
Inf Retrieval (2006) 9: 123–138

DOI 10.1007/s10791-006-7146-1

Efficient PageRank approximation via graph aggregation

A. Z. Broder∗ · R. Lempel · F. Maghoul · J. Pedersen

Received: 28 March 2004 / Revised: 30 September 2004 / Accepted: 28 January 2005
C© Springer Science + Business Media, Inc. 2006

Abstract We present a framework for approximating random-walk based probability dis-

tributions over Web pages using graph aggregation. The basic idea is to partition the graph

into classes of quasi-equivalent vertices, to project the page-based random walk to be ap-

proximated onto those classes, and to compute the stationary probability distribution of the

resulting class-based random walk. From this distribution we can quickly reconstruct a dis-

tribution on pages. In particular, our framework can approximate the well-known PageRank

distribution by setting the classes according to the set of pages on each Web host.

We experimented on a Web-graph containing over 1.4 billion pages and over 6.6 billion

links from a crawl of the Web conducted by AltaVista in September 2003. We were able to

produce a ranking that has Spearman rank-order correlation of 0.95 with respect to PageRank.

The clock time required by a simplistic implementation of our method was less than half

the time required by a highly optimized implementation of PageRank, implying that larger

speedup factors are probably possible.

Keywords Web IR · Citation and link analysis

∗ Significant portions of the work presented here were done while A. Broder and R. Lempel were employed
by the AltaVista corporation.

A. Z. Broder
IBM T.J. Watson Research Center
e-mail: abroder@us.ibm.com

R. Lempel (�)
IBM Research Lab, Haifa, Israel
e-mail: rlempel@il.ibm.com

F. Maghoul · J. Pedersen
Yahoo! Inc.
e-mail: {fmaghoul; jpederse}@yahoo-inc.com

Springer

124 Inf Retrieval (2006) 9: 123–138

1. Introduction

Since the late nineties, Web search engines have started to rely more and more on off-

page, Web-specific data such as link analysis, anchor-text, and click-through data. Google
(www.google.com) was the first engine to use link analysis as a primary ranking factor and

the now-defunct DirectHit1 concentrated on click-through data. By now, all major engines

exploit all these types of data. In particular, link analysis and anchor-text seem crucial for

handling navigational queries (Broder, 2002).

One particular form of link-based ranking factors are static scores, which are query-

independent importance scores that are assigned to all Web pages. The most famous algorithm

for producing such scores is PageRank, devised by Brin and Page (1998) while developing

the ranking module for the prototype of Google. The basic intuition behind PageRank, de-

rived from classic IR concepts in bibliometrics, is that a web page (or a scientific paper) is

“important” if many other pages (resp. other scientific papers) link to it (resp. cite it). But not

all links or citations are equal: links from more important pages should count more. We are

thus led to a recursive definition of importance, that can be formalized as the solution of a

certain system of linear equations. Alternatively, PageRank can be described as the stationary

probability distribution of a certain random walk on the Web graph, that is, the graph whose

nodes are the Web pages, and whose directed edges are the links between them. We formalize

this discussion in Section 2.1.

There is a large PageRank related literature, sometimes showing applications not directly

related to ranking. Cho et al. (1998), for example, use PageRank to prioritize crawlers and

Henzinger et al. (1999) use PageRank to measure the quality of a crawled corpus. The

voting model proposed by Lifantsev (2000) can also be seen as a general and extensible

variant of PageRank. Numerical properties of PageRank have been studied in Pandurangan

et al. (2002), Ng et al. (2001), Lempel and Moran (2001), Lee (2002), Chien et al. (2002)

and topic-sensitive and personalized versions of PageRank were described in Haveliwala,

(2002), Haveliwala et al. (2003), Jeh and Widom (2003), Richardson and Domingos (2001).

We discuss some of this literature in more detail in Section 2.1.

Modern search engines index billions of pages, interconnected by tens of billions of

links. Computing PageRank on Web graphs of this scale requires considerable computational

resources, both in terms of CPU cycles and in terms of random-access memory. Given the

importance of PageRank in ranking search results, it is not surprising that there has been

considerable interest in schemes that accelerate PageRank type computations (Haveliwala,

1999; Kamvar et al., 2003a,c; Abiteboul et al., 2003).

To some extent our work follows in this vein. We use a framework for computing

PageRank-like probability distributions for Web pages based on graph aggregation. The

basic idea is to partition the graph into classes of quasi-equivalent vertices and to compute

the stationary probability distribution of a biased random walk on classes. From this distribu-

tion we can reconstruct a distribution on pages. More concretely, in the context of this paper,

the classes used were the sets of pages on a given host. The random walk associated with

PageRank is decomposed into intra-host and inter-host steps. In our algorithm, inter-host

steps are governed by the hyperlinks connecting pages of different hosts; intra-host steps are

not necessarily driven by the underlying graph, but instead are governed by a fixed distri-

bution. Thus we obtain only an approximation of PageRank rather than the exact PageRank

1Acquired by Ask Jeeves, www. ask.com

Springer

Inf Retrieval (2006) 9: 123–138 125

values. This is related to the ideas presented in (Kamvar et al., 2003b), and Section 3 expands

on the similarities and differences between our approach and that of Kamvar et al. (2003b).

As with any new proposed static ranking, one must examine the appropriateness of the

scores to the task at hand—achieving high quality Web search. We tackle this evaluation

task by statistically comparing the scores produced by our approach with those produced by

PageRank, demonstrating that we are able to construct a good approximation of PageRank. In

our experiments, based on a Web-graph containing over 1.4 billion pages and over 6.6 billion

links from a crawl of the Web conducted by AltaVista, we are able to produce a ranking that

has Spearman rank-order correlation (Snedecor and Cochran, 1989) of 0.95 with respect to

PageRank.

In terms of use for ranking of Web search results, we do not know whether the (small)

differences between our model and the original PageRank are for better or for worse. Our

model is much less sensitive to changes in the internal organization of hosts, which might be

an advantage.

The algorithm spends most of its running time finding a stationary distribution on the Web

host graph, that is, the graph that has an edge from host h1 to host h2 whenever there is a

link from some page on h1 to some page in h2. Nevertheless, it ultimately still derives static

scores with page granularity, that is, pages on a given host will generally be assigned different

scores. Since the Web’s host graph is significantly smaller than the Web’s page graph (by

factors of 20 and beyond in the number of edges), the algorithm scales well. The clock time

required by a simplistic implementation of our method was less than half the time required

by a highly optimized implementation of PageRank. We expect that refined implementations

will be able to yield speed-up factors that are closer to the ratio between the sizes of the

Web’s page and host graphs. Furthermore, optimization techniques for PageRank such as

(Haveliwala, 1999; Kamvar et al., 2003c) might be able to speed up our approach as well.

The rest of this paper is organized as follows: Section 2 starts by reviewing the PageRank

algorithm, and then moves on to survey previous work on optimizing PageRank’s computation

process, and discussions of “flavored” PageRank variants. It recounts alternative static rank

approaches that have been proposed, and reports on some studies of the host-graph of the

Web. Section 3 presents the details of our scheme, and compares its complexity with that of

the original PageRank algorithm. Section 4 covers our experiments with a specific graph-

aggregated PageRank approximation. We concretely define the approximation flavor, provide

performance figures and compare the resulting score vector with the PageRank score vector.

Section 5 concludes, and points out directions for future research.

2. Related work

2.1. PageRank and variations

PageRank (Brin and Page, 1998) is an important part of the ranking function of the Google

search engine. The PageRank of a page p is the probability of visiting p in a random walk

of the entire Web, where the set of states of the random walk is the set of Web pages, and

each random step is of one of the following two types:

Browsing step: from the given state/page q, choose an outgoing link of q uniformly at random,

and follow that link to the destination page.

Teleportation: choose a Web page uniformly at random, and jump to it.

Springer

126 Inf Retrieval (2006) 9: 123–138

PageRank chooses a parameter d, 0 < d < 1; each state transition is a browsing step with

probability d, or a teleportation step with probability 1 − d.2

PageRank requires teleportations (jumps to random Web pages) since the Markov chain

that is implied by the link-structure of the Web is separable rather than ergodic. In particular,

a large-scale study of the Web graph (Broder et al., 2000) suggests that while there is a core
of pages which forms a strongly connected component in the graph, a majority of Web pages

have directed paths of links either to the core or from it, but not both. However, incorporating

random jumps introduces a (small) probability of transition from any page a to any page

b, even in absence of a Web link a → b, thus giving rise to an ergodic Markov chain that

has a well-defined stationary distribution (Gallager, 1996). Furthermore, the set of PageRank

scores obey the following formula (where page p has incoming links from q1, . . . , qk , and N
is the total number of Web pages):

PageRank(p) = 1 − d

N
+ d

(k∑
i=1

PageRank(qi)

out degree of qi

)

The above set of equations is easily written in matrix form, with the stationary distribution

(the vector of PageRank scores) simply being the principal eigenvector of the corresponding

stochastic matrix. The PageRank scores are typically computed by applying the Power method

for approximating the principal eigenvector of a matrix (Jennings, 1977). The method involves

repeated multiplications of an arbitrary initial vector by the matrix in question, until the

iterations converge to a fixed vector.

2.1.1. Numerical properties of PageRank

Pandurangan et al. (2002) have studied the distribution of PageRank scores across several

independent Web subgraphs, and noted that it follows a power-law. Furthermore, the exponent

of the distribution was found to be 2.1—similar to the observed power-law exponent of the

distribution of in-degrees of Web pages (Barabasi and Albert, 1999; Kleinberg et al., 1999;

Broder et al., 2000). Despite the similarity in distributions, they showed (on two small Web

subgraphs) that PageRank is not highly correlated with indegree. On the other hand, Upstill

et al. (2003) found log indegree to be highly correlated with the PageRank values reported

by Google’s toolbar. Thus, the measure of correlation between PageRank and in-degree (or

functions thereof) on the Web at large is unclear; it is, however, possible to construct artificial

graphs where most nodes of high in-degree have lower PageRanks than most nodes with

low-indegree (Lempel and Moran, 2001).

Several researchers have examined the numerical stability of the PageRank scores in

terms of their sensitivity to perturbations of the underlying graph. Ng et al. (2001) examined

the L1-change to the scores when modifying the outgoing links of a set P of pages. They

bounded this change by a linear function of the aggregate PageRanks of all pages in P. Lee

(Lee, 2002) argued that an algorithm is stable if the L1 change in its score vector following

perturbations is bounded by a linear function of the sum of the scores of the perturbed nodes.

For that definition, he showed that PageRank is stable for all graphs. Neither of these works

examined how the perturbations affect the rankings that are induced by the score vectors.

2Note that this implicitly assumes that each Web page has at least one outgoing link. This is not true in
general, and so most discussions of PageRank assume that transitions from pages with no outgoing links are
teleportations with probability 1 (as if those pages actually linked to all pages).

Springer

Inf Retrieval (2006) 9: 123–138 127

That aspect was looked upon by Chien et al. (2002), who showed that when a link is added to

a graph, (1) the PageRank of the node receiving the link rises, and (2) the same node’s rank

cannot decrease with respect to its rank prior to the change. However, in Lempel and Moran

(2001) is was shown that by changing the destination of a single link in an arbitrarily large

graph, the relative rankings of many pairs of nodes (about a quarter of all pairs) may flip.

2.1.2. Towards personalized PageRank

Brin and Page, when presenting PageRank, noted that it is possible to obtain topic-oriented

flavors of PageRank by biasing the random jumps of the algorithm to favor topical pages as

destinations, rather than jumping uniformly at random over all Web pages (Brin and Page,

1998). This idea was expanded by Haveliwala (2002), where 16 precomputed topic-sensitive

flavors of PageRank (corresponding to the 16 top-level categories of the ODP3) were used to

improve rankings of queries in real-time. Each PageRank flavor was computed by distributing

its random jumps uniformly across the pages belonging to the corresponding ODP top-level

category. Then, at runtime, a linear combination of those flavors was used for ranking, where

the combination’s coefficients are determined by the similarity of the query (and additional

context, if available) to the contents of the pages in each category. Jeh and Widom (2003)

discuss personalized PageRank flavors where random jump configurations are more flexible.

They assume that there is a set H of pages (which may contain several thousand pages),

such that each personalized flavor may choose any distribution of random jumps over H. See

Haveliwala et al. (2003) for additional details on the above approaches.

Richardson and Domingos (2001) proposed computing a PageRank flavor for each term

in the lexicon of a search engine’s index. For each such term, their formulation biases both

the random jump probabilities and the link-following steps towards pages whose relevance

score with respect to the term is high. They report gains of about 20% in search quality.

2.1.3. Accelerations of PageRank

As mentioned in the Introduction, Indices of modern search engines contain billions of pages,

interconnected by tens of billions of links. Performing PageRank computations on data of this

scale requires considerable resources, both in terms of CPU cycles and in terms of random-

access memory. Clock-wall times for PageRank computations on large graphs can reach

many hours (certainly in single-machine settings). When considering that the topic-induced or

personalized PageRank flavors (discussed in the previous section) require that a search engine

perform such computations multiple times, the need for speedy implementations becomes

critical. Consequently, several papers have described methods for accelerating PageRank

computations.

Haveliwala shows how PageRank computations can be adapted to run on machines with

limited RAM (Haveliwala, 1999). The performance gains are due to RAM-aware partitioning

of the score vectors and connectivity data that are used during the Power iterations. Certain

hardware configurations are shown where speedup factors reach three orders of magnitude.

Chen et al. (2002) addressed RAM limitations by applying techniques of out-of-core graph al-

gorithms to PageRank’s Power iterations. Their approach resulted in significant performance

gains as the ratio between the size of the data and the available RAM grew.

3 The Open Directory Project, http://www.dmoz.org/

Springer

128 Inf Retrieval (2006) 9: 123–138

Kamvar et al. (2003b) note the locality of reference present in Web links: most links

connect pages of the same host, with many of those connecting pages that are close to each

other in terms of the directory structure of the host (the path part of the URL). Furthermore,

when inter-host links exist, they are usually present between multiple pairs of pages on the

two hosts. These observations allow for efficient software representations of the Web graph,

reducing I/O and paging costs, and enabling parallelization of the PageRank computations

with reduced communication overhead. The authors also report that when starting the Power

method’s iterations from an initial vector that is based on intra-host PageRank scores, the

number of iterations required until convergence to the global PageRank scores is (empirically)

halved. Overall, a speedup factor of 2–3 in PageRank computation is obtained in this work.

See Section 3 for more on the differences between Kamvar et al. (2003b) and this paper.

Kamvar et al. (2003c) accelerate PageRank by adapting known algebraic methods for

accelerating convergence of general linear sequences, to Power iterations over stochastic

matrices. Speedup factors of up to 3 are reported. In Kamvar et al. (2003a), the authors

observe that most entries in the PageRank vector converge quickly, with relatively few entries

requiring many more power iterations to converge. This leads them to an algorithm that

identifies (while iterating) the values that have converged and avoids recalculating them (and

their contributions to scores of other pages) in subsequent iterations. Speedup factors of

nearly 30% are achieved.

2.2. Alternatives to PageRank

So far we have discussed either accelerations of the basic PageRank algorithm itself, or

alterations of the random jump behavior of the algorithm that produce different flavors of

PageRank. In either case, the basic random walk model remained the same. This section

discusses this model more critically, and surveys some alternatives (or major deviations)

suggested in the literature.

While little is known about the exact use of PageRank by Google, it is widely believed

that the simple model described in Section 2.1 does not give rise to the scores that are actually

used by the engine. The practical implementation of PageRank, for example, might adopt a

common practice in many link analysis algorithms, and follow internal links (links connecting

pages within a site) with different probabilities than external links (links connecting pages

of different sites). Such differentiation essentially changes the semantics of PageRank’s

browsing step. In particular, it was noted in Amitay et al. (2003) that PageRank may not be

the most appropriate browsing model for many sites. One scenario discussed there is of a

surfer, visiting the home page of a search engine. Realistically, the surfer is much more likely

to submit a query and continue to browse the search results (essentially performing a random

jump), than to follow the link from the engine’s home page to its “about” page. As defined,

PageRank will assign a significant fraction of the home page’s score to the “about” page, while

in practice, relatively few surfers visit that page. Another scenario considers surfers at the top

level of some Web hierarchy, e.g. Yahoo! (www.yahoo.com). Such surfers will either enter

a query in a search box (resulting in a random jump, as argued above) or will patiently browse

the directory structure to one of the category pages. Today’s hierarchies contain thousands

of categories, and the layout of the sites is such that browsing paths to some categories are

quite long. In PageRank, the probability of sustaining a long browsing sequence decreases

exponentially, because of the random jumps that are performed probabilistically at each step.

Thus, the contribution of the PageRank of the hierarchy’s home page to a category page

decreases exponentially in the category’s depth. The category pages are essentially punished

because of the fact that the directory is well organized.

Springer

Inf Retrieval (2006) 9: 123–138 129

Tsoi et al. (2003) study the problem of assigning static scores, close as possible to normal

PageRank scores, that satisfy certain linear constraints. Such constraints can specify minimal

score values for certain pages, enforce orderings between scores of pages, etc. They propose an

algorithm based on quadratic programming, and then propose some dimensionality reduction

schemes on the scale of the data so as to enable practical implementations of the algorithm.

In Tomlin (2003), the author suggested a ranking model based on network flows through the

Web graph. PageRank is actually a special case of this more general model, where the flow

of probabilities through the network is conserved. He heuristically compared the quality of

the rankings produced by PageRank with those produced by two other variants of this model,

one of which seemed to produce rankings of equal or higher quality than those produced

by PageRank. Abiteboul et al. (2003) propose an algorithm that is able to compute static

scores in an online, incremental fashion while continually scanning the underlying graph

(e.g. while crawling the Web). In their approach, called OPIC, the connectivity matrix of the

graph need not be stored—it is sufficient to only consider the incident (or outgoing) edges

of the current node being visited. Furthermore, no constraints are imposed on the scanning

order of the graph—they merely require that each node will be visited infinitely often. Also

presented is an adaptation of OPIC that is suitable for scoring changing graphs, which is of

special interest on the ever-changing Web.

2.3. The host-graph of the web

Our algorithm, described in the next section, makes use of the fact that the number of hosts

on the Web, and the number of links between pages of different hosts, are significantly lower

than the corresponding numbers of pages and interconnecting links.

Ruhl et al. (2001) studied the host-graph induced by a large snapshot (604 M pages)

of the Web from August 2000. The nodes of the hostgraph represented Web hosts, and a

directed link between two hosts existed if any page from the source host linked to any page

of the destination host. They report that the number of hosts in that snapshot was merely

10.37 million. Furthermore, the 5540 million links between Web pages induced less than 263

million links (below 5% of the original number) in the host-graph. Kamvar et al. (2003b)

report that in a crawl containing 70 million pages with over 600 million interconnecting links,

more than 93% of the links connected same-host pages.

Our experimental setup, presented in Section 4, exhibits similar ratios: we used a Web-

graph containing over 1446 million pages with almost 6650 million links. The number of

unique hosts in this graph was about 31 million (just over 2% of the number of pages), with

241 million host-to-host edges (3.6% of the number of page-to-page links).

3. Stationary distributions based on graph aggregation

Let T be a random walk on a graph with n nodes. T will denote both the random walk and the

stochastic matrix that governs it. Let the n nodes be partitioned into m classes H1, . . . , Hm .

From T and the m classes of nodes we develop an alternative random walk, T ′, whose

stationary distribution can be calculated more efficiently. In T ′, a state transition departing

from a node x ∈ Hi consists of the following two-stage process:

− Move to some node y ∈ Hi according to a distribution πi . Note that πi depends on the

class, but not on the particular vertex x in the class.

− From y move on according to T.

Springer

130 Inf Retrieval (2006) 9: 123–138

Note that in general, this alternative walk is not mathematically equivalent to the original

random walk T. Furthermore, for many choices of T, H1, . . . , Hm and π1, . . . , πm , the two

random walks may result in very different stationary distributions.

For the purposes of this paper, we concentrate on the case where T denotes PageRank

and the partitioning of Web pages is according to their host. Hence, a class Hi contains

all the nodes (pages) on a given host, and only those nodes. The choice of partitioning

Web pages by hosts is quite natural, as this partitioning reflects the ownership and themes

of the content. Furthermore, intra-host linkage patterns are more regular and predictable

than inter-host linkage patterns, due to the prevalent use of templates in Web sites (Bar-

Yossef and Rajagopalan, 2002). Thus, representing intra-host random browsing by some

host-specific distribution may enable our alternative random walk to not stray very far from

PageRank.

In what follows, we show that the stationary distribution of T ′ can be derived from the

principal eigenvector of a m × m stochastic matrix (recall that m is the number of classes),

which is generally less expensive than computing the principal eigenvector of the n × n
stochastic matrix T.

Throughout this section, the following notations are used:

T= [ti, j] = the original page-to-page probability transition matrix. We assume that T is

irreducible and aperiodic, and so T is ergodic and has a well-defined stationary dis-

tribution, namely its principal eigenvector. Note that the standard PageRank transition

matrix satisfies these conditions.

n = the number of pages; thus, T has size n × n.

H = {H1, . . . , Hm} is the set of all hosts represented in T.

m = |H | = the number of hosts.

h(p) = the host of page p. We use h(p) to denote both the host name and the set of pages on

it; thus, p ∈ h(p).

πh = a positive probability distribution on pages with support limited to the pages of host

h, that is πh(p) = 0 for all p /∈ h(p) while πh(p) > 0 for all p ∈ h(p).

As explained earlier, we replace the original random walk T, by a new random walk T ′.
Using the notations above, and assuming that T ′ is at page p, a transition (step) consists of

two parts:

1. Jump to a page in q ∈ h(p), chosen at random according to the distribution πh(p).

2. Perform a transition out of q according to the q’th row of T, that is according to the behavior

of the original random walk T when leaving page q.

There are several plausible models for the distributions πh :

a. πh could be uniform over the pages of host h.

b. πh could be proportional to deg(q) for q ∈ h and 0 elsewhere, where deg(q) can be chosen

to be the in-or the out-degree of q, based on all incident links, intra-host links or inter-host

links.

c. πh could be based on an intra-host PageRank calculation, e.g. in the spirit of Kamvar et al.

(2003b).

Springer

Inf Retrieval (2006) 9: 123–138 131

Let S = [si, j] and S̃ = [s̃i, j] be the following n × n stochastic matrices:

si, j =
{

πh(j)(j) h(i) = h(j)

0 otherwise

s̃i j =
{

|h(i)|−1 h(i) = h(j)

0 otherwise

Both S and S̃ are block matrices over the set of all Web pages and their blocks correspond to

same-host pages. In S, each row of the sub-matrix that corresponds to the pages of host h is

equal to πh . In S̃, each row of the submatrix that corresponds to the pages of host h describes

a uniform distribution over the pages of h. Thus S̃S = S regardless of the choice of πh .

Clearly, the random walk T ′ described above is defined by the stochastic matrix ST: the

intra-host move is given by S, and the T-based move follows. Furthermore, for any irreducible,

aperiodic n × n stochastic matrix T, both ST and ST S̃ are also irreducible and aperiodic,

and so both matrices have uniquely defined (positive, normalized) principal eigenvectors. In

particular, there exists a unique positive and L1-normalized principal eigenvector of ST, that

corresponds to the stationary probability distribution of our modified random surfer model, T ′.
Our goal can now be formally expressed—we aim to efficiently compute a distribution

vector β that satisfies

βST = β . (1)

As argued above, ST S̃ is also an irreducible and aperiodic stochastic matrix. Our first step

in calculating β is to compute a probability vector α such that αST S̃ = α.

We claim that β � αST satisfies Eq. (1). Indeed,

βST = (αST)ST = (αST)(S̃S)T

= (αST S̃)ST = αST = β

At first glance, it seems that so far we have not gained any efficiency: instead of calculating

β directly, we have chosen to calculate β via α, which is also a principal eigenvector of an

n × n stochastic matrix. In what follows, however, we show that α can be computed quickly.

The matrix ST S̃ satisfies the following equations:

h(p) = h(q) =⇒ ∀r, ST S̃(p, r) = ST S̃(q, r)

h(p) = h(q) =⇒ ∀r, ST S̃(r, p) = ST S̃(r, q)

Therefore, same-host sources/destinations are indistinguishable and hence the iterations re-

quired to find a can be carried out using m × m transition matrices and m-dimensional prob-

ability vectors, whose columns correspond to the distinct hosts. The transition probability

from host h1 to host h2 is given by∑
i∈h1

πh1
(i) ·

∑
j∈h2

ti, j .

Let α̃ denote the m-dimensional stationary distribution vector corresponding to the above

transition probabilities. Intra-host symmetry considerations imply that (the n-dimensional)

α can be derived from α̃ by simply dividing the probability assigned to each host by the

Springer

132 Inf Retrieval (2006) 9: 123–138

number of hosted pages. Formally,

α(p) = α̃h(p)/|h(p)|.

However, there is no need to explicitly compute α, since one can easily compute αS directly

from α̃:

(αS)(p) = πh(p)(p) · α̃h(p).

All that is left for obtaining β is to multiply αS by T.

Note that the algorithm calculates an m-dimensional probability vector α̃, which implies

an n-dimensional probability vector α in which all pages on a given host are assigned the same

probability. However, pages of the same host are weighted differently in αS and certainly

in β = αST . We have thus managed to calculate a distribution in page-granularity while

performing eigenvector calculations in host-granularity.

To summarize, below is the algorithm to derive a PageRank approximation based on host

aggregation, given the matrix T and the distributions π1, . . . , πm that correspond to the m
hosts of H:

1. Define an m × m stochastic matrix T̃ = [t̃i, j] as follows:

t̃Hi ,Hj =
∑
p∈Hi

πi (p) ·
∑
q∈Hj

tp,q . (2)

2. Calculate the principal eigenvector of T̃ : compute an m-dimensional distribution vector α̃

satisfying α̃T̃ = α̃.

3. Compute an n-dimensional probability distribution γ , where for each node p,

γ (p) = α̃h(p) · πh(p)(p)

4. The stationary distribution of T ′ is the vector β � γ T .

We now revisit in more detail the BlockRank algorithm proposed by Kamvar et al. (2003b),

and highlight several differences between their work and ours. BlockRank is a method that

accelerates PageRank computations by selecting an initial distribution vector v from which

(empirically) fewer Power iterations are needed until convergence, as compared with Power

iterations starting from the uniform distribution. The vector v of BlockRank is closely related

to the vector γ produced by our algorithm when (1) T, the original random walk, represents

PageRank and (2) each distribution π Hi is set to be the intra-host PageRank vector of Hi . The

differences between v and the appropriate γ flavor concern the definition of teleportations

in the random walk over the hosts: in BlockRank, teleportations between hosts are uniform

over all hosts, whereas in our approach, it follows from Eq. (2) that teleportations land on

each host in proportion to the number of pages on that host.

After computing v, BlockRank performs Power iterations from v until convergence to

PageRank, or equivalently—repeatedly multiplies distribution vectors by the stochastic ma-

trix T, until converging to T’s principal eigenvector. We, on the other hand, are interested in

the principal eigenvector of the matrix ST, which we essentially get with single multiplication

of γ by T. While it is clear that our approach is speedier than BlockRank, the artifacts of

both algorithms are different as we do not end up calculating PageRank.

Springer

Inf Retrieval (2006) 9: 123–138 133

3.1. Efficiency

How does the time needed by our algorithm compare to the usual computation of PageRank?

The standard power-iteration computation of PageRank converges in a few dozen iterations.

Each iteration requires one pass over the complete list of links for the entire Web graph.

In contrast our algorithm needs only two passes over the entire set of links: the first when

defining T̃ (step 1), and the second when transforming γ into β (step 4).4 The power iterations

part in our algorithm is linear in the number of links of the host-graph, which typically is

much smaller (maybe by a factor of 20), than the number of links in the page-graph.

Note that the reduction in the number of links between the page-graph and the host-graph

has implications beyond the simple number-of-operations accounting: modern search engines

are required to compute link-based measures on connectivity data of billions of pages. This

corresponds to tens of billions of links, an amount of data whose representation exceeds the

RAM capabilities of most single-machine platforms. Moving to smaller graphs such as the

host graph may enable the connectivity data to once again fit in the RAM of a single machine.

In such a case our algorithm will have to perform only two (inevitably slow) passes over the

full list of links, versus 25–40 passes for standard PageRank.

Furthermore, moving to smaller graphs that can be fully held in memory simplifies the

development of software that analyzes and manipulates the transition probability matrix to

achieve faster convergence.

4. Experiments

The section reports on experiments with a specific flavor of host-aggregated PageRank ap-

proximation. In this flavor, hereby called the “U-model” (“U” as in uniform), we set all

intra-host distributions π Hi to be uniform. Thus, departing from page p involves the follow-

ing two-step process:

1. Jump uniformly at random to a page q ∈ h(p).

2. Perform a regular PageRank step from page q.

Note that in the terminology of the previous section, the matrix S that corresponds to the

“U-model” is simply S̃.

Our experiments are based on a Web-graph containing over 1446 million pages with almost

6650 million links, from a crawl of the Web conducted by AltaVista in September 2003.

The graph, which is stored and accessed using AltaVista’s Connectivity Server (Bharat et al.,

1998), was built on an Alpha server with 4 CPUs (each running at 667 MHz with its own

internal floating point processor) and 32 gigabytes of memory. The number of unique hosts

in this graph is about 31 million (just over 2% of the number of pages), with 241 million

host-to-host edges (3.6% of the number of page-to-page links).

Computing PageRank in this setting required 12.5 h., while computing the U-model

scores took 5.8 h. (a speedup factor of about 2.1). It should be noted that the PageRank

computations use the robust and optimized infrastructure of the connectivity server, while

our modified algorithm was written in an ad-hoc, non-optimized manner. We predict that by

optimizing our implementation in the spirit of the connectivity server, speedup factors can

approach the full potential indicated by the ratio of the number of links in the Web graph and

4 This analysis assumes that the set of distributions πh are given, e.g. as by-products of the build process of
the connectivity database, which is certainly the case for the experiments presented in the next section.

Springer

134 Inf Retrieval (2006) 9: 123–138

Table 1 Sampling schedule by
PageRank decile Starting rank Ending rank Sampling probability

1 1000 0.2

1001 10000 0.02

10001 100000 0.002

100001 1000000 0.0002

1000001 10000000 0.00002

10000001 100000000 0.000002

100000001 1000000000 0.0000002

1000000001 14470000000 0.00000002

the corresponding figure in the host-graph. In particular, it follows from the discussion in

Section 3 that optimized implementations can achieve considerable speedup factors relative

to BlockRank (Kamvar et al., 2003b), which itself empirically speeds up PageRank by factors

of 2–3.

In what follows we provide statistical comparisons between the U-model flavor and PageR-

ank. We show that U-model approximates PageRank very closely, especially if one considers

the correlation between the ranks induced by these measures.

To assess the relation between PageRank and its approximation, the U-model, we sampled

from the available 1446 million pages. However, we did not take a simple random sample

since, by virtue of the power-law distribution of PageRank, the bulk of the population are

pages with few or no inlinks. Such pages would attain similar, low scores by practically any

link-based static score measure. Furthermore, as a consequence of their low scores, these

pages will rarely appear as the top ranking results for queries, and so small fluctuations in

their static scores will hardly be noticed by search engine users.

Therefore, instead of sampling uniformly, we used PageRank to stratify the population

and uniformly sampled from each decile. This produced a sample containing many more

representative pages with larger values of PageRank than would have been possible with a

similar sized simple random sample. In particular, we sorted pages according to PageRank

and then uniformly sampled within each decile according to the schedule in Table 1. The

resulting sample contained 1298 pages distributed over the full range of PageRank values.

For each page in the sample we had available both the PageRank and U-model values.

In this sample U-model has Pearson correlation 0.81 with PageRank. Given the amply

large sample size and the high correlation, a standard statistical test rejects with high con-

fidence the hypothesis that U-model is statistically independent of PageRank. This agrees

with expectation since U-model is designed to approximate PageRank.

To examine the relation more closely, we fit a linear model via least-squares with U-

model as the single predictor and PageRank as the response. If U-model is indeed a good

approximation to PageRank we expect the linear fit to be very good, with slope close to 1.0,

and with well behaved residuals. See Fig. 1 for a scatter plot display of this fit. The linear

regression line, with error bars, is indicated on the plot. Note that the slope of the fit, 0.9851,

is close to 1.0 as hoped. However several data point are far from the regression line.

See Fig. 2 for a closer look at the discrepancy between PageRank and its U-model approx-

imation. Most of standardized residuals from the fit are very small. Indeed, there are more

residuals close to zero than expected if the residuals are compared to a standard Gaussian

distribution. However, the outlying points (with large residuals) tend to correspond to pages

with large PageRank values, suggesting that U-Model could be a less precise approximation

of PageRank in the very high end of the scale.

Springer

Inf Retrieval (2006) 9: 123–138 135

y = 0.9851x + 2E-06

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0 0.00005 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004

V Model

P
a
g

e
 R

a
n

k

Fig. 1 Linear fit of PageRank vs U-model

-31

-21

-11

-1

9

19

29

S
ta

n
d

a
rd

iz
e
d

 r
e
s
id

u
a
ls

Fig. 2 Standardized residuals

Springer

136 Inf Retrieval (2006) 9: 123–138

The best assessment of the U-model approximation would be task oriented; does U-model

offer as good information as PageRank for relevance ranking of Web pages? However, this

requires considerable machinery outside the scope of this paper. A reasonable surrogate is to

ask if the rank order of pages given by U-model resembles the order given by PageRank. In

particular, if the orderings were identical the two measures would offer the same information

for relevance ranking even if their values deviated considerably. In fact, the Spearman rank-

order correlation (Snedecor and Cochran, 1989) between U-model and PageRank is 0.95,

considerably higher than the Pearson correlation of 0.81. This suggests that U-model can be

used as an effective approximation for PageRank in relevance ranking.

In terms of use for ranking of Web search results, we do not know whether the (small)

differences between our model and the original PageRank are for better or for worse. One

possible advantage of our model is that it is almost insensitive to changes in the internal

organization of hosts. A reorganization that modifies the linkage patterns between the pages

on a given host might change the relative ranking of these pages, but will have much less

effect on pages outside the host, since the “weight” of the host is uniformly distributed over

all its pages.

In this context we note that Web IR community is somewhat divided on the topic of

whether static link-based ranking measures like PageRank are at all useful for IR tasks.

Papers citing improvements abound, as well as papers showing very little or no gain from

using static score metrics. At the heart of the debate is the lack of an agreed upon retrieval

benchmark for Web IR:

− A corpus that constitutes a large and representative sample of the Web (including “opti-

mized” pages, spam, and the likes).

− A large set of queries that is representative of user needs.

− A clear methodology for assessing quality of search results over the scale of data and

queries.

− A clear baseline with a state-of-the-art text scoring component (including anchor-text),

over which retrieval improvements will be sought.

Furthermore, even though it is unlikely that commercial search companies would publish

their own results on such a benchmark, it would be valuable to have them take part in

defining the benchmark. In the meantime, we hope that even researchers who are skeptical of

PageRank’s contribution to Web IR would appreciate the mathemathical ideas and random

walk approximation framework presented in this paper.

5. Conclusions

This paper introduced a new framework for calculating random-walk based static ranks

of pages on the Web. The framework approximates the behavior of a given random walk

on the Web’s graph in a scalable manner, by performing most of its calculations on a more

compact representation of the graph—a representation that follows from aggregating multiple

pages onto a single node. In particular, this compaction significantly reduces the memory

requirements of the computations that arise when dealing with Web graphs of large crawls.

As defined in Section 3, our method changes the semantics of random browsing on the

Web by decoupling intra-host and inter-host steps. One should note, however, that the method

can be defined in terms of any equivalence relation that partitions the set of Web pages. An

immediate example is to relax the physical host-based partitioning to one driven by logi-

cal sites: sometimes, pages on separate hosts might correspond to the same logical entity

Springer

Inf Retrieval (2006) 9: 123–138 137

(e.g., different academic units of some university); in other cases, pages on the same host

might belong to independent entities—e.g., sites virtually hosted by services such as Geoci-
ties(http://www.geocities.com).

We approximated PageRank with a random walk flavor in which departures from a page

consist of a two stage process: first, a random transition to another page of the same host,

and then a PageRank-like step from that page. Whereas PageRank requires repeated scans

of the Web-graph’s links, most of the computations required by our transformation involve

scanning the edges of the Web’s host-graph. We achieved a speedup factor of 2.1, and predict

that more careful implementations can achieve speedups that are closer to the ratio of the

sizes of the graph. Furthermore, we showed that the resulting scores indeed approximate

PageRank: we were able to produce a ranking that has Spearman rank-order correlation of

0.95 with respect to PageRank.

It should be noted that the performance gains achieved by this approach can be further

improved by many of the schemes surveyed in Section 2.1.3. For example, the ideas presented

in Haveliwala (1999) and Kamvar et al. (2003c) are applicable to this proposal as well, as the

problem remains computing the principal eigenvector of a large and sparse stochastic matrix.

Future efforts should be devoted to experimenting with different aggregates of the Web’s

graph, and with different stochastic behaviors within those aggregates. Each such flavor

should be evaluated in terms of the speedup factors it achieves, and in terms of the search

quality that it induces when used in the ranking core of search engines.

References

Abiteboul S, Preda M and Cobena G (2003) Adaptive on-line page importance computation. In: Proc. 12th
International WWW Conference (WWW2003), Budapest, Hungary, pp. 280–290

Amitay E, Carmel D, Darlow A, Lempel R and Soffer A (2003) The connectivity sonar: Detecting site
functionality by structural patterns. In: Proc. of the ACM Hypertext 2003 Conference, Nottingham, UK.
pp. 38–47

Bar-Yossef Z and Rajagopalan S (2002) Template detection via data mining and its applications. In: Proceedings
of the 11th International WWW Conference, Honolulu, Hawaii, USA, pp. 580–591.

Barabasi A-L and Albert R (1999) Emergence of scaling in random networks. Science, 286:509–512
Bharat K, Broder A, Henzinger M, Kumar P and Venkatasubramanian S (1998) The connectivity server: Fast

access to linkage information on the web. In: 7th International World Wide Web Conference, pp. 104–111
Brin S and Page L (1998) The anatomy of a large-scale hypertextual web search engine. In: Proc. 7th Interna-

tional WWW Conference, pp. 107–117
Broder A (2002) A taxonomy of web search. SIGIR Forum, 36(2):3–10.
Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A and Wiener J (2000) Graph

structure in the web. In: Proc. 9th International WWW Conference. pp. 309–320
Chen Y-Y, Gan Q and Suel T (2002) I/O efficient techniques for computing pagerank. In: Proc. ACM Confer-

ence on Information and Knowledge Management (CIKM2002)
Chien S, Dwork C, Kumar R, Simon D and Sivakumar D (2002) Link evolution: Analysis and algorithms. In:

Workshop on Algorithms and Models for the Web Graph (WAW), Vancouver, Canada.
Cho J, Garcı́Aa-Molina H and Page L (1998) Efficient crawling through URL ordering. Computer Networks

and ISDN Systems 30(1–7):161–172
Gallager RG (1996) Discrete stochastic processes. Kluwer Academic Publishers
Haveliwala TH (1999) Efficient Computation of PageRank. Technical Report Technical Report, Stanford

University
Haveliwala TH (2002) Topic-Sensitive PageRank. In: Proc. 11th International WWW Conference

(WWW2002).
Haveliwala TH, Kamvar SD and Jeh G (2003) An Analytical Comparison of Approaches to Personalizing

PageRank. Technical Report Technical Report, Stanford University
Henzinger MR, Heydon A, Mitzenmacher M and Najork M (1999) Measuring index quality using random

walks on the Web. Computer Networks (Amsterdam, Netherlands 1999) 31(11–16):1291–1303.

Springer

138 Inf Retrieval (2006) 9: 123–138

Jeh G and Widom J (2003) Scaling personalized web search. In: Proc. 12th International WWW Conference
(WWW2003), Budapest, Hungary., pp. 271–279

Jennings A (1977) Matrix computation for engineers and scientists. John Wiley & Sons, Ltd.
Kamvar SD, Haveliwala TH and Golub GH (2003a) Adaptive methods for the computation of PageRank.

Technical report, Stanford University.
Kamvar SD, Haveliwala TH, Manning CD and Golub GH (2003b) Exploiting the block structure of the web

for computating PageRank. Technical Report Technical Report, Stanford University
Kamvar SD, Haveliwala TH, Manning CD and Golub GH (2003c) Extrapolation methods for accelerating

PageRank computations. In: Proc. 12th International WWW Conference (WWW2003), Budapest, Hun-
gary, pp. 261–270

Kleinberg JM, Kumar R, Raghavan P, Rajagopalan S and Tomkins AS (1999) The web as a graph: Measure-
ments, models and methods. In: Proc. of the Fifth International Computing and Combinatorics Conference,
pp. 1–17

Lee HC (2002) When the hyperlinked environment is perturbed. In: Workshop on Algorithms and Models for
the Web Graph (WAW), Vancouver, Canada

Lempel R and Moran S (2001) Rank-stability and rank-similarity of web link-based ranking algorithms.
Technical Report CS-2001-22 (revised version), Dept. of Computer Science, Technion-Israel Institute of
Technology

Lifantsev M (2000) Voting models for ranking web pages. In: Proc. International Conference on Internet
Computing (IC 2000), Las Vegas, Nevada, pp. 143–148

Ng AY, Zheng AX and Jordan MI (2001) Stable algorithms for link analysis. In: Proc. 24’th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 258–266

Pandurangan G, Raghavan P and Upfal E (2002) Using PageRank to characterize web structure. In: Proc. 8th
Annual International Computing and Combinatorics Conference, pp. 330–339

Richardson M and Domingos P (2001) The intelligent surfer: Probabilistic combination of link and content
information in PageRank. In: Advances in Neural Information Processing Systems 14 [NIPS 2001],
Vancouver, British Columbia, Canada, pp. 1441–1448, MIT Press

Ruhl M, Bharat K, Chang B-W, Henzinger M (2001) Who links to whom: Mining linkage between web sites.
In: IEEE International Conference on Data Mining (ICDM), pp. 51–58

Snedecor GW and Cochran WG (1989) Statistical methods. Iowa State University Press, 8th edition
Tomlin J (2003) A new paradigm for ranking pages on the World Wide Web. In: Proc. 12th International

WWW Conference (WWW2003), Budapest, Hungary, pp. 350–355
Tsoi AC, Morini G, Scarselli F, Hagenbuchner M and Maggini M (2003) Adaptive ranking of web pages. In:

Proc. 12th International WWW Conference (WWW2003), Budapest, Hungary, pp. 356–365
Upstill T, Craswell N and Hawking D (2003) Predicting fame and fortune: PageRank or indegree?. In: Proc.

8th Australasian Document Computing Symposium, Canberra, Australia

Springer

