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Abstract In this paper we describe and evaluate a Question Answering (QA) system that

goes beyond answering factoid questions. Our approach to QA assumes no restrictions on

the type of questions that are handled, and no assumption that the answers to be provided are

factoids. We present an unsupervised approach for collecting question and answer pairs from

FAQ pages, which we use to collect a corpus of 1 million question/answer pairs from FAQ

pages available on the Web. This corpus is used to train various statistical models employed

by our QA system: a statistical chunker used to transform a natural language-posed question

into a phrase-based query to be submitted for exact match to an off-the-shelf search engine;

an answer/question translation model, used to assess the likelihood that a proposed answer

is indeed an answer to the posed question; and an answer language model, used to assess the

likelihood that a proposed answer is a well-formed answer. We evaluate our QA system in a

modular fashion, by comparing the performance of baseline algorithms against our proposed

algorithms for various modules in our QA system. The evaluation shows that our system

achieves reasonable performance in terms of answer accuracy for a large variety of complex,

non-factoid questions.

1. Introduction

The Question Answering (QA) task has received a great deal of attention from the Com-

putational Linguistics and Information Retrieval research communities in the last few years

(e.g., Text REtrieval Conference TREC 2001–2003). The definition of the task, however, is

generally restricted to answering factoid questions: questions for which a complete answer
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can be given in 50 bytes or less, which is roughly a few words. Such a limitation reduces

the difficulty of the question answering task, but imposes a great restriction in using the

existent QA engines, because many of the questions people want answers for are not factoid

questions. Questions of general and/or economic relevance, such as “How does a film qualify

for an Academy Award?”, or “Can I travel with the Ameripass in Mexico?” are beyond the

scope and capabilities of most of the current QA engines.

It follows that there is a good economic incentive in moving the QA task to a more general

level then the factoid: it is likely that a system able to answer complex questions of the type

people generally and/or frequently ask has greater potential impact than one restricted to

answering only factoid questions. A natural move is to recast the question answering task to

handling questions people frequently ask or want answers for, as seen in Frequently Asked

Questions (FAQ) lists.

In this paper, we make a first attempt towards solving a QA problem more generic than

factoid QA, for which there are no restrictions on the type of questions that are handled,

and there is no assumption that the answers to be provided are factoids. In our solution to

this problem we exploit large document collections such as the Web for finding the answers

(Agichtein et al., 2002; Kwok et al., 2001), and also employ learning mechanisms for answer

extraction (Berger et al., 2000; Radev et al., 2001). We build our QA system around a noisy-

channel architecture which exploits both a language model for answers and a transformation

model for answer/question terms. The parameters of our models are trained on a corpus of

1 million question/answer pairs collected in an unsupervised manner from FAQ pages on

the Web. Our evaluation shows that our system achieves reasonable performance in terms of

answer accuracy for a large variety of complex, non-factoid questions.

The paper is organized as follows. The next section reviews the related work in Question

Answering. Section 3 gives a high-level overview of the techniques used in this paper, and

motivates their choice versus other techniques proposed to date. In Section 4 we describe

the technique used to collect a large corpus of questions and answers from the Web, while

Section 5 gives details about our QA system’s architecture and the algorithms involved. In

Section 6 we describe the evaluations we performed in order to assess our system’s perfor-

mance. In Section 7 we analyze some of the issues that negatively affected our system’s

performance.

2. Related work

With very few exceptions, most of the work done in Question Answering focuses on answering

factoid questions. Even with this limitation in place, factoid question answering is by no means

an easy task. The challenges posed by answering factoid question have been addressed using

a large variety of techniques. Question type determination has been widely used (Brill et al.,

2001; Ittycheriah and Roukos, 2002; Hovy et al., 2001; Moldovan et al., 2002), and some

of the QA typologies developed for this purpose (Hovy et al., 2001) contain as many as 80

nodes (which in many cases can be even further differentiated). Together with question

type determination, question transformation and question expansion are also commonly

used, via manually crafted question-to-query transformations (Brill et al., 2001), syntactic

transformations of the question parse tree (Hovy et al., 2001; Moldovan et al., 2002), or

WordNet exploitation for synonym and hypernym finding (Hovy et al., 2001; Pasca and

Harabagiu, 2001; Prager et al., 2001).

Although initially these techniques have been employed in order to find answers on small

and carefully constructed corpora, large collections of documents such as the Web have also
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been exploited using various answer-finding techniques. The wealth of information on the

Web can be exploited for answer validation using redundancies (Brill et al. 2001), or directly

for answer finding (Agichtein et al., 2002; Kwok et al., 2001). One of the most difficult chal-

lenges in automatic question answering has been recognized to be the lexical and stylistic gap

between the question string and the answer string (Berger et al., 2000). Attempts for bridg-

ing this gap vary from the above mentioned question-to-query transformation techniques, to

syntactically realized paraphrases (Hermjakob et al., 2002), to machine-learning techniques

for question-to-answer transformation (Radev et al., 2001; Echihabi and Marcu, 2003) and

answer-finding (Berger et al., 2000).

Most of the above mentioned techniques have been devised and evaluated in the context

of factoid question answering. One of the few works that attempts to go beyond the factoid

world is that of Agichtein et al. (2002), in which the authors focus on finding mechanisms

for retrieving whole documents relevant for natural language-posed questions not restricted

to factoid questions. The authors, however, do restrict the questions they use to evaluate

their system to 4 general types of questions: “Who”, “How”, “Where”, and “What”. For

each of these types of questions, they learn different transformations from question to more

effective queries, which are then sent to a search engine to retrieve relevant documents from

the Web. Although this technique has been shown effective for factoid as well as non-factoid

questions, it still has problems handling complex questions, even when they do fall in the 4

types of questions handled. For example, a question such as, “How does a film qualify for an

Academy Award?” requires an answer along the following lines: “A feature film must screen

in a Los Angeles County theater in 35 or 70 mm or in a 24-frame progressive scan digital

format suitable for exhibiting in existing commercial digital cinema sites for paid admission

for seven consecutive days. The seven day run must begin before midnight, December 31,

of the qualifying year [. . .]”; it is extremely unlikely that any type of question reformulation

will increase the chance of finding the document containing the answer.

The work that is most closely related to the present work is the work of Berger et al.

(2000), in which the authors explore several statistical techniques for answer finding using

as a data source FAQ documents. Their work, however, does not describe an end-to-end QA

system, but rather explores and compares several techniques for finding the right answers

given documents known to contain the answers. The conclusion of Berger et al. (2000), which

we support and extend in the present work, is that the lexical chasm between question and

answer terms can be successfully bridged using techniques inspired from Statistical Machine

Translation (Brown et al. 1993). Such techniques have also been exploited for answering

factoid questions by Radev et al. (2001), who propose “translating” questions into answers

and then perform answer finding based on the “translations” found, and Echihabi and Marcu

(2003), who describe a noisy-chanel approach to factoid question-answering, in which the

similarity between the factoid answers and the posed questions are computed using noisy

channel transformations.

3. Beyond factoid question answering

The techniques we propose for handling our extended QA task are mainly statistically driven.

During the early stages of our system development, we have observed that question reformu-

lations (such as paraphrasing, or direct “translation” of question terms into answer terms) are

less likely to have a positive impact when dealing with non-factoid questions, presumably

due to the large space of possible ways of expressing the answers. On the other hand, we

have observed (and the evaluation results presented in Section 6 confirmed) that the recall
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of retrieving the appropriate documents from the Web increases significantly if the question

terms are presented to the search engine for exact matching of phrases, rather than as bag-

of-words, provided an appropriate segmentation of the question into phrases can be found.

Using this observation, we propose as “question transformation” a chunking technique based

on co-occurrence statistics.

After submitting the obtained chunks for exact matching to a search engine, we retrieve

the N most relevant documents from the Web, and search for the best answer we can find

in the retrieved documents. Techniques such as tf·idf have been previously shown (Berger

et al., 2000) to perform poorly for answer extraction, precisely because it is difficult to find

good answers when only considering their similarity with question terms. In order to bridge

this lexical gap between question and answer terms, we employ a statistical model to assess

the likelihood that a proposed answer is indeed an answer to the posed question. Such a

model can be seen as a “translation model” between answers and questions, and the quantity

p(q | a) is used to assess the relevance of answer a to question q. For example, the answer

terms Mexico, Mexicans, PassPort, Boje, Tijuana, Reynosa, Laredo, CanAm, Ameripass

will all have reasonably high probability of translating into the question term Mexico.

Finding a best answer does not mean finding only the content words that might be relevant

to a given question. A bunch of title words describing the content of a document might have

many relevant words needed to answer a question, but would not qualify as the best answer

that can be given. It follows that in finding the best answer we also need to assess the likelihood

that the proposed answer is a well-formed answer, which can be achieved using an “answer

language model”. The model is used to compute the quantity p(a), which can be seen as

the likelihood that a proposed answer a resembles the answers seen in the training corpus in

terms of length, coherence, etc.

4. A question-answer corpus of FAQs

In order to train the statistical models described in the previous section, we first need to

build a large training corpus consisting of question-answer pairs of a broad lexical coverage.

Previous work using FAQs as a source for finding an appropriate answer (Burke et al., 1997)

or for learning lexical correlations (Berger et al., 2000) focused on using the publicly available

Usenet FAQ collection and other non-public FAQ collections, and reportedly worked with

an order of thousands of question-answer pairs.

Our approach to question/answer pair collection takes a different path. If one poses the

simple query “FAQ” to a search engine, one can observe that roughly 85% of the returned

URL strings corresponding to genuine FAQ pages contain the substring “faq”, while virtually

all of the URLs that contain the substring “faq” are genuine FAQ pages. It follows that, if

one has access to a large collection of the Web’s existent URLs, a simple pattern-matching

for faq on these URLs will have a recall close to 85% and precision close to 100% on

returning FAQ URLs from those available in the collection. For the purposes of the present

research, we have used Microsoft Research’s proprietary URL collection of approximately

1 billion URLs, and using this technique we extracted roughly 2.7 million URLs containing

the (uncased) string “faq”, which amounts to roughly 2.3 million FAQ URLs to be used for

collecting question/answer pairs.

The collected FAQ pages displayed a variety of formats and presentations. It seems that

the variety of ways questions and answers are usually listed in FAQ pages does not allow

for a simple high-precision high-recall solution for extracting question/answer pairs: if one

assumes that only certain templates are used when presenting FAQ lists, one can obtain
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clean question/answer pairs at the cost of losing many other such pairs (which happen to be

presented in different templates); on the other hand, assuming very loose constraints on the

way information is presented on such pages, one can obtain a bountiful set of question/answer

pairs, plus other pairs that do not qualify as such. We settled for a two-step approach: a

first recall-oriented pass based on universal indicators such as end-of-sentence punctuation

(“.”, “!”, “?”) and hypertext cues (“<P>”, “ <BR>”, “ <HR>”, etc.) allowed us to retrieve

most of the question/answer pairs, along with other noise data. A second precision-oriented

pass used several filters to reduce the level of noise of the question/answer pair corpus;

these filters were language identification (other than English questions and answers were

not considered), lexical cues (start-of-question cues such as “Can”, “How”, “Is”, “Should”,

“What”, etc.—31 in total), and length constrains (after a question was identified, only the first

3 following sentences were considered as part of the answer; the remaining sentences, if any,

were ignored until the next question was found). Using this method, we were able to collect

a total of roughly 1 million question/answer pairs, exceeding by 1–2 orders of magnitude the

amount of data previously used for learning statistics on questions and answers.

5. A QA system architecture

The architecure of our QA system is presented in Fig. 1. There are 4 separate modules that

handle various stages in the system’s pipeline: the first module is called Question2Query, in

which questions posed in natural language are transformed into phrase-based queries before

being handed down to the SearchEngine module. The second module is an Information

Retrieval engine which takes a query as input and returns a list of documents deemed to be

relevant to the query in a sorted manner. A third module, called Filter, is in charge of filtering

out the returned list of documents, in order to provide acceptable input to the next module.

The forth module, AnswerExtraction, analyzes the content presented and chooses the text

fragment deemed to be the best answer to the posed question.

This architecture allows us to flexibly test for various changes in the pipeline and evaluate

their overall effect. We present next detailed descriptions of how each module works, and out-

line several choices for the algorithms implementing these modules that present themselves

as acceptable options to be evaluated.

Fig. 1 The QA system architecture
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5.1. The question2query module

A query is defined to be a keyword-based string that users are expected to feed as input to a

search engine. Such a string is often thought of as a representation for a user’s “information

need”, and being proficient in expressing one’s “need” in such terms is one of the key points

in successfully using a search engine. A natural language-posed question can be thought

of as such a query. It has the advantage that it forces the user to pay more attention to

formulating the “information need” (and not typing the first keywords that come to mind). It

has the disadvantage that it contains not only the keywords a search engine normally expects,

but also a lot of extraneous “details” as part of its syntactic and discourse constraints, plus

an inherently underspecified unit-segmentation problem, which can all confuse the search

engine.

To counterbalance some of these disadvantages, we build a statistical chunker that uses a

dynamic programming algorithm to chunk the question into chunks/phrases. The chunker is

trained on the answer side of the Training corpus in order to learn 2 and 3-word collocations,

defined using the likelihood ratio of Dunning (1993). Note that we are chunking the question

using answer-side statistics, precisely as a measure for bridging the stylistic gap between

questions and answers. In Fig. 2 we list the top 10 ranked trigram collocations found in our

Training corpus using the likelihood ratio statistics (the first column is the likelihood ratio

score; the second column is the number of counts in the corpus). Strong colbcations such as

“the United States” and “le tter of credit” receive high likelihood ratio scores even if their

raw count is 3 times less than the raw counts of other weaker collocations, such as “If you

are”. Because our Training corpus is collected in an unsupervised manner, some inherent

noise exists in the collocation table as well: the French collocation “Date de publication”

receives a high score because it is a frequently seen trigram in the style of text we collected,

and also because the word “de” was rarely seen in other contexts (which is, according to the

likelihood ratio criterion, a good indication of collocation with its neighboring words).

Our statistical chunker uses the extracted collocation statistics to make an optimal chunk-

ing using a Dijkstra-style dynamic programming algorithm. For a given input question from

which the final punctuation mark is removed, our algorithm assigns a weight of 1 for each

unigram, and a weight equal to the likelihood ratio for each bigram and trigram found in

the input question that has a likelihood ratio greater than 1 as computed from the Training

corpus. A maximum scoring path is found in the input question by a dynamic programming

search. If the maximum scoring path contains unigrams which are found in our stop-word

list, those unigrams are not output by the chunker. In Fig. 3 we present two examples of

the results returned by our statistical chunker. Important cues such as “differ from”, “herbal

medications”, “tap water”, “to drink” are presented as phrases to the search engine, therefore

increasing the recall of the search when considering the top N returned pages; stop-words

Fig. 2 Top 10 ranked trigram
collocations extracted from the
Training corpus of answers using
the likelihood ratio statistics
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Fig. 3 Question segmentation into query using a statistical chunker

such as “if” and “my” (from the second example) do not appear in the segmented question.

Note that, unlike a segmentation offered by a parser (Hermjakob et al., 2002), our phrases are

not necessarily syntactic constituents. A statistics-based chunker also has the advantage that

it can be used “as-is” for question segmentation in languages other than English, provided

training data (i.e., plain written text) is available.

5.2. The SearchEngine module

This module consists of a configurable interface with available off-the-shelf search engines.

It currently supports MSNSearch, http://search.msn.com (visited August 10th, 2003), and

Google, http://www.google.com (visited August 10th, 2003). Switching from one search

engine to another allowed us to measure the impact of the IR engine on the QA task.

5.3. The filter module

This module is in charge of providing the AnswerExtraction module with the content of the

pages returned by the search engine, after three filtering steps. The first step is to reduce the

volume of pages returned to only a manageable amount. We implement this step as choosing

to return the first N hits provided by the search engine. The other two filtering steps performed

by the Filter Module are tokenization and segmentation of text into sentences.

One more filtering step was needed for evaluation purposes only: because both our training

and test data were collected from the Web (using the technique described in Section 4), there

was a good chance that asking a question previously collected returned its already available

answer, thus optimistically biasing our evaluation. The Filter Module therefore had access to

the reference answers for the test questions as well, and ensured that, if the reference answer

matched a string in some retrieved page, that page was discarded. Moreover, we found that

slight variations of the same answer could defeat the purpose of the string-matching check.

For the purpose of our evaluation, we considered that if the question/reference answer pair

had a string of 10 words or more identical with a string in some retrieved page, that page was

discarded as well. Note that, outside the evaluation procedure, the string-matching filtering

step is not needed, and our system’s performance can only increase by removing it.

5.4. The AnswerExtraction module

Authors of previous work on statistical approaches to answer finding (Berger et al., 2000)

emphasized the need to “bridge the lexical chasm” between the question terms and the answer

terms. Berger et al. suggested that techniques that did not bridge the lexical chasm, such as

tf·idf, were likely to perform worse than techniques that did.

For comparison purposes, we consider two different algorithms for our AnswerExtraction

module: a new extraction algorithm that does not bridge the lexical chasm, based on N -gram

co-occurrences between the question terms and the answer terms, to be used as baseline; and
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an extraction algorithm that bridges the lexical chasm using Statistical Machine Translation

inspired techniques (Brown et al., 1993) in order to find the best answer for a given question.

For both algorithms, each 3 consecutive sentences from the documents provided by the

Filter module form a potential answer. The choice of 3 sentences comes from the average

number of sentences in the answers from our training corpus. The choice of consecutiveness

comes from the empirical observation that answers built up from consecutive sentences tend

to be more coherent and contain more non-redundant information than answers built up from

non-consecutive sentences.

5.4.1. N-gram co-occurrence statistics for answer extraction

N-gram co-occurrence statistics have been successfully used in automatic evaluation

(Papineni et al., 2002; Lin and Hovy, 2003), and more recently as training criteria in statis-

tical machine translation (Och, 2003). For answer extraction, we implemented an algorithm

based on the BLEU score of Papineni et al. (2002) as a means of assessing the overlap

between the question and the proposed answers.

As opposed to the BLEU score, which computes an overlap score over an entire collection

of proposed answers, our algorithm computes an overlap score for each proposed answer. For

each individual candidate answer C , we define S(C, n) as the multi-set of n-grams obtained

from C . For a fixed n, we define an n-gram overlap score as:

P(n) =

∑
ngram∈S(C,n)

Countclip (ngram)∑
ngram∈S(C,n)

Count (ngram)
(1)

where Count(ngram) is the number of n-gram counts, and Countclip(ngram) is the maximum

number of co-occurences of ngram in the candidate answer and the given question. Because

the denominator in the P(n) formula consists of a sum over the n-grams of the proposed

candidate answer, this formula is essentially a precision-oriented formula, which penalizes

verbose candidate answers by default. This precision score, however, gets artificially higher

for shorter and shorter candidate answers. This is offset by adding a brevity penalty, BP:

B P =
{

1, if B · |c| ≥ |r |
e(1−|r |/B|c|), if B · |c| < |r | (2)

where |c| is the length of the proposed answer, |r | is the length of the question, and B is a

brevity constant. An overlap score is defined now as:

N G = B P · exp

(
4∑

n=1

wn log(P(n))

)
(3)

This score can be interpreted as a weighted linear average of n-gram overlap scores for

unigrams, bigrams, trigrams, and four-grams. As the values of the n-gram overlap scores

decrease roughly exponentially with the increase of n, the logarithm is needed to obtain a

linear average. If the score P(n) goes to zero for some n ≤ 4, the term is excluded from the

sum.

For each potential answer, the overlap with the question was assessed with NG with the

brevity constant B set to 3; this way, answers shorter than 3 times the length of the question
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Fig. 4 A noisy-channel model
for answer extraction

will be penalized via the brevity penalty. The best scoring potential answer was presented by

the AnswerExtraction Module as the answer to the question.

5.4.2. Statistical translation for answer extraction

As proposed by Berger et al. (2000), the lexical gap between questions and answers can be

bridged by a statistical translation model between answer terms and question terms. Their

model, however, uses only an Answer/Question translation model (see Fig. 4) as a means to

find the answer.

A more complete model for answer extraction can be formulated in terms of a noisy

channel, along the lines of Berger and Lafferty (1999) for the Information Retrieval task,

as illustrated in Fig. 4: an answer generation model proposes an answer A according to an

answer generation probability distribution; answer A is further transformed into question Q
by an answer/question translation model according to a question-given-answer conditional

probability distribution. The task of the AnswerExtraction algorithm is to take the given

question q and find an answer a in the potential answer list that is most likely both an

appropriate and well-formed answer.

The AnswerExtraction procedure employed depends on the task T we want it to accom-

plish. Let the task T be defined as “find a 3-sentence answer for a given question”. Then we

can formulate the algorithm as finding the a-posteriori most likely answer given question

and task, and write it as p(a | q, T ). We can use Bayes’ law to write this as:

p(a | q, T ) = p(q / a, T ) · p(a | T )

p(q | T )
(4)

Because the denominator is fixed given question and task, we can ignore it and find the answer

that maximizes the probability of being both a well-formed and an appropriate answer as:

a = arg max
a

p(a | T )︸ ︷︷ ︸
question−independent

· p(q | a, T )︸ ︷︷ ︸
question−dependent

(5)

The decomposition of the formula into a question-independent term and a question-dependent

term allows us to separately model the quality of a proposed answer a with respect to task

T , and to determine the appropriateness of the proposed answer a with respect to question q
to be answered in the context of task T .

Because task T fits the characteristics of the question-answer pair corpus described in

Section 4, we can use the answer side of this corpus to compute the prior probability p(a | T ).

The role of the prior is to help downgrading those answers that are too long or too short, or

are otherwise not well-formed. We use a standard trigram language model to compute the

probability distribution p(· | T ).
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The mapping of answer terms to question terms is modeled using (Brown et al., 1993)

simplest model, called IBM Model 1. For this reason, we call our model Model 1 as well.

Under this model, a question is generated from an answer a of length n according to the

following steps: first, a length m is chosen for the question, according to the distribution

�(m | n) (we assume this distribution is uniform); then, for each position j in q , a position i
in a is chosen from which q j is generated, according to the distribution t(· | ai ). The answer

is assumed to include a NU L L word, whose purpose is to generate the content-free words

in the question (such as in “Can you please tell me. . .?”). The correspondence between the

answer terms and the question terms is called an alignment, and the probability p(q | a) is

computed as the sum over all possible alignments. We express this probability using the

following formula:

p(q | a) = �(m | n)
m∏

j=1

(
n

n + 1

(
n∑

i=1

t(q j | ai ) · c(ai | a)

)
+ 1

n + 1
t(q j | NU L L)

)
(6)

where t(q j | ai ) are the probabilities of “translating” answer terms into question terms, and

c(ai |a) are the relative counts of the answer terms. Our parallel corpus of questions and

answers can be used to compute the translation table t(q j | ai ) using the EM algorithm, as

described by Brown et al. (1993). Note that, similarly with the statistical machine translation

framework, we deal here with “inverse” probabilities, i.e. the probability of a question term

given an answer, and not the more intuitive probability of answer term given question.

Following (Berger and Lafferty, 1999), an even simpler model than Model 1 can be devised

by skewing the translation distribution t(·|ai ) such that all the probability mass goes to the

term ai . This simpler model is called Model 0. In Section 6 we evaluate the proficiency of

both Model 1 and Model 0 in the answer extraction task.

6. Evaluations and discussions

We evaluated our QA system systematically for each module, in order to assess the impact

of various algorithms on the overall performance of the system. The evaluation was done by

a human judge on a set of 115 Test questions, which contained a large variety of non-factoid

questions. Each answer was rated as either correct (C), somehow related (S), wrong (W), or

cannot tell (N). The somehow related option allowed the judge to indicate the fact that the

answer was only partially correct (for example, because of missing information, or because

the answer was more general/specific than required by the question, etc.). The cannot tell
option was used in those cases when the validity of the answer could not be assessed. Note

that the judge did not have access to any reference answers in order to assess the quality

of a proposed answer. Only general knowledge and human judgment were involved when

assessing the validity of the proposed answers. Also note that, mainly because our system’s

answers were restricted to a maximum of 3 sentences, the evaluation guidelines stated that

answers that contained the right information plus other extraneous information were to be

rated correct. In Section 7 we list examples of answers rated correct, somehow related
wrong, and cannot tell to help better understand our evaluation and to discuss some of the

most frequent errors made by our system.

For the answer sets obtained by different systems on the Test questions, we estimated

the performance of these systems using the formula (|C| + 0.5|S|)/(|C| + |S| + |W|). This

formula gives a score of 1 if the answers that are not “N” rated are all considered correct,
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and a score of 0 if they are all considered wrong. A score of 0.5 means that, on average, 1

out of 2 questions is answered correctly.

6.1. Question2query module evaluation

We evaluated the Question2Query module while keeping fixed the configuration of the other

modules (MSNSearch as the search engine, the top 10 hits in the Filter module), except for

the AnswerExtraction module, for which we tested both the N-gram co-occurrence based

algorithm (NG-AE) and a Model 1 based algorithm (M1e-AE, see Section 6.4).

The evaluation assessed the impact of the statistical chunker used to transform ques-

tions into queries, against the baseline strategy of submitting the question as-is to the

search engine. As illustrated in Fig. 5, the overall performance of the QA system sig-

nificantly increased when the question was segmented before being submitted to the

SearchEngine module, for both AnswerExtraction algorithms. The score increased from 0.18

to 0.23 when using the NG-AE algorithm and from 0.34 to 0.38 when using the M1e-AE

algorithm.

6.2. SearchEngine module evaluation

The evaluation of the SearchEngine module assessed the impact of different search en-

gines on the overall system performance. We fixed the configurations of the other modules

(segmented question for the Question2Query module, top 10 hits in the Filter module), ex-

cept for the AnswerExtraction module, for which we tested the performance while using

for answer extraction the NG-AE, Mle-AE, and ONG-AE algorithms. The later algorithm

works exactly like NG-AE, with the exception that the potential answers are compared with

a reference answer available to an Oracle, rather than against the question. The perfor-

mance obtained using the ONG-AE algorithm can be thought of as indicative of the ceiling

in the performance that can be achieved by an AE algorithm given the potential answers

available.

As illustrated in Fig. 6, both the MSNSearch and Google search engines achieved com-

parable performance accuracy. The scores were 0.23 and 0.24 when using the NG-AE algo-

rithm, 0.38 and 0.37 when using the Mle-AE algorithm, and 0.46 and 0.46 when using the

ONG-AE algorithm, for MSNSearch and Google, respectively. As a side note, it is worth

mentioning that only 5% of the URLs returned by the two search engines for the entire Test

set of questions overlapped. Therefore, the comparable performance accuracy was not due to

the fact that the AnswerExtraction module had access to the same set of potential answers,
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Fig. 5 Evaluation of the
Question2Query module
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Fig. 6 MSNSearch and Google
give similar performance both in
terms of realistic AE algorithms
and oracle-based AE algorithms

but rather to the fact that the 10 best hits of both search engines provide similar answering

options.

6.3. Filter module evaluation

As mentioned in Section 5, the Filter module filters Out the low score documents returned

by the search engine and provides a set of potential answers extracted from the N-best list

of documents. The evaluation of the Filter module therefore assessed the trade-off between

computation time and accuracy of the overall system: the size of the set of potential answers

directly influences the accuracy of the system while increasing the computation time of

the AnswerExtraction module. The ONG-AE algorithm gives an accurate estimate of the

performance ceiling induced by the set of potential answers available to the AnswerExtraction

Module.

As seen in Fig. 7, there is a significant performance ceiling increase from considering only

the document returned as the first hit (0.36) to considering the first 10 hits (0.46). There is

only a slight increase in performance ceiling from considering the first 10 hits to considering

the first 50 hits (0.46 to 0.49).

6.4. Answer-Extraction module evaluation

The Answer-Extraction module was evaluated while fixing all the other module configura-

tions (segmented question for the Question2Query module, MSNSearch as the search engine,

and top 10 hits in the Filter module). The algorithm based on the BLEU score, NG-AE, and

its Oracle-informed variant ONG-AE, do not depend on the amount of training data available,

and therefore they performed uniformly at 0.23 and 0.46, respectively (Fig. 8). The score of

0.46 can be interpreted as a performance ceiling of the AE algorithms given the available set

of potential answers.
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Fig. 7 The scores obtained using
the ONG-AE answer extraction
algorithm for various N-best lists
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Fig. 8 The performance of our QA system with various answer extraction algorithms and different training
set sizes

The algorithms based on the noisy-channel architecture displayed increased performance

with the increase in the amount of available training data, reaching as high as 0.38. An

interesting observation is that the extraction algorithm using Model 1 (Ml-AE) performed

more poorly than the extraction algorithm using Model 0 (M0-AE), for the available training

data. Our explanation is that the probability distribution of question terms given answer

terms learnt by Model 1 is well informed (many mappings are allowed) but badly distributed,

whereas the probability distribution learnt by Model 0 is poorly informed (indeed, only one

mapping is allowed), but better distributed. Note the steep learning curve of Ml-AE, whose

performance gets increasingly better as the distribution probabilities of various answer terms

(including the NULL word) become more informed (more mappings are learnt), compared

to the gentle learning curve of M0-AE, whose performance increases slightly only as more

words become known as self-translations to the system (and the distribution of the NULL

word gets better approximated).

From the above analysis, it follows that a model whose probability distribution of question

terms given answer terms is both well informed and well distributed is likely to outperform

both Ml-AE and M0-AE. Such a model was obtained when Model 1 was trained on both the

question/answer parallel corpus from Section 4 and an artificially created parallel corpus in

which each question had itself as its “translation”. This training regime allowed the model

to assign high probabilities to identity mappings (and therefore be better distributed), while

also distributing some probability mass to other question-answer term pairs (and therefore

be well informed). We call the extraction algorithm that uses this model Mle-AE, and the

top score of 0.38 was obtained by Mle-AE when trained on 1 million question/answer pairs.

Note that the learning curve of algorithm Mle-AE in Fig. 8 indeed indicates that this answer

extraction procedure is well informed about the distribution probabilities of various answer

terms (it has the same steepness in the learning curve as for Ml-AE), while at the same
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time uses a better distribution of the probability mass for each answer term compared to

Ml-AE (it outperforms Ml-AE by roughly a constant amount for each training set size in the

evaluation).

7. Performance issues

In building our system, we have demonstrated that a statistical model can capitalize on

large amounts of readily available training data to achieve reasonable performance on an-

swering non-factoid questions. Our system was able to successfully answer a large va-

riety of complex, non-factoid questions; here are some of the answers that were rated

correct:

Q: Can I travel with the Ameripass in Mexico?

A: The Ameripass includes all of USA excluding Alaska. In Canada, it is valid for travel

to Montreal, Quebec, Toronto, Ontario, Vancouver BC, and New Westminster BC. In

Mexico it is valid for travel to Matamoros, Nuevo Laredo, Tamaulipas and Tijuana Baja

California.

Q: What is a PIC Freeze?

A: How to Prevent Slamming: Institute a PIC Freeze The best way to keep from

being slammed, or having a long distance company change your service with-

out your permission, is to request a “PIC freeze” for your line. PIC, or pre-

subscribed interexchange carrier, is the telecom industry’s term for a long distance

company.

The answers that were rated somehow related usually fall in one of the following cate-

gories:� The answer is referring to either a smaller or a larger class of entities than the one asked

for in the question (here we list an example where the answer involves a smaller class):

Q: Can I drink alcohol while taking antibiotics?

A: Be careful drinking alcohol when you are taking Augmentin tablets. Drinking alco-

hol while taking these tablets does not usually cause any problems. However, some

people who drink alcohol while taking antibiotics similar to Augmentin tablets have

experienced adverse effects.� The answer is addressing the question only indirectly, but nevertheless gives useful infor-

mation:

Q: Is there any way to get rid of the undesirable grasses in the lawn?

A: Water only when the grass starts to show symptoms of drought. Irrigating deeply and

less often is much better than frequent, shallow watering. Light, frequent watering

will result in short root systems and only encourage undesirable grasses to invade the

turf.

For those questions which received answers rated wrong, we identified some of the most

frequent causes which led to erroneous answers:� The answer was not in the retrieved pages (see the 46% performance ceiling given by the

Oracle)� The answer was of the wrong “type” (e.g., an answer for “how-to” instead of “what-is”):
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Q: What are best graduate schools for AI?

A: If you are applying for grad school in AI, and you did some research for an AI person,

even if it was long ago and you don’t consider it to be relevant, get a recommendation

if you think that the person likes you at all. [. . .]� The answer pointed to where an answer might be instead of answering the question

Q: What do research studies say about massage therapy?

A: It supports research on the efficacy of therapeutic massage through the public, charitable

AMTA Foundation. Additional information about massage therapy and about AMTA

is available via the Web at www.amtamassage.org.� The translation model overweighed the answer language model (too good a “translation”,

too bad an answer)

Q: What are private and public keys?

A: Private and public keys Private and public keys Algorithms can use two types of keys:

private and public� It did not pick up the key content word (in the example below, eggs)

Q: What makes eggs have thin, brittle shells?

A: The soft-shelled clams, such as steamer, razor, and geoduck clams, have thin brittle

shells that can’t completely close. Cod—A popular lean, firm, white meat fish from

the Pacific and the North Atlantic.

It is worth pointing out that most of these errors do not arise from within a single module,

but rather they are the result of various interactions between modules that miss on some

relevant information.

For the sake of completeness, we also list here an answer that was rated cannot tell (in

this case, because it was not clear whether “this medicine” refers to an antibiotic or not):

Q:Can I drink alcohol while taking antibiotics?

A: Peple should not drink alcohol while taking this medicine because the combination may

cause severe abdominal distress and vomiting.

8. Conclusions

Previous work on question answering has focused almost exclusively on building systems for

handling factoid questions. These systems have recently achieved impressive performance

(Moldovan et al. 2002). The world beyond the factoid questions, however, is largely unex-

plored, with few notable exceptions (Berger et al., 2000; Agichtein et al., 2002; Girju, 2003).

The present paper attempts to explore the portion related to answering FAQ-like questions,

without restricting the domain or type of the questions to be handled, or restricting the type

of answers to be provided. While we still have a long way to go in order to achieve robust

non-factoid QA, this work is a step in a direction that goes beyond restricted questions and

answers.

We consider the present QA system as a baseline on which more finely tuned QA archi-

tectures can be built. Learning from the experience of factoid question answering, one of

the most important features to be added is a question typology for the FAQ domain. Efforts

towards handling specific question types, such as causal questions, are already under way

(Girju, 2003). A carefully devised typology, correlated with a systematic approach to fine
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tuning, seem to be the lessons for success in answering both factoid and beyond factoid

questions.
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