

focus on the byte-oriented version where b = 8. ETDC is formally defined as follows.

Table 1 Comparative example

among ETDC and THC, for

b = 3

Rank ETDC THC

1 100 100

2 101 101

3 110 110

4 111 111 000

5 000 100 111 001

6 000 101 111 010

7 000 110 111 011 000

8 000 111 111 011 001

9 001 100 111 011 010

10 001 101 111 011 011

Springer

Inf Retrieval (2007) 10:1–33 7

Definition 1. The b-ary End-Tagged Dense Code assigns to the i-th most frequent source

symbol (starting with i = 0), a codeword of k digits in base 2b, where

2b−1 2(b−1)(k−1) − 1

2b−1 − 1
≤ i < 2b−1 2(b−1)k − 1

2b−1 − 1
.

Those k digits are filled with the representation of number i − 2b−1 2(b−1)(k−1)−1

2b−1−1
in base 2b−1

(most to least significant digit), and we add 2b−1 to the least significant digit (that is, the last

digit).

That is, for b = 8, the first word (i = 0) is encoded as 1
¯
0000000, the second as 1

¯
0000001,

until the 128th as 1
¯
1111111. The 129th word is encoded as 0

¯
0000000:1

¯
0000000, 130th as

0
¯
0000000:1

¯
0000001 and so on until the (1282 + 128)th word 0

¯
1111111:1

¯
1111111.

The number of words encoded with 1, 2, 3, etc., bytes is fixed (specifically 128, 1282,

1283 and so on). Definition 1 gives the formula for the change points in codeword lengths

(ranks i = 2b−1 2(b−1)(k−1)−1

2b−1−1
).

Note that the code depends on the rank of the words, not on their actual frequency. That is,

if we have four words A, B, C, D (ranked 1 to 4) with frequencies 0.36, 0.22, 0.22, and 0.20,

respectively, then the code will be the same as if their frequencies were 0.9, 0.09, 0.009, and

0.001. As a result, only the sorted vocabulary must be stored with the compressed text for the

decompressor to rebuild the model. Therefore, the vocabulary will be basically of the same

size as in the case of Huffman codes, yet Huffman codes need some extra information about the

shape of the Huffman tree (which is nevertheless negligible using canonical Huffman trees).

As it can be seen in Table 2, the computation of the code is extremely simple: It is only

necessary to sort the source symbols by decreasing frequency and then sequentially assign

the codewords taking care of the flag bit. This permits the coding phase to be faster than

using Huffman, as obtaining the codewords is simpler.

On the other hand, it is also easy to assign the codeword of an isolated rank i . Following

Definition 1, it is easy to see that we can encode a rank and decode a codeword in O((log i)/b)

time. Section 5 presents those algorithms.

Table 2 Code assignment in end-tagged dense code

Word rank Codeword assigned # Bytes # Words

0 10000000 1

· · · · · · · · · 27

27 − 1 = 127 11111111 1

27 = 128 00000000:10000000 2

· · · · · · · · ·
256 00000001:10000000 2 2727

· · · · · · · · ·
2727 + 27 − 1 = 16511 01111111:11111111 2

2727 + 27 = 16512 00000000:00000000:10000000 3

· · · · · · · · · (27)3

(27)3 + (27)2 + 27 − 1 01111111:01111111:11111111 3

· · · · · · · · ·

Springer

8 Inf Retrieval (2007) 10:1–33

Actually, the idea of ETDC is not new if we see it under a different light. What we are doing

is to encode the symbol frequency rank with a variable-length integer representation. The

well-known universal codes Cα , Cγ and Cω (Elias, 1975) also assign codewords to source

symbols in order of decreasing probability, with shorter codewords for the first positions.

Other authors proposed other codes with similar characteristics (Lakshmanan, 1981; Fraenkel

and Klein, 1996). These codes yield an average codeword length within a constant factor of

the optimal average length. Unfortunately, the constant may be too large for the code to be

preferable over one based on the probabilities such as Huffman, which is optimal but needs

to know the distribution in advance. The reason is that these codes adapt well only to some

probability distributions, which may be far away from those of our interest. More specifically,

Cα is suitable when the distribution is very skewed (more than our vocabularies), while Cγ

and Cω behave better when no word is much more likely than any other. These codes do

not adjust well to large and moderately skewed vocabularies, as those of text databases.

Moreover, we show in Section 4 how ETDC can be adapted better to specific vocabulary

distributions.

It is possible to bound the compression performance of ETDC in terms of the text entropy

or in terms of Huffman performance. Let Eb be the average codeword length, measured in

target symbols,3 using a b-ary ETDC (that is, using target symbols of b bits), and Hb the same

using a b-ary Huffman code. As ETDC is a prefix code and Huffman is the optimal prefix

code, we have Hb ≤ Eb. On the other hand, as ETDC uses all the combinations on b − 1 bits

(leaving the other for the flag), its codeword is shorter than Hb−1, where sequences that are

prefixes of others are forbidden. Thus Hb ≤ Eb ≤ Hb−1. The average length of a Huffman

codeword is smaller than one target symbol over the zero-order entropy of the text (Bell et al.,

1990). Let H be the zero-order entropy measured in bits. Thus, H ≤ bHb < H + b, and the

same holds for Hb−1. We conclude that

H
b

≤ Eb <
H

b − 1
+ 1.

While the first inequality is obvious, the second tells us that the average number of bits

used by a b-ary ETDC is at most b
b−1

H + b. It also means that Eb < b
b−1

Hb + 1, which

upper bounds the coding inefficiency of ETDC with respect to a b-ary Huffman. Several

studies about bounds on Dense Codes and b-ary Huffman codes applied to Zipf (1949) and

Zipf-Mandelbrot (Mandelbrot, 1953) distributions can be found in Navarro and Brisaboa

(2006) and Fariña (2005).

As shown in Section 6, ETDC improves Tagged Huffman Code compression ratio by

more than 8%. Its difference with respect to Plain Huffman Code is just around 2.5%, much

less than the rough upper bound just obtained. On the other hand, the encoding time with

ETDC is just 40% below that of Plain Huffman Code, and one can search ETDC as fast as

Tagged Huffman Code.

4. (s, c)-Dense Code

Instead of thinking in terms of tag bits, End-Tagged Dense Code can be seen as using 2b−1

values, from 0 to 2b−1 − 1, for the symbols that do not end a codeword, and using the

3 For example, if binary Huffman is used (b = 2), the target alphabet will be � = {0, 1}, while if it is byte

oriented (b = 8), the target alphabet will be � = {0, . . . , 255}.
Springer

Inf Retrieval (2007) 10:1–33 9

other 2b−1 values, from 2b−1 to 2b − 1, for the last symbol of the codewords. Let us call

continuers the former values and stoppers the latter. The question that arises now is whether

that proportion between the number c of continuers and s of stoppers is optimal. That is, for a

given text collection with a specific word frequency distribution, we want to use the optimal

number of continuers and stoppers. Those will probably be different from s = c = 2b−1.

Thus (s, c)-Dense Code is a generalization of ETDC, where any s + c = 2b can be used (in

particular, the values maximizing compression). ETDC is actually a (2b−1, 2b−1)-Dense Code.

This idea has been previously pointed out by Rautio et al. (2002). They presented an

encoding scheme using stoppers and continuers on a character-based source alphabet, yet

their goal is to have a code where searches can be efficiently performed. Their idea is to

create a code where each codeword can be split into two parts in such a way that searches

can be performed using only one part of the codewords.

Example 2 illustrates the advantages of using a variable rather than a fixed number of

stoppers and continuers.

Example 2. Assume that 5,000 distinct words compose the vocabulary of the text to compress,

and that b = 8 (byte-oriented code).

If End-Tagged Dense Code is used, that is, if the number of stoppers and continuers is

27 = 128, there will be 128 codewords of one byte, and the rest of the words would have

codewords of two bytes, since 128 + 1282 = 16, 512. That is, 16, 512 is the number of

words that can be encoded with codewords of one or two bytes. Therefore, there would be

16, 512 − 5, 000 = 11, 512 unused codewords of two bytes.

If the number of stoppers chosen is 230 (so the number of continuers is 256 − 230 = 26),

then 230 + 230 × 26 = 6, 210 words can be encoded with codewords of only one or two

bytes. Therefore all the 5, 000 words can be assigned codewords of one or two bytes in

the following way: the 230 most frequent words are assigned one-byte codewords and the

remaining 5, 000 − 230 = 4, 770 words are assigned two-byte codewords.

It can be seen that words from 1 to 128 and words ranked from 231 to 5, 000 are assigned

codewords of the same length in both schemes. However words from 129 to 230 are assigned

to shorter codewords when using 230 stoppers instead of only 128.

This shows that it can be advantageous to adapt the number of stoppers and continuers to

the size and the word frequency distribution of the vocabulary.

4.1. Formalization

In this section, we formally define (s, c)-Dense Code and prove some of its properties.

Formally, this section contains the material of Section 3, yet we have chosen to present

ETDC first because it is more intuitively derived from the previous Tagged Huffman Code.

We start by defining (s, c) stop-cont codes as follows.

Definition 2. Given positive integers s and c, a (s, c) stop-cont code assigns to each source

symbol a unique target code formed by a sequence of zero or more digits in base c (that is,

from 0 to c − 1), terminated with a digit between c and c + s − 1.

It should be clear that a stop-cont coding is just a base-c numerical representation, with

the exception that the last digit is between c and c + s − 1. Continuers are digits between 0

and c − 1 and stoppers are digits between c and c + s − 1. The next property clearly follows.

Springer

10 Inf Retrieval (2007) 10:1–33

Property 1. Any (s, c) stop-cont code is a prefix code.

Proof: If one codeword were a prefix of the other, since the shorter codeword must have a

final digit of value not smaller than c, then the longer codeword should have an intermediate

digit which is not in base c. This is a contradiction. �

Among all possible (s, c) stop-cont codes for a given probability distribution, (s, c)-Dense

Code minimizes the average codeword length.

Definition 3. Given positive integers s and c, (s, c)-Dense Code ((s, c)-DC, or SCDC) is a

(s, c) stop-cont code that assigns the i-th most frequent source symbol (starting with i = 0)

to a codeword of k digits in base s + c (most significant digits first), where

s
ck−1 − 1

c − 1
≤ i < s

ck − 1

c − 1

Let x = i − s ck−1−1
c−1

. Then, the first k − 1 digits are filled with the representation of number

�x/s� in base c, and the last digit is c + (x mod s).

To fix ideas, using bytes as symbols (s + c = 28), the encoding process can be described

as follows:� One-byte codewords from c to c + s − 1 are given to the first s words in the vocabulary.� Words ranked from s to s + sc − 1 are assigned sequentially to two-byte codewords. The

first byte of each codeword has a value in the range [0, c − 1] and the second in the range

[c, c + s − 1].� Words from s + sc to s + sc + sc2 − 1 are assigned to three-byte codewords, and so on.

Table 3 summarizes this process. Next, we give an example of how codewords are assigned.

Example 3. The codewords assigned to twenty-two source symbols by a (2,6)-Dense Code

are the following (from most to least frequent symbol): 〈6〉, 〈7〉, 〈0,6〉, 〈0,7〉, 〈1,6〉, 〈1,7〉,
〈2,6〉, 〈2,7〉, 〈3,6〉, 〈3,7〉, 〈4,6〉, 〈4,7〉, 〈5,6〉, 〈5,7〉 〈0,0,6〉, 〈0,0,7〉, 〈0,1,6〉, 〈0,1,7〉, 〈0,2,6〉,
〈0,2,7〉, 〈0,3,6〉, 〈0,3,7〉.
Table 3 Code assignment in

(s, c)-Dense Code Word rank Codeword assigned # Bytes # Words

0 [c] 1

· · · · · · · · · s
s − 1 [c + s − 1] 1

s [0][c] 2

· · · · · · · · ·
s + s − 1 [0][c + s − 1] 2 sc
s + s [1][c] 2

· · · · · · · · ·
s + sc − 1 [c − 1][c + s − 1] 2

s + sc [0][0][c] 3

· · · · · · · · · sc2

s + sc + sc2 − 1 [c − 1][c − 1][c + s − 1] 3

· · · · · · · · ·
Springer

Inf Retrieval (2007) 10:1–33 11

Notice that the code does not depend on the exact symbol probabilities, but only on their

ordering by frequency. We now prove that the dense coding is an optimal stop-cont coding.

Property 2. The average length of a (s, c)-Dense Code is minimal with respect to any other
(s, c) stop-cont code.

Proof: Let us consider an arbitrary (s, c) stop-cont code, and let us write all the possible

codewords in numerical order, as in Table 3, together with the source symbol they encode,

if any. Then it is clear that (i) any unused codeword in the middle could be used to represent

the source symbol with longest codeword, hence a compact assignment of target symbols is

optimal; and (ii) if a less probable source symbol with a shorter codeword is swapped with a

more probable symbol with a longer codeword then the average codeword length decreases,

and hence sorting the source symbols by decreasing frequency is optimal. �

It is now clear from Definition 3 that ETDC is a (2b−1,2b−1)-DC, and therefore (s, c)-DC

is a generalization of ETDC, where s and c can be adjusted to optimize the compression for

the distribution of frequencies and the size of the vocabulary. Moreover, (2b−1,2b−1)-DC (i.e.

ETDC) is more efficient than Tagged Huffman Code over b bits, because Tagged Huffman

Code is essentially a non-dense (2b−1,2b−1) stop-cont code, while ETDC is a (2b−1,2b−1)-

Dense Code.

Example 4. Table 4 shows the codewords assigned to a small set of words ordered by fre-

quency when using Plain Huffman Code, (6, 2)-DC; End-Tagged Dense Code (which is a

(4, 4)-DC), and Tagged Huffman Code. Digits of three bits (instead of bytes) are used for

simplicity (b = 3), and therefore s + c = 8. The last four columns present the products of the

number of bytes by the frequency of each word, and its sum (the average codeword length)

is shown in the last row.

It is easy to see that, for this example, Plain Huffman Code and the (6, 2)-Dense Code

are better than the (4, 4)-Dense Code (ETDC) and they are also better than Tagged Huffman

Code. A (6, 2)-Dense Code is better than a (4, 4)-Dense Code because it takes advantage of

the distribution of frequencies and of the number of words in the vocabulary. However the

Table 4 Comparative example among compression methods, for b = 3

Freq × bytes

Rank Word Freq PHC (6, 2)-DC ETDC THC PHC (6, 2)-DC ETDC THC

0 A 0.200 [0] [2] [4] [4] 0.20 0.20 0.20 0.20

1 B 0.200 [1] [3] [5] [5] 0.20 0.20 0.20 0.20

2 C 0.150 [2] [4] [6] [6] 0.15 0.15 0.15 0.15

3 D 0.150 [3] [5] [7] [7][0] 0.15 0.15 0.15 0.30

4 E 0.140 [4] [6] [0][4] [7][1] 0.14 0.14 0.28 0.28

5 F 0.090 [5] [7] [0][5] [7][2] 0.09 0.09 0.18 0.18

6 G 0.040 [6] [0][2] [0][6] [7][3][0] 0.04 0.08 0.08 0.12

7 H 0.020 [7][0] [0][3] [0][7] [7][3][1] 0.04 0.04 0.04 0.06

8 I 0.005 [7][1] [0][4] [1][4] [7][3][2] 0.01 0.01 0.01 0.015

9 J 0.005 [7][2] [0][5] [1][5] [7][3][3] 0.01 0.01 0.01 0.015

Average codeword length 1.03 1.07 1.30 1.52

Springer

12 Inf Retrieval (2007) 10:1–33

50 100 150 200 250

31

32

33

34

35

36

37

38

39

40

41

s value

c
o

m
p

re
s
s
io

n
 r

a
ti
o

 (
%

)

 AP

 ZIFF

Fig. 1 Compressed text sizes

and compression ratios for

different s values

values (6, 2) for s and c are not the optimal ones since a (7, 1)-Dense Code obtains, in this

example, an optimal compressed text having the same result as Plain Huffman Code.

The problem now consists of finding the s and c values (assuming a fixed b where 2b = s + c)

that minimize the size of the compressed text for a specific word frequency distribution.

4.2. Optimal s and c values

The key advantage of SCDC with respect to ETDC is the ability to use the optimal s and c
values. In all the real text corpora used in our experiments (with s + c = 28), the size of the

compressed text, as a function of s, has only one local minimum. Figure 1 shows compression

ratios and file sizes as a function of s for two real corpora, ZIFF and AP.4 It can be seen that a

unique minimum exists for each collection, at s = 198 in ZIFF and s = 189 in AP. The table

details the sizes and compression ratios when values of s close to the optimum are used.

The behavior of the curves is explained as follows. When s is very small, the number of

high frequency words encoded with one byte is also very small (s words are encoded with one

byte), but in this case c is large and therefore many words with low frequency will be encoded

4 These are two text collections from TREC-2, described in Section 6.

Springer

Inf Retrieval (2007) 10:1–33 13

Table 5 Size of compressed

text for an artificial distribution s value Avg. codeword length Compressed size (bytes)

7 1.70632 85,316

8 1.67716 83,858
9 1.67920 83,960

10 1.67900 83,950
11 1.71758 85,879

with few bytes: sc words will be encoded with two bytes, sc2 words with 3 bytes, sc3 with 4

bytes, and so on. From that point, as s grows, we gain compression in more frequent words

and lose compression in less frequent words. At some later point, the compression lost in the

last words is larger than the compression gained in words at the beginning, and therefore the

global compression ratio worsens. That point gives us the optimal s value. Moreover, Fig. 1

shows that, in practice, the compression is relatively insensitive to the exact value of s around

the optimal value.

If one assumes the existence of a unique minimum, a binary search strategy permits

computing the best s and c values in O(b) steps. At each step, we check whether we are in

the decreasing or increasing part of the curve and move towards the decreasing direction.

However, the property of the existence of a unique minimum does not always hold. An

artificial distribution with two local minima is given in Example 5.5

Example 5. Consider a text with N = 50, 000 words, and n = 5, 000 distinct words. An

artificial distribution of the probability of occurrence pi for all words 0 ≤ i < n in the text

is defined as follows:

pi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.4014 if i = 0

0.044 if i ∈ [1..9]

0.0001 if i ∈ [10..59]

0.00004 if i ∈ [60..4999]

If the text is compressed using (s, c)-Dense Code and assuming that b = 4 (therefore,

s + c = 2b = 16), the distribution of the size of the compressed text depending on the value

of s used to encode words has two local minima, at s = c = 8 and at s = 10, c = 6. This

situation can be observed in Table 5.

Therefore, a binary search does not always guarantee that we will find the optimum s
value, and a sequential search over the 2b possible values is necessary. In practice, however,

all the text collections we have considered do have a unique minimum and thus permit binary

searching for the optimum s value. Section 4.3 explains why this property is expected to hold

in all real-life text collections.

Let us consider how to find the optimum s value, either by binary or sequential search.

Assume s + c = 2b and c > 1 in the following. As sck−1 different source symbols can be

5 This contradicts our earlier assertion (Brisaboa et al., 2003b), where we mentioned the existence of a long

and complex proof of the existence of a unique minimum, which was finally flawed.

Springer

14 Inf Retrieval (2007) 10:1–33

encoded using k digits, let us call

W s
k =

k∑
j=1

sc j−1 = s
ck − 1

c − 1
(1)

(where W s
0 = 0) the number of source symbols that can be encoded with up to k digits. Let

us consider an alphabet of n source symbols, where pi is the probability of the i-th most

frequent symbol (i = 0 for the first symbol) and pi = 0 if i ≥ n. Let us also define

Pj =
j∑

i=0

pi

as the sum of pi probabilities up to j . We also need

f s
k =

W s
k −1∑

i=W s
k−1

pi = PW s
k −1 − PW s

k−1−1

the sum of probabilities of source symbols encoded with k digits by (s, c)-DC and

Fs
k =

W s
k −1∑

i=0

pi = PW s
k −1

the sum of probabilities of source symbols encoded with up to k digits by (s, c)-DC. Then,

the average codeword length, L(s, c), for (s, c)-DC is

L(s, c) =
K s∑

k=1

k f s
k =

K s∑
k=1

k
(
Fs

k − Fs
k−1

) =
K s−1∑
k=0

(k − (k + 1)) Fs
k + K s Fs

K s

= K s −
K s−1∑
k=0

Fs
k =

K s−1∑
k=0

(
1 − Fs

k

)
(2)

where K s = �logc(1 + n(c−1)

s)� is the maximum codeword length used by the code, and thus

Fs
K s = 1.

Thus, if we precompute all the sums Pj in O(n) time, we can compute L(s, c) in O(K s) =
O(logc n) time. Therefore, a binary search requires O(n + b log n) and a sequential search

requires O(n + 2b log n) time. We can assume 2b ≤ n, as otherwise all the n codewords fit

in one symbol. This makes the binary search complexity O(n), while the sequential search

complexity can be as large as O(n log n) if b is close to log n.

The case c = 1 is hardly useful in practice: W s
k = ks, K s = �n/s�, and L(s, c) is computed

in O(n) time.

4.3. Uniqueness of the minimum

As explained, only one minimum appeared in all our experiments with b = 8 and real col-

lections. In this section, we show that this is actually expected to be the case in all practical

situations. We remark that we are not going to give a proof, but just intuitive arguments of

what is expected to happen in practice.

Springer

Inf Retrieval (2007) 10:1–33 15

Table 6 Values of W s
k for 1 ≤ k ≤ 6

s W s
1 W s

2 W s
3 W s

4 W s
5 W s

6

1 1 256 65,281 16,711,681 4.E+09 1.E+17

10 10 2,470 607,630 150,082,150 4.E+10 9.E+17

20 20 4,740 1,118,660 265,117,700 6.E+10 1.E+18

30 30 6,810 1,539,090 349,366,650 8.E+10 2.E+18

40 40 8,680 1,874,920 406,849,000 9.E+10 2.E+18
50 50 10,350 2,132,150 441,344,750 9.E+10 2.E+18

60 60 11,820 2,316,780 456,393,900 9.E+10 2.E+18

70 70 13,090 2,434,810 455,296,450 8.E+10 2.E+18

80 80 14,160 2,492,240 441,112,400 8.E+10 1.E+18

90 90 15,030 2,495,070 416,661,750 7.E+10 1.E+18

100 100 15,700 2,449,300 384,524,500 6.E+10 9.E+17

110 110 16,170 2,360,930 347,040,650 5.E+10 7.E+17

120 120 16,440 2,235,960 306,310,200 4.E+10 6.E+17

127 127 16,510 2,129,917 276,872,827 4.E+10 5.E+17

128 128 16,512 2,113,664 272,646,272 3.E+10 4.E+17

129 129 16,512 2,097,153 268,419,201 3.E+10 4.E+17

130 130 16,510 2,080,390 264,193,150 3.E+10 4.E+17

140 140 16,380 1,900,220 222,309,500 3.E+10 3.E+17

150 150 16,050 1,701,450 182,039,250 2.E+10 2.E+17

160 160 15,520 1,490,080 144,522,400 1.E+10 1.E+17

170 170 14,790 1,272,110 110,658,950 1.E+10 8.E+16

180 180 13,860 1,053,540 81,108,900 6.E+09 5.E+16

190 190 12,730 840,370 56,292,250 4.E+09 2.E+16

200 200 11,400 638,600 36,389,000 2.E+09 1.E+16

210 210 9,870 454,230 21,339,150 1.E+09 5.E+10

220 220 8,140 293,260 10,842,700 390,907,660 1.E+10

230 230 6,210 161,690 4,359,650 113,662,090 3.E+09

240 240 4,080 65,520 1,110,000 17,883,120 286,314,480

250 250 1,750 10,750 73,750 460,750 2,791,750

255 255 510 765 1,275 2,040 3,060

Heaps Law (Heaps, 1978) establishes that n = O(Nβ), where n is the vocabulary size, N
the number of words in the text, and β a constant that depends on the text type and is usually

between 0.4 and 0.6 (Baeza-Yates and Ribeiro-Neto, 1999). This means that the vocabulary

grows very slowly in large text collections. In fact, in a corpus obtained by joining different

texts from TREC-2 and TREC-4 (see Section 6), which adds up to 1 gigabyte, we find only

886,190 different words. This behavior, combined with the fact that we use bytes (b = 8) as

target symbols, is the key to the uniqueness of the minimum in practice.

Table 6 shows how the W s
k (Eq. (1)) evolve, with b = 8. The maximum number of words

that can be encoded with 6 bytes is found when the value of s is around 40. In the same way,

the maximum number of words that can be encoded with 5, 4, and 3 bytes is reached when

the value of s is respectively around of 50, 60 and 90. Finally, the value of s that maximizes

the number of words encoded with 2 bytes is s = c = 128, but the number of words encoded

with just one byte grows when s is increased.

Notice that compression clearly improves, even if a huge vocabulary of 2 million words

is considered, when s increases from s = 1 until s = 128. This is because, up to s = 128,

the number of words that can be encoded with 1 byte and with 2 bytes both grow, while the

Springer

16 Inf Retrieval (2007) 10:1–33

number that can be encoded with 3 bytes stays larger than 2 million. Only larger vocabularies

can lose compression if s grows from s = 90 (where 2.5 million words can be encoded) up

to s = 128. This happens because those words that can be encoded with 3-byte codewords

for s = 90, would need 4-byte codewords when s increases. However, as it has been already

pointed out, we never obtained a vocabulary with more than 886,190 words in all the real

texts used, and that number of words is encoded with just 3 bytes with any s ≤ 187.

Therefore, in our experiments (and in most real-life collections) the space trade-off de-

pends on the sum of the probability of the words encoded with only 1 byte, against the sum

of the probability of words encoded with 2 bytes. The remaining words are always encoded

with 3 bytes.

The average codeword length for two consecutive values of s are (Eq. (2))

L(s, c) = 1 +
∑
i≥W s

1

pi +
∑
i≥W s

2

pi ,

L(s + 1, c − 1) = 1 +
∑

i≥W s+1
1

pi +
∑

i≥W s+1
2

pi .

Two different situations arise depending on whether s > c or s ≤ c. When s < c the length

L(s, c) is always greater than L(s + 1, c − 1) because the number of words that are encoded

with both 1 and 2 bytes grows when s increases. Therefore, as the value of s is increased,

compression improves until the value s = c = 128 is reached. For s values beyond s = c
(s > c), compression improves when the value s + 1 is used instead of s iff L(s + 1, c − 1) <

L(s, c), that is,

W s+1
1 −1∑

i=W s
1

pi >

W s
2 −1∑

i=W s+1
2

pi , which is ps >

s+sc−1∑
i=sc+c

pi .

For each successive value of s, ps clearly decreases. On the other hand,
∑sc+s−1

sc+c pi grows.

To see this, since the pi values are decreasing, it is sufficient to show that each interval

[W s+1
2 , W s

2 − 1] is longer than the former and it ends before the former starts (so it contains

more and higher pi values). That is: (a) W s
2 − W s+1

2 > W s−1
2 − W s

2 , and (b) W s+1
2 < W s

2 . It is

a matter of algebra to see that both hold when s ≥ c. As a consequence, once s reaches a value

such that ps ≤ ∑W s
2 −1

i=W s+1
2

pi , successive values of s will also produce a loss of compression.

Such loss of compression will increase in each successive step. Hence only one local minimum

will exist.

The argument above is valid until s is so large that more than 3 bytes are necessary for the

codewords, even with moderate vocabularies. For example, for s = 230 we will need more

than 3 bytes for n as low as 161,690, which is perfectly realistic. When this happens, we

have to take into account limits of the form W s
3 and more, which do not have the properties

(a) and (b) of W s
2 . Yet, notice that, as we move from s to s + 1, compression improves by ps

(which decreases with s) and it deteriorates because of two facts: (1) fewer words are coded

with 2 bytes; (2) fewer words are coded with k bytes, for any k ≥ 3. While factor (2) can

grow or reduce with s, factor (1) always grows because of properties (a) and (b) satisfied by

W s
2 . Soon the losses because of factor (1) are so large that the possible oscillations due to

factor (2) are completely negligible, and thus local minima do not appear anyway.

Springer

Inf Retrieval (2007) 10:1–33 17

Fig. 2 Sequential encoding process. It receives the vocabulary size n, and the (s, c) parameters, and leaves

the codewords in code

To illustrate the magnitudes we are considering, assume the text satisfies Zipf (1949)

Law with θ = 1.5, which is far lower than the values obtained in practice (Baeza-Yates

and Ribeiro-Neto, 1999). If we move from s = 230 to s + 1 = 231, compression gain is

ps < 0.00029. The loss just because of W s
2 is > 0.00042, and the other W s

k (k ≥ 3) add

almost other 0.00026 to the loss. So, no matter what happens with factor (2), factor (1) is

strong enough to ensure that compression will deteriorate for s > 230.

5. Encoding, decoding, and searching

Encoding, decoding, and searching is extremely simple in ETDC and SCDC. We give in this

section the algorithms for general SCDC. The case of ETDC can be considered as a particular

case of SCDC taking the value of s as 2b−1 (128 in our case). We will make clear where the

particular case of ETDC yields potentially more efficiency.

5.1. Encoding algorithm

Encoding is usually done in a sequential fashion as shown in Table 3, in time proportional to

the output size. Alternatively, on-the-fly encoding of individual words is also possible. Given

a word rank i , its k-byte codeword can be easily computed in O(k) = O(logc i) time.6

There is no need to store the codewords (in any form such as a tree) nor the frequencies in

the compressed file. It is enough to store the plain words sorted by frequency and the value

of s used in the compression process. Therefore, the vocabulary will be basically of the same

size as using Huffman codes and canonical trees.

Figure 2 gives the sequential encoding algorithm. It computes the codewords for all the

words in the sorted vocabulary and stores them in a vector code.

6 If c = 1, encoding takes O(i/2b) time.

Springer

18 Inf Retrieval (2007) 10:1–33

Fig. 3 On-the-fly encoding

process. It receives the word rank

i , and the (s, c) parameters, and

outputs the codewords in reverse

order

Fig. 4 On-the-fly decoding

process. It receives a codeword x ,

and the (s, c) parameters, and

returns the word rank. It is also

possible to have base
precomputed for each codeword

size

Notice that, when using ETDC, since s = c = 128, the operations mod s, mod c, div s,

div c, + c and × c can be carried out using faster bitwise operations. As shown in

Section 6.2.1, this yield better encoding times.

Figure 3 presents the on-the-fly encoding algorithm. It outputs the bytes of the codeword

one at a time from right to left, that is, the least significant bytes first.

5.2. Decoding algorithm

The first step of decompression is to load the words that compose the vocabulary to a vector.

Those are already sorted by frequency.

In order to obtain the word that corresponds to a given codeword, the decoder runs a

simple computation to obtain, from the codeword, the rank of the word i . Then it outputs the

i-th vocabulary word. Figure 4 shows the decoding algorithm. It receives a codeword x , and

iterates over each byte of x . The end of the codeword can be easily recognized because its

value is not smaller than c. After the iteration, the value i holds the relative rank of the word

among those of k bytes. Then base = W s
k−1 is added to obtain the absolute rank. Overall, a

codeword of k bytes can be decoded in O(k) = O(logc i) time.7

5.3. Searching

The essential idea of searching a semistatic code is to search the compressed text for the com-

pressed pattern P . However, some care must be exercised to make sure that the occurrences

of codeword P only correspond to whole text codewords. Specifically, we must ensure that

the following situations do not occur: (i) P matches the prefix of a text codeword A; (i i) P
matches the suffix of a text codeword A; (i i i) P matches strictly within a text codeword A;

(iv) P matches within the concatenation of two codewords A : B or more.

7 If c = 1, decoding takes O(i/2b) time.

Springer

Inf Retrieval (2007) 10:1–33 19

Case (i) cannot occur in prefix codes (such as Huffman or our Dense Codes). How-

ever, cases (i i) to (iv) can occur in Plain Huffman Code. This is why searches on

Plain Huffman Code must proceed byte-wise so as to keep track of codeword begin-

nings. Tagged Huffman Code, on the other hand, rules out the possibility of situa-

tions (i i) to (iv) thanks to the flag bit that distinguishes codeword beginnings. Hence

Tagged Huffman Code can be searched without any care using any string matching

algorithm.

End-Tagged Dense Code, on the other hand, uses the flag bit to signal the end of a

codeword. (s, c)-Dense Code does not have such a tag, yet a value ≥ c serves anyway to

distinguish the end of a codeword. It is easy to see that situations (i i i) and (iv) cannot arise

in this case, yet case (i i) is perfectly possible. This is because Dense Codes are not suffix
codes, that is, a codeword can be a suffix of another.

Yet, with a small modification, we can still use any string matching algorithm (in particular,

the Boyer-Moore family, which permits skipping text bytes). We can just run the search

algorithm without any care and, each time a matching of the whole pattern P occurs in the

text, we check whether the occurrence corresponds to a whole text codeword or to just a

suffix of a text codeword. For this sake, it is sufficient to check whether the byte preceding

the first matched byte is ≥ c or not. Figure 5 shows an example of how false matchings can

be detected (using “bytes” of three bits and ETDC). Note that Plain Huffman Code does not

permit such simple checking.

This overhead in searches is negligible because checking the previous byte is only needed

when a matching is detected, which is infrequent. As shown in Section 6.4, this small disad-

vantage with respect to Tagged Huffman Code (which is both a prefix and a suffix code) is

compensated because the size of the compressed text is smaller with Dense Codes than with

Tagged Huffman Code.

Figure 6 gives a search algorithm based on Horspool’s variant of Boyer-Moore (Horspool,

1980; Navarro and Raffinot, 2002). This algorithm is especially well suited to this case

(codewords of length at most 3–4, characters with relatively uniform distribution in

{0. . . 255}).

Fig. 5 Searching using End-Tagged Dense Code

Fig. 6 Search process using

Horspool’s algorithm. It receives

a codeword x and its length k,

parameter c, the compressed text

T to search, and its length z. It

outputs all the text positions that

start a true occurrence of x in T

Springer

20 Inf Retrieval (2007) 10:1–33

Table 7 Comparison of compression ratio among semistatic compressors. Vocabulary sizes are excluded

1 − P HC
SC DC 1 − SC DC

ET DC
Corpus Original size PHC SCDC ETDC THC (%) (%)

CALGARY 2,131,045 34.76 (197,59) 35.13 35.92 38.91 1.06 2.30

FT91 14,749,355 30.26 (193,63) 30.50 31.15 33.58 0.79 2.09

CR 51,085,545 29.21 (195,61) 29.45 30.10 32.43 0.81 2.16

FT92 175,449,235 30.49 (193,63) 30.71 31.31 34.08 0.72 1.92

ZIFF 185,220,215 31.83 (198,58) 32.02 32.72 35.33 0.59 2.14

FT93 197,586,294 30.61 (195,61) 30.81 31.49 34.30 0.65 2.16

FT94 203,783,923 30.57 (195,61) 30.77 31.46 34.28 0.65 2.19

AP 250,714,271 31.32 (189,67) 31.59 32.14 34.72 0.85 1.71

ALL FT 591,568,807 30.73 (196,60) 30.88 31.56 34.16 0.49 2.15

ALL 1,080,719,883 32.05 (188,68) 32.24 32.88 35.60 0.59 1.95

6. Empirical results

We present in this section experimental results on compression ratios, as well as speed in

compression, decompression, and searching. We used some text collections from TREC-2:8

AP Newswire 1988 (AP) and Ziff Data 1989–1990 (ZIFF); and from TREC-4: Congressional

Record 1993 (CR) and Financial Times 1991 to 1994 (FT91 to FT94). In addition, we included

the small Calgary corpus9 (CALGARY), and two larger collections: ALL FT aggregates

corpora FT91 to FT94, and ALL aggregates all our corpora.

We compressed the corpora with Plain Huffman Code (PHC), Tagged Huffman Code

(THC), our End-Tagged Dense Code (ETDC) and our (s, c)-Dense Code (SCDC), using in

all cases bytes as the target symbols (b = 8). In all cases, we defined words as maximal

contiguous sequences of letters and digits, we distinguished upper and lower case, and we

adhered to the spaceless word model (Moura et al., 2000). Under this model, words and

separators share a unique vocabulary, and single-space separators are assumed by default

and thus not encoded (i.e., two contiguous codewords representing words imply a single

space between them).

We also include comparisons against the most competitive classical compressors. These

turn out to be adaptive techniques that do not permit direct access nor competitive direct

searching, even compared to PHC. These are Gnu gzip,10 a Ziv-Lempel compressor (Ziv and

Lempel, 1977); Seward’s bzip2,11 a compressor based on the Burrows-Wheeler transform

(Burrows and Wheeler, 1994); and Moffat’s arith,12 a zero-order word-based modeler coupled

with an arithmetic coder (Carpinelli et al., 1999). Gzip and bzip2 have options -f where they

run faster, and -b, where they compress more.

6.1. Compression ratio

Table 7 shows the compression ratios obtained by the four semistatic techniques when com-

pressing the different corpora. The second column gives the original size in bytes. Columns

8 http://trec.nist.gov.

9 ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.

10 http://www.gnu.org.

11 http://www.bzip.org.

12 http://www.cs.mu.oz.au/~alistair/arith coder/.

Springer

Inf Retrieval (2007) 10:1–33 21

Table 8 Comparison of compression ratio against adaptive compressors

Corpus Original size SCDC ETDC arith gzip -f gzip -b bzip2 -f bzip2 -b

CALGARY 2,131,045 43.64 44.43 34.68 43.53 36.840 32.83 28.92

FT91 14,749,355 33.50 34.15 28.33 42.57 36.33 32.31 27.06

CR 51,085,545 30.80 31.45 26.30 39.51 33.18 29.51 24.14

FT92 175,449,235 31.68 32.28 29.82 42.59 36.38 32.37 27.09

ZIFF 185,220,215 32.92 33.62 26.36 39.66 32.98 29.64 25.11

FT93 197,586,294 31.68 32.36 27.89 40.20 34.12 30.62 25.32

FT94 203,783,923 31.54 32.23 27.86 40.24 34.12 30.54 25.27

AP 250,714,271 32.14 32.69 28.00 43.65 37.23 33.26 27.22

ALL FT 591,568,807 31.45 32.13 27.85 40.99 34.85 31.15 25.87

ALL 1,080,719,883 32.72 33.36 27.98 41.31 35.00 31.30 25.98

3 to 6 (sorted by compression performance) give the compression ratios for each method.

Column 7 shows the (small) loss of compression of SCDC with respect to PHC, and the last

column shows the difference between SCDC and ETDC. The fourth column, which refers to

SCDC, gives also the optimal (s, c) values.

We excluded the size of the compressed vocabulary in the results. This size is negligible

and similar in all cases, although a bit smaller in SCDC and ETDC because only the sorted

words are needed.

PHC obtains the best compression ratio (as expected from an optimal prefix code). ETDC

always obtains better results than THC, with an improvement of 7.7%–9.0%. SCDC improves

ETDC compression ratio by 1.7%–2.3%, and it is worse than the optimal PHC only by 0.49%–

1.06% (being 0.6% in the whole corpus ALL). Therefore, our Dense Codes retain the good

searchability and random access of THC, but their compression ratios are much closer to

those of the optimum PHC.

Table 8 compares ETDC and SCDC against adaptive compressors. This time we have

added the size of the vocabulary, which was compressed with classical (character oriented,

bit-based) Huffman. It can be seen that SCDC always compresses more than gzip -b, except

on the very small Calgary file. The improvement in compression ratio is between 7% and

14% except on the ZIFF collection. The other compressors, however, compress more than

SCDC by a margin of 6% to 24% (even excluding the short Calgary file). We remind that

these compressors do not permit local decompression nor direct search. We also show next

that they are very slow at decompression.

6.2. Compression time

In this section we compare the Dense and Plain Huffman encoding phases and measure the

code generation time. We do not include THC because it works exactly as PHC, with the

only difference of generating 2b−1-ary trees instead of 2b-ary trees as PHC. This causes some

loss in encoding speed. We also include the adaptive compressors.

The model used for compressing a corpus in our experiments is described in Fig. 7. It

consists of three phases.

1. Vocabulary extraction. The corpus is processed once in order to obtain all distinct words

in it, and their number of occurrences (n). The result is a list of pairs (word, frequency),

which is then sorted by frequency. This phase is identical for PHC, SCDC, and ETDC.

Springer

22 Inf Retrieval (2007) 10:1–33

Encoding

Vocabulary extraction

File processing

n1

Words vector

word

freq

n1n1

Increasing frequency sorting Decreasing frequency sorting

Huffman

E
T

D
C

Sequential code
generation

Creating Huffman tree Search for optimal (s,c) values

Accumulated list
of frequencies

Find Best S

Sequential code
generation

Hash table

Compression phase

To

T1

B
u
ild

tr
e

e

S
e
t
d

e
p
th

s

C
o

d
e

g
e

n
e

ra
ti
o
n

(s-c) DC

C
o

m
p

re
s
s
io

n
p

ro
c
e

s
s

word
code

Fig. 7 Vocabulary extraction and encoding phases

2. Encoding. Each vocabulary word is assigned a codeword. This process is different for

each method:

• The PHC encoding phase is the application of the Huffman technique (Moffat and

Katajainen, 1995; Moffat and Turpin, 1996; Huffman, 1952). Encoding takes O(n)

time overall.

• The SCDC encoding phase has two parts: The first computes the list of accumulated

frequencies and searches for the optimal s and c values. Its cost is O(n) in practice

(Sections 4.2 and 4.3). After obtaining the optimal s and c values, sequential encoding

is performed (Fig. 2). The overall cost is O(n).

• The encoding phase is even simpler in ETDC than in SCDC, because ETDC does not

have to search for the optimal s and c values (as they are fixed to 128). Therefore only

the sequential code generation phase is performed. It costs O(n) time overall.

In all cases, the result of the encoding section is a hash table of pairs (word, codeword).

3. Compression. The whole source text is processed again. For each source word, the com-

pression process looks for it in the hash table and outputs its corresponding codeword.

Note that both PHC and SCDC encoding phases run in linear time. However, Huffman’s

constant is in practice larger because it involves more operations than just adding up

frequencies.

Given that the vocabulary extraction phase, the process of building the hash table of pairs,

and the compression phase are identical in PHC, ETDC and SCDC, we first measure only

Springer

Inf Retrieval (2007) 10:1–33 23

Table 9 Code generation time comparison

Size ETDC SCDC PHC 1 − ET DC
SC DC 1 − SC DC

P HC
Corpus (words) n (msec) (msec) (msec) (%) (%)

CALGARY 528,611 30,995 4.233 6.150 11.133 31.165 44.760

FT91 3,135,383 75,681 11.977 15.350 26.500 21.976 42.075

CR 10,230,907 117,713 21.053 25.750 49.833 18.239 48.328

FT92 36,803,204 291,427 52.397 69.000 129.817 24.063 46.848

ZIFF 40,866,492 284,892 44.373 56.650 105.900 21.671 46.506

FT93 42,063,804 295,018 52.813 69.725 133.350 24.255 47.713

FT94 43,335,126 269,141 52.980 71.600 134.367 26.006 46.713

AP 53,349,620 237,622 50.073 64.700 121.900 22.607 46.924

ALL FT 124,971,944 577,352 103.727 142.875 260.800 27.400 45.217

ALL 229,596,845 886,190 165.417 216.225 402.875 23.498 46.330

code generation time (T1 − T0 in Fig. 7), to appreciate the speedup due to the simplicity of

Dense Codes. We then measure also the overall compression time, to assess the impact of

encoding in the whole process and to compare against adaptive compressors.

6.2.1. Encoding time

Table 9 shows the results on code generation time. A dual Intel R© pentium R© -III 800 Mhz

system, with 768 SDRAM-100 Mhz was used in our tests. It ran Debian GNU/Linux (kernel

version 2.2.19). The compiler was gcc version 2.95.2 with -O9 compiler optimizations. The

results measure encoding user time.

The second column gives the corpus size measured in words, while the third gives the

number of different words (vocabulary size). Columns 4–6 give encoding time in milliseconds

for the different techniques (from faster to slower). Column 7 measures the gain of ETDC

over SCDC, and the last the gain of SCDC over PHC.

ETDC takes advantage of its simpler encoding phase with respect to SCDC, to reduce its

encoding time by about 25%. This difference corresponds to two factors. One is that, when

using ETDC, s is 128, and then bitwise operations (as shown in Section 5.1) can be used.

Another factor is the amount of time needed to compute the optimal s and c values, which

corresponds mainly to the process of computing the vector of accumulated frequencies. With

respect to PHC, ETDC decreases the encoding time by about 60%. Code generation is always

about 45% faster for SCDC than for PHC.

Although the encoding time is in all methods O(n) under reasonable conditions, ETDC

and SCDC perform simpler operations. Computing the list of accumulated frequencies and

searching for the best (s, c) pair only involve elementary operations, while the process of

building a canonical Huffman tree has to deal with the tree structure.

6.2.2. Overall compression time

Section 6.2.1 only shows the encoding time, that is, the time to assign a codeword to each

word in the sorted vocabulary. We now consider the whole compression time. Table 10 shows

the compression times in seconds for the four techniques and for the adaptive compressors.

Observe that the two passes over the original file (one for vocabulary extraction and the

other to compress the file) take the same time with all semistatic techniques. These tasks

Springer

24 Inf Retrieval (2007) 10:1–33

Table 10 Compression time comparison (in seconds)

Corpus PHC SCDC ETDC THC arith gzip -f gzip -b bzip2 -f bzip2 -b

CALGARY 0.415 0.405 0.393 0.415 1.030 0.360 1.095 2.180 2.660

FT91 2.500 2.493 2.482 2.503 6.347 2.720 7.065 14.380 18.200

CR 7.990 7.956 7.988 8.040 21.930 8.875 25.155 48.210 65.170

FT92 29.243 29.339 29.230 29.436 80.390 34.465 84.955 166.310 221.460

ZIFF 30.354 30.620 30.368 30.725 82.720 33.550 82.470 174.670 233.250

FT93 32.915 33.031 32.783 33.203 91.057 36.805 93.135 181.720 237.750

FT94 33.874 33.717 33.763 33.700 93.467 37.500 96.115 185.107 255.220

AP 42.641 42.676 42.357 42.663 116.983 50.330 124.775 231.785 310.620

ALL FT 99.889 100.570 100.469 101.471 274.310 117.255 293.565 558.530 718.250

ALL 191.396 191.809 191.763 192.353 509.710 188.310 532.645 996.530 1,342.430

dominate the overall compression time, and blur out most of the differences in encoding

time. The differences are in all cases very small, around 1%.

It is interesting that the time to write the compressed file benefits from a more compact

encoding, as it has to write less data. Therefore, a technique with fastest encoding like ETDC

is harmed in the overall time for its extra space with respect to SCDC and PHC.

As a result, PHC is faster in the largest files, since it has to write a shorter output file.

However, in shorter files, where the size of the output file is not so different and the vocabulary

size is more significant, ETDC is faster due to its faster encoding time. SCDC is in between

and it is the fastest in some intermediate size files. THC, on the other hand, is consistently

the slowest, as it is slow at encoding and produces the largest output files.

With respect to adaptive compressors, we can see that all PHC, THC, ETDC and SCDC,

are usually 10%–20% faster than gzip (even considering its fastest mode), and 2.5–6.0

times faster than bzip2 and arith compression (only those two defeat ETDC and SCDC

compression ratios).

6.3. Decompression time

Decoding is almost identical for PHC, THC, ETDC and SCDC. Such a process starts by

loading the words of the vocabulary into a vector V . For decoding a codeword, SCDC needs

the s value used in compression, and PHC and THC also need to load two vectors: base and

first (Moffat and Katajainen, 1995). Next, the compressed text is read and each codeword

is replaced by its corresponding uncompressed word. Since it is possible to detect the end

of a codeword by using the s value in the case of SCDC (128 when ETDC is used) and

the first vector in the case of PHC and THC, decompression is performed codeword-wise.

Given a codeword C , a simple decoding algorithm obtains the position i such that V [i] is

the uncompressed word that corresponds to codeword C . The decompression process takes

O(z) time (where z is the size of the compressed text).

Table 11 gives overall decompression time in seconds for the four semistatic techniques

and for adaptive compressors. Again, in addition to the simplicity of the decoding process,

we must consider the penalty posed by codes with worse compression ratios, as they have to

process a longer input file.

We can see again that the times for PHC, THC, ETDC, and SCDC are very similar.

The differences are under 1.5 seconds even when decompressing 1 gigabyte corpora. It is

nevertheless interesting to comment upon some aspects. PHC benefits from the smaller size

of the compressed file. ETDC processes a larger file, yet it is faster than PHC in many cases

Springer

Inf Retrieval (2007) 10:1–33 25

Table 11 Decompression time comparison (in seconds)

Corpus PHC SCDC ETDC THC arith gzip -f gzip -b bzip2 -f bzip2 -b

CALGARY 0.088 0.097 0.085 0.092 0.973 0.090 0.110 0.775 0.830

FT91 0.577 0.603 0.570 0.575 5.527 0.900 0.825 4.655 5.890

CR 1.903 1.971 1.926 1.968 18.053 3.010 2.425 15.910 19.890

FT92 7.773 7.592 7.561 7.801 65.680 8.735 7.390 57.815 71.050

ZIFF 8.263 7.988 7.953 8.081 67.120 9.070 8.020 58.790 72.340

FT93 8.406 8.437 8.694 8.657 71.233 10.040 9.345 62.565 77.860

FT94 8.636 8.690 8.463 8.825 75.925 10.845 10.020 62.795 80.370

AP 11.040 11.404 11.233 11.637 88.823 15.990 13.200 81.875 103.010

ALL FT 24.798 25.118 24.500 26.280 214.180 36.295 30.430 189.905 235.370

ALL 45.699 46.698 46.352 47.156 394.067 62.485 56.510 328.240 432.390

thanks to its simpler and faster decoding. SCDC is between both in compression ratio and

decoding cost, and this is reflected in its overall decompression time, where it is never the

fastest but it is intermediate in many cases. THC is again the slowest method, as its input file

is the largest and its decoding algorithm is as slow as that of PHC.

These four compressors, on the other hand, are usually 10%–20% faster than gzip (even

using its fastest mode), and 7–9 times faster than bzip2 and arith.

6.4. Search time

As explained in Section 5.3, we can search on ETDC and SCDC using any string matching

algorithm provided we check every occurrence to determine whether it is a valid match. The

check consists of inspecting the byte preceding the occurrence (Fig. 6).

In this section, we aim at determining whether this check influences search time or not, and

in general which is the performance of searching ETDC and SCDC compared to searching

THC. Given a search pattern, we find its codeword and then search the compressed text for

it, using Horspool’s algorithm (Horspool, 1980). This algorithm is depicted in Fig. 6, where

it is adapted to ETDC and SCDC. In the case of searching THC, line (7) is just “if j < 0

output i”.

Comparing methods that encode the same word in different ways is not simple. The time

needed by Horspool’s algorithm is inversely proportional to the length of the codeword

sought. If one method encodes a word with 2 bytes and the other with 3 bytes, Horspool will

be much faster for the second method.

In our first experiment, we aim at determining the relative speed of searching ETDC,

SCDC, and THC, when codewords of the same length are sought (classical compressors are

not competitive at searching and hence left out of this experiment). In order to isolate the

length factor, we carefully chose the most and least frequent words that are assigned 1, 2,

and 3 byte codewords with the three methods simultaneously. ETDC and SCDC never had

codewords longer than 3 bytes, although THC has. We consider later the issue of searching

for “random” codewords.

Table 12 compares the search times in the ALL corpus. The first three columns give

the length of the codeword, the most and least frequent words chosen for that codeword

length, and the number of occurrences of those words in the text. The frequency of the words

is important because ETDC and SCDC must check every occurrence, but THC must not.

Columns 4–7 give the search times in seconds for the three techniques (fastest to slowest). The

last two columns give the decrease in search time of SCDC with respect to ETDC and THC.

Springer

26 Inf Retrieval (2007) 10:1–33

Table 12 Searching time comparison

SCDC ETDC THC 1 − SC DC
ET DC 1 − SC DC

T HC
Code length Word Occurrences (sec) (sec) (sec) (%) (%)

1 the 8,205,778 5.308 5.452 5.759 2.636 7.826

1 were 356,144 4.701 5.048 5.182 6.856 9.273

2 sales 88,442 2.526 2.679 2.800 5.711 9.779

2 predecessor 2,775 2.520 2.666 2.736 5.476 7.895

3 resilience 612 1.671 1.779 1.858 6.061 10.059

3 behooves 22 1.613 1.667 1.701 3.245 5.189

It can be seen that searching ETDC for a k-bytes codeword is 2%–5% faster than searching

THC. Even when searching for "the", which has one true occurrence every 42 bytes on

average, the search in ETDC is faster. This shows that the extra comparison needed in ETDC

is more than compensated by its better compression ratio (which implies that a shorter file

has to be traversed during searches). The same search algorithm gives even better results in

SCDC, because the compression ratio is significantly better. Searching SCDC is 2.5%–7%

faster than searching ETDC, and 5%–10% faster than searching THC.

Let us now consider the search for random words. As expected from Zipf (1949) Law,

a few vocabulary words account for 50% of the text words (those are usually stopwords:

articles, prepositions, etc.), and a large fraction of vocabulary words appear just a few times

in the text collection. Thus picking the words from the text and from the vocabulary is very

different. The real question is which is the distribution of searched words in text databases.

For example, stopwords are never searched for in isolation, because they bring a huge number

of occurrences and their information value is null (Baeza-Yates and Ribeiro-Neto, 1999). On

the other hand, many words that appear only once in our text collections are also irrelevant

as they are misspellings or meaningless strings, thus they will not be searched for either.

It is known that the search frequency of vocabulary words follows a Zipf distribution as

well, which is not related to that of the word occurrences in the text (Baeza-Yates and Navarro,

2004). As a rough approximation, we have followed the model (Moura et al., 2000) where

each vocabulary word is sought with uniform probability. Yet, we have discarded words

that appear only once, trying to better approximate reality. As the search and occurrence

distributions are independent, this random-vocabulary model is reasonable.

The paradox is that this model (and reality as well) favors the worst compressors. For

example, THC has many 4-byte codewords in our largest text collections, whereas ETDC

and SCDC use at most 3 bytes. On large corpora, where THC uses 4 bytes on a significant

part of the vocabulary, there is a good chance of picking a longer codeword with THC than

with ETDC and SCDC. As a result, the Horspool search for that codeword will be faster on

THC.

More formally, the Horspool search for a codeword of length m in a text of N words, for

which we achieved c bytes/word compression, costs essentially Nc/m byte comparisons.

Calling mT HC and mSC DC the average codeword lengths (of words randomly chosen from

the vocabulary) in both methods, and cT HC and cSC DC the bytes/word compressions achieved

(that is, average codeword length in the text), then searching THC costs NcT HC/mT HC and

searching SCDC costs NcSC DC/mSC DC . The ratio of search time of THC divided by SCDC is
cT HC /cSC DC

mT HC /mSC DC
. Because of Zipf Law, the ratio mT HC/mSC DC might be larger than cT HC/cSC DC ,

and thus searching THC can be faster than searching SCDC.

Table 13 shows the results of searching for (the same set of) 10,000 random vocabulary

words, giving mean and standard deviation for each method.

Springer

Inf Retrieval (2007) 10:1–33 27

Table 13 Searching for random

patterns SCDC ETDC THC

Corpus time σ time σ time σ

FT91 0.023 0.006 0.024 0.006 0.024 0.005

CR 0.072 0.015 0.073 0.016 0.077 0.012

FT92 0.250 0.038 0.257 0.044 0.267 0.046

ZIFF 0.275 0.041 0.283 0.047 0.292 0.052

FT93 0.283 0.049 0.291 0.045 0.299 0.052

FT94 0.291 0.039 0.300 0.047 0.306 0.059

AP 0.376 0.056 0.382 0.066 0.380 0.048

ALL FT 0.844 0.091 0.867 0.101 0.760 0.141

ALL 1.610 0.176 1.650 0.195 1.390 0.250

The results are as expected after the discussion. Searching THC is up to 13.7% faster

on very long text collections (ALL FT and ALL), thanks to the many 4-byte codeword

assignments it makes. On the other hand, SCDC is 5.0%–6.5% faster than THC on medium-

size text collections. Even ETDC is 2%–5% faster than THC on those texts.

The next experiment compares multi-pattern searching on a text compressed with ETDC

and SCDC against those searches on uncompressed text. To search the compressed text we

applied the Set Horspool’s algorithm (Horspool, 1980; Navarro and Raffinot, 2002), with the

small modifications needed to deal with our codes. Three different algorithms were tested to

search the uncompressed text: (i) our own implementation of the Set Horspool’s algorithm,

(ii) author’s implementation of Set Backward Oracle Matching algorithm (SBOM) (Allauzen

et al., 1999), and (iii) the agrep software (Wu and Manber, 1992a,b), a fast approximate

pattern-matching tool which allows, among other things, searching a text for multiple patterns.

Agrep searches the text and returns those chunks containing one or more searched patterns.

The default chunk is a line, as the default chunk-separator is the newline character. Once

the first search pattern is found in a chunk, agrep skips processing the remaining bytes in

the chunk. This speeds up agrep searches when a large number of patterns are searched.

However, it does not give the exact positions of all the searched patterns. To make a fairer

comparison, in our experiments, we also tried agrep with the reversed patterns, which are

unlikely to be found. This maintains essentially the same statistics of the searched patterns

and reflects better the real search cost of agrep.

By default, the search tools compared in our experiments (except agrep) run in silent
mode, and count the number of occurrences of the patterns in the text. Agrep was forced to

use these two options by setting the parameters -s -c.

Table 14 shows the average time (in seconds) needed to search for 1000 sets of random

words. To choose these sets of random words we considered the influence of the length of the

words in searches (a longer pattern is usually searched for faster) by separately considering

words of length 5, 10, or greater than 10. With respect to the number of words in each set,

we considered several values from 5 to 1000.

The results clearly show that searching compressed text is much faster than searching the

uncompressed version of the text. Only default agrep (which skips lines where patterns are

found) can improve the results of compressed searches, yet this occurs when more than 100

words are searched for and, as explained, does not reflect the real cost of a search. In the case

of agrep with reversed patterns, it is interesting to distinguish two cases: (i) Searching for
inverted patterns of length greater or equal than 10. Those inverted patterns do never occur

in the text. Therefore, search time worsens as the number of searched patterns increases. (ii)

Searching for inverted patterns whose length is 5. In this case, some of the inverted patterns

Springer

28 Inf Retrieval (2007) 10:1–33

Table 14 Multi-pattern searches over the ALL corpora (in seconds)

Lenght of Number of patterns

Search type pattern 5 10 25 50 100 200 400 1000

ETDC 5 0.665 0.784 1.136 1.764 2.493 3.211 3.473 3.836

Set Horspool 10 0.665 0.800 1.147 1.754 2.469 3.152 3.389 3.703

>10 0.655 0.769 1.139 1.729 2.458 3.167 3.388 3.655

SCDC 5 0.621 0.713 1.023 1.552 2.294 3.228 3.585 3.940

Set-Horspool 10 0.630 0.717 1.005 1.542 2.278 3.172 3.648 3.898

>10 0.611 0.711 0.992 1.496 2.248 3.151 3.585 3.893

Set-Horspool 5 2.099 3.077 5.333 7.286 9.010 10.942 12.989 16.314

10 1.864 2.913 4.546 5.533 6.648 7.959 9.409 12.482

>10 1.759 2.811 4.285 5.255 6.148 7.253 8.665 11.726

SBOM 5 4.230 5.220 6.552 8.351 11.040 13.608 16.557 22.895

10 2.970 3.532 4.995 6.401 7.572 9.363 12.024 17.197

>10 2.757 3.458 4.875 6.043 7.250 8.946 11.705 17.162

Agrep -s -c 5 5.410 5.100 4.520 3.686 2.200 1.150 0.531 0.218

default 10 2.910 3.150 3.700 3.855 3.310 2.330 1.568 0.717

>10 2.690 2.960 3.580 3.792 3.390 2.880 1.985 1.070

Agrep -s -c 5 5.720 5.867 6.257 7.205 10.723 9.862 8.490 5.464

rev. patterns 10 2.861 3.035 3.532 4.614 4.758 5.028 5.857 6.462

>10 2.617 2.817 3.357 4.167 4.311 4.579 5.038 6.152

are found in the text, and the probability of finding the searched patterns increases as the

number of searched patterns grows. This fact, explains that search time improves when the

number of search patterns is large (>100 patterns).

If we focus on our implementations of the Set Horspool’s algorithm applied to both

compressed and plain text (which is the fairest comparison between searches in compressed

and plain text), we see that searching compressed text is around 3–5 times faster than searching

plain text.

It is also noticeable that compressed search time does not depend on the length of the

uncompressed pattern (in fact, the small differences shown are related to the number of

occurrences of the searched patterns). On the other hand, searching plain text for longer

patterns is faster, as it permits skipping more bytes during the traversal of the searched file.

Moura et al. (2000) showed that if searchers allowing errors are considered, then searching

text compressed with THC (which has roughly the same search times as our Dense Codes)

can be up to 8 times faster than searching the uncompressed version of the text.

We have left aside from this comparison the block-boundary method proposed by Moura

et al. (2000) to permit Horspool searching on PHC. In the experiments they report, that

method is 7% slower than THC on medium-size collections (where SCDC is at least 5%

faster than THC), and the block-alignment poses a space overhead of 0.78% over PHC

(where SCDC overhead is around 0.60%). Thus SCDC is even closer to the optimum PHC

compression ratio and 12%–19% faster. On large corpora, the same codeword length effect

that affects SCDC will make the search on PHC even slower, as those codewords are shorter on

average.

Springer

Inf Retrieval (2007) 10:1–33 29

comp. ratio enc. time comp. time dec. time search time

40 %

50 %

60 %

70 %

80 %

90 %

100 %

p
e

rc
e

n
ta

g
e

 w
it
h

 r
e

s
p

e
c
t

to
 t

h
e

 w
o

rs
t

m
e

th
o

d

comp. ratio comp. time dec. time

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

p
e

rc
e

n
ta

g
e

 w
it
h

 r
e

s
p

e
c
t

to
 t

h
e

 w
o

rs
t

m
e

th
o

d

ETDC

SCDC

arith

ETDC

SCDC

PH

TH

(a) (b)

Fig. 8 Comparison of Dense Codes against other compressors on corpus AP

7. Conclusions and future work

We have presented End-Tagged Dense Code (ETDC) and (s, c)-Dense Code (SCDC), two

statistical semistatic word-based compression techniques suitable for text databases. SCDC

is a generalization of ETDC which improves its compression ratio by adapting the number

of stopper/continuer values to the corpus to be compressed.

Although the best semistatic compression ratio is achieved with Huffman coding, different

variants that lose some compression in exchange for random access and fast searching for

codewords are preferable in compressed text databases. In particular, Tagged Huffman Code

(Moura et al., 2000) has all those features in exchange for 11% compression loss compared

to Plain Huffman Code.

We have shown that ETDC and SCDC maintain all the good searching features of Tagged

Huffman Code, yet their compression ratio is much closer to that of the optimum Plain

Huffman Code (just 0.6% off). In addition, ETDC and SCDC are much simpler and faster to

program, create, and manipulate.

Figure 8(a) summarizes compression ratio, encoding time, compression and decompres-

sion time, and search time for the semistatic word-based statistical methods. In the figure,

the measures obtained in the AP corpus are shown normalized to the worst value. The lower

the value in a bar, the better the result.

Using the same corpus and format, Fig. 8(b) compares Dense Codes against other popular

compressors: gzip, bzip2, and arith. We recall that gzip and bzip2 have options “-f” (fast

compression) and “-b” (best compression).

Figure 9 presents the comparison in terms of space/time tradeoffs for encoding and search

time versus compression ratio (overall compression/decompression times are very similar in

all cases). The figure illustrates that, while Plain Huffman Code remains interesting because it

has the best compression ratio, Tagged Huffman Code has been overcome by both ETDC and

SCDC in all concerns: compression ratio, encoding speed, compression and decompression

speed, and search speed. In addition, Dense Codes are simpler to program and manipulate. We

also note that more complex searches (such as regular expression or approximate searching)

Springer

30 Inf Retrieval (2007) 10:1–33

100 120 140 160 180 200 220 240 260 280

30

31

32

33

34

encoding time (msec)

c
o

m
p

re
s
s
io

n
 r

a
ti
o

 (
%

)

2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75

30

31

32

33

34

search time (sec)

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

Plain Huffman

Tagged Huffman

Plain Huffman

Tagged Huffman

Fig. 9 Space/time tradeoffs of Dense and Huffman-based codes on corpus AP

100 200 300 400 500 600 700
25

30

35

40

Compression time (sec)

c
o

m
p

re
s
s
io

n
 r

a
ti
o

 (
%

)

50 100 150 200
25

30

35

40

Decompression time (sec)

c
o

m
p

re
s
s
io

n
 r

a
ti
o

 (
%

)

SCDC

ETDC

arith

SCDC

ETDC

arith

Fig. 10 Space/time tradeoffs of Dense Codes versus adaptive compressors, on corpus AP

can be handled with ETDC or SCDC just as with Plain Huffman Code (Moura et al., 2000),

by means of a byte-wise processing of the text.

Figure 10 compares ETDC and SCDC against other popular compressors in terms of

space/time tradeoffs for compression and decompression versus compression ratio. It can be

seen that gzip is overcome by our compressors in all aspects: ETDC and SCDC obtain better

compression ratio, compression time, and decompression time, than gzip. Although arith

Springer

Inf Retrieval (2007) 10:1–33 31

and bzip2 compress up to 20% more than ETDC and SCDC, these are 2.5–6 times faster to

compress and 7–9 times faster to decompress. This shows that, even disregarding the fact

that these classical compressors cannot perform efficient local decompression or direct text

search, our new compressors are an attractive alternative even from a pure-compression point

of view. We remark that these conclusions are only true if one is compressing not-too-small

(say, at least 10 megabytes) natural language text collections.

ETDC and SCDC can be considered the first two members of a newborn family of dense
compressors. Dense compressors have a number of possibilities in other applications. For

example, we have faced the problem of dealing with growing text collections. Semi-static

codes have an important drawback for compressed text databases: the whole corpus being

compressed has to be available before compression starts. As a result, a compressed text

database must periodically recompress all its text collections to accommodate new text that

has been added, or accept a progressive degradation of compression ratio because of changes

in the distribution of its collections. We have some preliminary results on a semistatic

compressor based on Dense Codes (Brisaboa et al., 2005a). The idea is that, instead of

changing any codeword assignment when a word increases its frequency, we concatenate

its new occurrence with the next word and consider the pair as a new source symbol. In-

stead of using shorter codewords for more frequent symbols, we let codewords encode more

source symbols when those appear. This is easy to do thanks to the simplicity of Dense

Codes.

This leads naturally to the use of Dense Codes as variable to variable codes. This is a

relatively new research field (Savari and Szpankowski, 2002), based on the use of source

symbols of variable length, which are in turn encoded with variable-length codewords.

We have also explored the use of Dense Codes in dynamic scenarios (Brisaboa et al.,

2004; Fariña, 2005), where we have presented adaptive versions of both word-based byte-

oriented Huffman and End-Tagged Dense Codes. These approaches do not permit efficient

direct search on the compressed text since the assignment word/codeword varies frequently

as the model changes during the compression.

The simplicity of Dense Codes, which results in much faster encoding time, has little

impact in the overall compression time of semistatic compressors, as encoding is a tiny

part of the whole process. In adaptive compression, however, updating the model upon each

new word is a heavy task that must be carried out for every new text word. As a result,

the overall compression time is much better with Dense Codes than with adaptive Huffman

codes, whereas the compression ratio is almost the same.

Recently, we have managed to modify dynamic ETDC to allow direct search in the com-

pressed text (Brisaboa et al., 2005b). This adaptive technique gives more stability to the

codewords assigned to the original symbols as the compression progresses, exploiting the

fact that Dense Codes depend only on the frequency rank and not the actual frequency of

words. Basically, the technique changes the model only when it is absolutely necessary to

maintain the original compression ratio, and it breaks the usual compressor-decompressor

symmetry present in most adaptive compression schemes. This permits much lighter decom-

pressors and searchers, which is very valuable in mobile applications.

Finally, Dense Codes have proved to be a valuable analytic tool to bound the redundancy

of D-ary Huffman codes on different families of distributions (Navarro and Brisaboa, 2006).

Acknowledgements Supported by CYTED VII.19 RIBIDI Project and (for the third author) Millennium

Nucles Center for Web Research, Grant P04-67-F, Mideplan, Chile. Also funded (for the Spanish group) by

MCyT (PGE and FEDER) grant (TIC2003-06593) and Xunta de Galicia grant (PGIDIT05SIN10502PR).

Springer

32 Inf Retrieval (2007) 10:1–33

References

Allauzen, C., Crochemore, M., & Raffinot, M. (1999). Factor oracle: a new structure for pattern matching.

SOFSEM, LNCS 1725 (pp. 295–310).

Baeza-Yates, R., & Navarro, G. (2004). Recent advances in applied probability. In R. Baeza-Yates, J. Glaz,

H. Gzyl, J. Husler & J. Palacios (Eds.), Modeling text databases (pp. 1–25). Springer.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Addison-Wesley Longman.

Bell, T. C., Cleary, J. G., & Witten, I. H. (1990). Text compression. Prentice Hall.

Boyer, R. S., & Moore, J. S. (1977). A fast string searching algorithm. Communications of the ACM,

20(10), 762–772.

Brisaboa, N., Fariña, A., Navarro, G., & Esteller, M. (2003a). (s,c)-dense coding: an optimized compression

code for natural language text databases. In Proceedings of the 10th International Symposium on String
Processing and Information Retrieval (SPIRE’03) (pp. 122–136). LNCS 2857, Springer-Verlag.

Brisaboa, N., Fariña, A., Navarro, G., & Paramá, J. (2004). Simple, fast, and efficient natural language adaptive

compression. In Proceedings of the 11th International Symposium on String Processing and Information
Retrieval (SPIRE’04) (pp. 230–241). LNCS 3246, Springer-Verlag.

Brisaboa, N., Fariña, A., Navarro, G., & Paramá, J. (2005a). Compressing dynamic text collections via phrase-

based coding. In Proceedings of the 9th European Conference on Research and Advanced Technology for
Digital Libraries (ECDL’05) (pp. 462–474). LNCS 3652, Springer-Verlag.

Brisaboa, N., Fariña, A., Navarro, G., & Paramá, J. (2005b). Efficiently decodable and searchable natural

language adaptive compression. In Proceedings of the 28th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR’05) (pp. 234–241). ACM Press.

Brisaboa, N., Iglesias, E. L., Navarro, G., & Paramá, J. R. (2003b). An efficient compression code for text

databases. In Proceedings of the 25th European Conference on IR Research (ECIR’03) (pp. 468–481).

LNCS 2633, Springer-Verlag.

Burrows, M., & Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm, Technical Report
124, Digital Equipment Corporation.

Carpinelli, J., Moffat, A., Neal, R., Salamonsen, W., Stuiver, L., Turpin, A., & Witten, I. (1999), Word,

character, integer, and bit based compression using arithmetic coding. http://www.cs.mu.oz.au/∼
alistair/arith coder/

Elias, P. (1975). Universal codeword sets and the representation of the integers. IEEE Transactions on Infor-
mation Theory, 21, 194–203.

Fariña, A. (2005). New compression codes for text databases, PhD thesis, Database Laboratory, University of

A Coruña. http://coba.dc.fi.udc.es/∼fari/phd/
Fraenkel, & Klein. (1996). Robust universal complete codes for transmission and compression. Discrete

Applied Mathematics and Combinatorial Operations Research and Computer Science, 64, 31–55.

Gage, P. (1994). A new algorithm for data compression. C Users Journal, 12(2), 23–38.

Heaps, H. S. (1978). Information retrieval: computational and theoretical aspects. New York: Academic Press.

Horspool, R. N. (1980). Practical fast searching in strings. Software Practice and Experience, 10(6), 501–506.

Huffman, D. A. (1952). A method for the construction of minimum redundancy codes. In Proceedings of the
Institute of Electronics and Radio Engineers (IRE), 40(9), 1098–1101.

Klein, S. T., & Shapira, D. (2005). Pattern matching in Huffman encoded texts. Information Processing and
Management, 41(4), 829–841.

Lakshmanan, K. B. (1981). On universal codeword sets. IEEE Transactions on Information Theory, 27(5), 659–

662.

Manber, U. (1997). A text compression scheme that allows fast searching directly in the compressed file. ACM
Transactions on Information Systems, 15(2), 124–136.

Manber, U., & Wu, S. (1994). GLIMPSE: A tool to search through entire file systems. In Proc. of the Winter
1994 USENIX Technical Conference (pp. 23–32).

Mandelbrot, B. (1953). An information theory of the statistical structure of language. In W. Jackson (Ed.),

Communication theory (pp. 486–504). Academic Press N.Y.

Miyazaki, M., Fukamachi, S., Takeda, M., & Shinohara, T. (1998). Speeding up the pattern matching machine

for compressed texts. Transactions of Information Processing Society of Japan, 39(9), 2638–2648.

Moffat, A. (1989). Word-based text compression. Software—Practice and Experience, 19(2), 185–198.

Moffat, A., & Katajainen, J. (1995). In-place calculation of minimum-redundancy codes. In Proceedings of
the 4th International Workshop on Algorithms and Data Structures (WADS’95) (pp. 393–402). LNCS

955, Springer.

Moffat, A., & Turpin (1996). On the implementation of minimum redundancy prefix codes. IEEE Transactions
on Communications, 45, 170–179.

Springer

Inf Retrieval (2007) 10:1–33 33

Moura, E., Navarro, G., Ziviani, N., & Baeza-Yates, R. (1998). Fast searching on compressed text allow-

ing errors. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’98) (pp. 298–306). ACM Press.

Moura, E., Navarro, G., Ziviani, N., & Baeza-Yates, R. (2000). Fast and flexible word searching on compressed

text., ACM Transactions on Information Systems, 18(2), 113–139.

Navarro, G., & Brisaboa, N. (2006). New bounds on D-ary optimal codes. Information Processing Letters,

96(5), 178–184.

Navarro, G., Moura, E., Neubert, M., Ziviani, N., & Baeza-Yates, R. (2000). Adding compression to block

addressing inverted indexes. Information Retrieval, 3(1), 49–77.

Navarro, G., & Raffinot, M. (2002). Flexible pattern matching in strings—practical on-line search algorithms
for texts and biological sequences. Cambridge University Press.

Navarro, & Tarhio, J. (2000). Boyer-Moore string matching over Ziv-Lempel compressed text. In Proceedings
of the 11th Annual Symposium on Combinatorial Pattern Matching, number 1848 in Lecture Notes in
Computer Science (pp. 166–180). Springer-Verlag, Berlin, Montréal, Canada.

Navarro, & Tarhio, J. (2005). LZgrep: A Boyer-Moore string matching tool for Ziv-Lempel compressed text.

Software Practice and Experience (SPE), 35(12), 1107–1130.

Rautio, J., Tanninen, J., & Tarhio, J. (2002). String matching with stopper encoding and code splitting. In

Proceedings of the 13th Annual Symposium on Combinatorial Pattern Matching (CPM 2002) (pp. 42–52).

LNCS 2373, Springer.

Savari, S. A., & Szpankowski, W. (2002) On the analysis of variable-to-variable length codes. In Pro-
ceedings of 2002 IEEE International Symposium on Information Theory (ISIT’02), (p. 176). See also

http://citeseer.ist.psu.edu/616808.html
Shibata, Y., Matsumoto, T., Takeda, M., Shinohara, A., & Arikawa, S. (2000). A Boyer-Moore type algorithm

for compressed pattern matching. In Proceedings of the 11th Annual Symposium on Combinatorial Pattern
Matching (CPM’00) (pp. 181–194). LNCS 1848, Springer–Verlag.

Takeda, M., Shibata, Y., Matsumoto, T., Kida, T., Shinohara, A., Fukamachi, S., Shinohara, T., & Arikawa, S.

(2001). Speeding up string pattern matching by text compression: the dawn of a new era. Transactions of
Information Processing Society of Japan, 42(3), 370–384.

Turpin, A., & Moffat, A. (1997). Fast file search using text compression. In Proceedings of the 20th Australian
Computer Science Conference (pp. 1–8).

Wan, R. (2003). Browsing and searching compressed documents. PhD thesis, Department of Com-

puter Science and Software Engineering, University of Melbourne, Australia. http://eprints.
unimelb.edu.au/archive/00000484/

Witten, I. H., Moffat, A., & Bell, T. C. (1999). Managing gigabytes: compressing and indexing documents
and images. Morgan Kaufmann Publishers, USA.

Wu, S., & Manber, U. (1992a). Agrep—a fast approximate pattern-matching tool. In Proceedings USENIX
Winter 1992 Technical Conference (pp. 153–162). San Francisco, CA.

Wu, S., & Manber, U. (1992b). Fast text searching allowing errors, Communications of the ACM, 35(10), 83–91.

Zipf, G. K. (1949). Human behavior and the principle of least Effort. Addison-Wesley.

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE Transactions on
Information Theory, 23(3), 337–343.

Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE Transactions
on Information Theory, 24(5), 530–536.

Ziviani, N., Moura, E., Navarro, G., & Baeza-Yates, R. (2000). Compression: a key for next-generation text

retrieval systems. IEEE Computer, 33(11), 37–44.

Springer

