
Inf Retrieval (2006) 9:357–382

DOI 10.1007/s10791-006-4651-1

A study of mixture models for collaborative filtering

Rong Jin · Luo Si · Chengxiang Zhai

Received: 20 July 2004 / Revised: 1 May 2005 / Accepted: 29 August 2005
C© Springer Science + Business Media, LLC 2006

Abstract Collaborative filtering is a general technique for exploiting the preference pat-

terns of a group of users to predict the utility of items for a particular user. Three different

components need to be modeled in a collaborative filtering problem: users, items, and rat-

ings. Previous research on applying probabilistic models to collaborative filtering has shown

promising results. However, there is a lack of systematic studies of different ways to model

each of the three components and their interactions. In this paper, we conduct a broad and

systematic study on different mixture models for collaborative filtering. We discuss general

issues related to using a mixture model for collaborative filtering, and propose three properties

that a graphical model is expected to satisfy. Using these properties, we thoroughly examine

five different mixture models, including Bayesian Clustering (BC), Aspect Model (AM),

Flexible Mixture Model (FMM), Joint Mixture Model (JMM), and the Decoupled Model

(DM). We compare these models both analytically and experimentally. Experiments over

two datasets of movie ratings under different configurations show that in general, whether

a model satisfies the proposed properties tends to be correlated with its performance. In

particular, the Decoupled Model, which satisfies all the three desired properties, outperforms

the other mixture models as well as many other existing approaches for collaborative filter-

ing. Our study shows that graphical models are powerful tools for modeling collaborative

filtering, but careful design is necessary to achieve good performance.

Keywords Collaborative filtering . Graphical model . Probabilistic model

Rong Jin
Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824,
USA
e-mail: rongjin@cse.cmu.edu

Luo Si (�)
Department of Computer Science, Purdue University, West Lafayette, IN 47907-1398, USA
e-mail: lsi@cs.cmu.edu

Chengxiang Zhai
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
e-mail: czhai@cs.uiuc.edu

Springer

358 Inf Retrieval (2006) 9:357–382

1. Introduction

The rapid growth of information over Internet demands intelligent information agents that

can sift through all the available information and find out the most valuable to us. These

intelligent systems can be categorized into two classes: Collaborative Filtering (CF) systems

and Content-based Filtering (CBF) systems. The difference between them is that collaborative

filtering systems utilize the given ratings of training users to make recommendation for test

users while content-based filtering systems rely on contents of items for recommendation.

In this paper, we focus on the collaborative filtering systems.

Most collaborative filtering methods fall into two categories: Memory-based algorithms

and Model-based algorithms (Breese et al., 1998). In memory-based algorithms, rating ex-

amples of different users are simply stored in a training database, and the rating of a test user

on a specific item is predicted based on the corresponding ratings of training users who share

similar tastes as the test user. In contrast, in model-based algorithms, statistical models are

learned from the given ratings of training users and ratings of test users are estimated using

the learned model. In the previous studies, both types of approaches have been shown to be

effective for collaborative filtering (Breese et al., 1998).

In general, most collaborative filtering approaches assume that users with similar “tastes”

would rate items similarly, and the idea of clustering has been exploited in all approaches

either explicitly or implicitly. Compared with memory-based approaches, model-based ap-

proaches provide a more principled way of performing clustering, and is also often much

more efficient in terms of the computation cost at the prediction time. The basic idea of a

model-based approach is to cluster items and/or training users into classes explicitly and

predict ratings of a test user using the ratings of classes that fit in well with the test user

and/or items.

Several different probabilistic models have been proposed and studied in the previous

work (Breese et al., 1998; Hofmann and Puzicha, 1998; Pennock et al., 2000; Popescul

et al., 2001; Ross and Zemel 2002; Si et al., 2003; Jin et al., 2003; Hofmann, 2003). These

models have succeeded in capturing user/item similarities through probabilistic clustering

in one way or the other, and have all been shown to be quite promising. Most of these

methods can be represented as graphical models. However, there has been no systematic

study and comparison of different graphical models proposed for collaborative filtering,

which is necessary for both theoretical and empirical reasons: (1) Theoretically, different

models make different assumptions. We need to understand the difference and connections

among these models in terms of the underlying assumptions. (2) Empirically, these different

models are evaluated with different experimental settings in previous studies; it would be

useful to see how they are compared with each other using identical experimental settings.

Moreover, a systematic study is necessary for explaining why some models tend to perform

better than others.

In this paper, we conduct a systematic study of a large subset of graphical models – mixture

models – for collaborative filtering. One of the fundamental difficulties with collaborative

filtering is the sparse data issue. It arises when most users only provide ratings for a small

number of items. As a result, even if two users have similar interests, there may be no

common items rated by both of them. Mixture models are the natural remedy to the sparse

data problem. By grouping items with similar ratings into clusters, the mixture models are

able to estimate the similarity among different users based on their ratings on item clusters, not

individual items. Since three components, namely users, items, and ratings, involved in the

collaborative filtering, a good mixture model for collaborative filtering should be able to not

only cluster each component, but also model the interactions between different components

Springer

Inf Retrieval (2006) 9:357–382 359

appropriately. We propose three desirable properties that a reasonable graphical model for

collaborative filtering should satisfy: (1) separate clustering of users and items; (2) flexibility

for a user/item to be in multiple clusters; (3) decoupling of user preference from its rating

patterns.

We thoroughly analyze five different mixture models, including Bayesian Clustering

(Breese et al., 1998), Aspect Model (Hofmann and Puzicha, 1999), Flexible Mixture Model

(Si et al., 2003), Joint Mixture Model (JMM) and the Decoupled Model (Jin et al., 2003) based

on the three proposed properties. We also compare these models empirically. Experiments

over two datasets of movie ratings under several different configurations show that in general,

the fulfillment of the proposed properties tends to be positively correlated with the model’s

performance. In particular, the DM model, which satisfies all the three properties that we

want, outperforms all the other mixture models as well as some other existing approaches to

collaborative filtering. Our study shows that graphical models are powerful tools for modeling

collaborative filtering, but careful design is necessary in order to achieve good performance.

The rest of the paper is arranged as follows: Section 2 gives a general discussion of using

graphical models for collaborative filtering and presents the three desirable properties that

any graphical model should satisfy. In Section 3, we present and examine five different

mixture models in terms of their connections and differences. We discuss model estimation

and rating prediction in Section 4 and Section 5. Empirical studies are presented in Section

6. Conclusions and future work are discussed in Section 7.

2. Graphical models for collaborative filtering

2.1. Problem definition

We first introduce notations for formally describing the problem of collaborative filtering.

Let X̃ = {x1, x2, , xM } be a set of items, Ỹ = {y1, y2, , yN } be a set of users,

and {1, . . . , R} be the set of possible ratings. Let {(x(1), y(1), r(1)), , (x(L), y(L), r(L))}
be the training database that consists of ratings of different items from multiple training users.

Each tuple (x(i), y(i), r(i)) represents that item x(i) is rated as r(i) by user y(i). Let Ry(x) be

the rating of item x given by user y and X(y) be the set of items rated by user y. In addition

to the training database, each test user also provides a small number of ratings to indicate

his/her interests and preference. The goal of collaborative filtering is to predict the rating r
that a test user would give to an unrated item x given the training database and the additional

rating information from the test user.

To cast this problem into graphical models, we treat each tuple (x(i), y(i), r(i)) as an ob-

servation that is randomly drawn from the joint distribution of three random variables – X,

Y, and R. Random variables X and Y can take any value from the sets X̃ and Ỹ, respectively.

Random variable R will take any integer value ranging from 1 to R. Through the training

database, we are able to model the interaction between the three random variables. There are

three possible choices of likelihood that we can maximize for the training data: p(r |x, y),

p(r, x | y) and p(r,x,y). Although there is strong correlation between these quantities, max-

imizing data with a different likelihood models different aspects of the data. For the first

choice, i.e., p(r | x, y), we focus on modeling why item x is rated by user y as r.

The second choice, i.e., p(r, x | y), differs from the first one in that it explains not only the

observed ratings but also why item x is chosen to be rated by user y. As a result, movies that

have been rated by many users will have more impact on the model estimation than movies

that are only rated by a few users. The third choice, i.e., p(r,x,y), models the joint distribution

Springer

360 Inf Retrieval (2006) 9:357–382

between the three random variables. Under this choice, the model is also concerned with the

behavior of users (e.g. some users rate a lot of movies and others only rate a few). In particular,

users with more ratings tend to have larger impact on the final model than users that only rate

a few items. Based on the above discussion, it is clear that the choice of likelihood function

for training data can have a significant impact on model estimation and thus the performance

of collaborative filtering. Most existing probabilistic approaches to collaborative filtering

fall into one of these three cases. For example, the personality diagnosis method (Pennock

et al., 2000) is a special case of the first one, where a Gaussian distribution is assumed for

p(r | x, y). The aspect model (Hofmann and Puzicha, 1999) can be regarded as a special case

of the third choice, where a mixture model is used for estimating p(r,x,y). In this paper, we

will focus on the second and third cases and systematically examine the different choices of

mixture models.

Note that we intentionally ignore the possibility of modeling conditional probability

p(r, y | x). This is because in collaborative filtering, it is the users who actively select items

to rate, not the other way.

2.2. Major issues in designing a graphical model for collaborative filtering

In general, in order to model the similarity among different users, items and ratings given the

difficulty of sparse ratings provided by users, we need to cluster each component into groups

and model the interactions between different components appropriately. More specifically,

the following three important issues must be addressed:

Issue 1: How should we model user similarity and item similarity? Generally, we may

regard users and items as being from different types of entities and they couple with each other

through rating information. Therefore, a good clustering model for collaborative filtering is

expected to explicitly model both the classes of users and the classes of items and be able

to leverage their correlations. This means that the choice of latent variables in our graphical

model should allow for separate, yet coupled modeling of user similarity and item similarity.

Of course, the separation of user similarity from item similarity will lead to complex clustering

models that can be hard to estimate accurately with the data available. Models with different

clustering strategies will be examined in this paper.

Issue 2: Should a user or an item be allowed to belong to multiple clusters? Since a user

can have diverse interests and an item may have multiple aspects, intuitively, it is desirable to

allow both items and users to be in multiple classes simultaneously. However, such a model

may be too flexible to capture the similarity of users and items effectively with a limited

amount of training data. Models with different assumptions about the membership of users

and items will be examined in this paper.

Issue 3: How can we capture the variances in rating patterns among the users with
similar interest of items? One common deficiency in most existing models for collaborative

filtering is that they are all based on the assumption that users with similar interests would

rate items similarly. This is incorrect because the rating pattern of a user is determined not

only by his/her interests but also by the rating strategy/habit. For example, some users are

more “tolerant” than others, and therefore their ratings of items tend to be higher than others

although they share very similar tastes of items. Thus, it is important for a collaborative

filtering method to capture the variance among rating patterns of users with similar interest

of items. Methods for modeling such variances in a graphical model will be examined in this

paper.

Based on the discussion above, we identify three important properties that a graphical

model for collaborative filtering should satisfy:

Springer

Inf Retrieval (2006) 9:357–382 361� It should support clustering of both users and items� It should allow both users and items to be in multiple clusters� It should decouple the rating patterns from intrinsic preferences

In the following section, we will analyze a representative set of mixture models and examine

them in terms of these desirable properties.

3. Mixture models for collaborative filtering

In this section, we discuss a variety of possible mixture models and examine their assumptions

about user and item clustering and whether they address the variances in rating patterns.

3.1. Bayesian clustering (Breese et al., 1998)

In Bayesian Clustering (Breese et al., 1998), we assume that the same type of users would

rate items similarly, thus users can be automatically grouped together into a set of user

clusters, or user classes, according to their ratings of items. Formally, given a user class

‘z’, the preferences for different items expressed as ratings are independent, and the joint

probability of user class ‘z’ and the ratings of items can be written as the standard naı̈ve

Bayes formulation:

P(z, r1, r2, . . . , rM) = P(z)
M∏

i=1

P(ri |z) (1)

where ri represents the rating for item xi . Thus, the joint probability for the ratings given by

user y, denoted as P({Ry(x)}x∈X (y)|y), can be written as:

P({Ry(x)}x∈X (y)|y) =
∑

z

P(z)
∏

x∈X (y)

P(Ry(x)|z) (2)

According to Equation (2), this model will first select a user class ‘z’ from the distribution

P(z) and then rate all the items using the same selected class ‘z’. In another word, this model

assigns each user to a single user class and therefore does not allow a user to be in multiple user

classes. Parameters P(r | z) can be learned automatically using the Expectation-Maximization

(EM) algorithm. More details of this model can be found in (Breese et al., 1998).

According to the three criteria mentioned in the previous section, Bayesian Clustering

appears to be the simplest mixture model: only cluster the users; each user is assumed to be

in a single cluster; no separation for preference and rating patterns. Figure 1 illustrates the

basic idea of the Bayesian Clustering.

Fig. 1 Graphical model
representation for bayesian
Clustering

Springer

362 Inf Retrieval (2006) 9:357–382

Fig. 2 Graphical models for the
two extensions of aspect model in
Eqs. (4) and (5)

3.2. Aspect model (AM)

The aspect model is a probabilistic latent space model, which models individual preferences

as a convex combination of preference factors (Hofmann and Puzicha 1999). It introduces

a latent variable z ∈ Z = {z1, z2, , zK } for each user-item pair (x, y), and writes the

joint probability for each pair as:

P (x, y) =
∑
z∈Z

P (z) P (x | z) P (y | z) (3)

where P(z) is the class prior probability, P(x | z) and P(y | z) are class-dependent distributions

for items and users, respectively. Intuitively, this model means that the preference pattern of

a user is modeled by a combination of typical preference patterns, which are represented in

the distributions of P(z), P(x | z) and P(y | z).

There are two ways to incorporate rating information ‘r’ into the basic aspect model:

P
(
x(l), y(l), r(l)

) =
∑
z∈Z

P (z) P
(
x(l) | z

)
P

(
y(l) | z

)
P

(
r(l) | z

)
(4)

P
(
x(l), y(l), r(l)

) =
∑
z∈Z

P (z) P
(
x(l) | z

)
P

(
y(l) | z

)
P

(
r(l) | z, x(l)

)
(5)

The corresponding graphical models are shown in Fig. 2. Compared to the first approach in

Eq. (4), the second approach in Eq. (5) has to estimate the conditional probability

P(r(l) | z, x(l)), which corresponds to a larger parameter space and may not be estimated

reliably.

Unlike the Bayesian Clustering algorithm, which only models ratings, the aspect model

is able to model both users and items with conditional probabilities P(y | z) and P(x | z).

Furthermore, unlike the Bayesian Clustering algorithm, where the joint probability for a

set of ratings by an individual user is modeled directly, the aspect model models the joint

probability P(x,y,r) separately for each rated item. As a result, the aspect model allows each

rating triplet to choose its own appropriate class while in Bayesian Clustering the same user

class is used to rate all the items. However, the aspect model only introduces a single set of

class variables for items, users, and ratings. This essentially encodes the clustering of users,

the clustering of items, and the correlation between them together, thus the separate clustering

of users and items is not attempted. Furthermore, no efforts have been made in aspect model

to separate users’ rating patterns from their intrinsic interests. Therefore, according to the

criterion stated in Section 2.2, the aspect model is still a preliminary model: a simple way to

model users and items but without clustering them separately; allowing each user and item

to be in multiple clusters; no attempt for modeling intrinsic preference of users separately

from their rating patterns.

Springer

Inf Retrieval (2006) 9:357–382 363

3.3. Joint Mixture Model (JMM) and Flexible Mixture Model (FMM)

In this section, we examine two additional graphical models for collaborative filtering, namely

Joint Mixture Model (JMM) and Flexible Mixture Model (FMM) (Si et al., 2003). They differ

from both the Bayesian Clustering algorithm and the Aspect Model in that users and items

are clustered separately.

For both graphical models, the goal is to model the joint probability P({Ry(x)}x∈X (y) | y).

They differ in the way of decomposing the joint probability. In the Joint Mixture Model, the

joint probability is expanded as:

P({Ry(x)}x∈X (y)|y) =
∑

zy

P(zy |y)
∏

x∈X (y)

P(x, Ry(x)|zy) (6)

where variable zy stands for the class for user ‘y’. According to Eq. (6), to estimate the

joint probability, user class zy is first chosen according to distribution P(zy |y), and then the

likelihood of every rated item is computed using the same user class zy . Thus, similar to the

Bayesian clustering algorithm, the Joint Mixture Model assumes that each user belongs to a

single user class. In contrast, the Flexible Mixture Model first expands P({Ry(x)}x∈X (y)|y)

into a product of likelihoods for rated items, followed by the introduction of hidden variables

for user class for each item:

P({Ry(x)}x∈X (y)|y) =
∏

x∈X (y)

∑
zy

P(x, Ry(x)|zy)P(zy |y) (7)

Compared to Joint Mixture Model, the Flexible Mixture Model allow each item to choose

the appropriate user class for its rating while the Joint Mixture Model enforces a single user

class to be used throughout the ratings of every user.

The key component for both models is the estimation of P(x, r |zy), i.e., the likelihood

for the user class zy to rate item x as r. Directly estimating P(x, r |zy) from training data

may lead to a severe sparse data problem. This is because the number of different P(x, r |zy)

can be quite big given a large number of items and user classes. To alleviate this problem,

hidden variable zx is further introduced to represent the classes for items, which leads to a

new expression for P(x, r |zy):

P(x, r |zy) =
∑

zx

P(x, r, zx |zy) ≈
∑

zx

P(zx)P(x |zx)P(r |zx , zy) (8)

where P(zx) is the class prior for item class zx and P(r |zx , zy) is the likelihood for user

class zy to rate item class zx as r. The above expression assumes that the class variable zx

for items is independent from the class variable zy for users, or P(zx |zy) ≈ P(zx). Through

the introduction of item class, the number of parameters for P(x, r |zy) is decreased from

M × R × |Z y | to |Zx | × (1 + M + |Z y | × R), where | Z y | and | Zx | are the number of

classes for users and items respectively, and M and R are the number of items and rating

categories, respectively. This is a significant reduction when the number of user classes is

large. For example, given 1000 different movies, 5 different rating categories, and 20 different

user types, the number of parameters for P(x, r |zy) is 100,000. However, by grouping movies

into 10 different classes, the number of parameters drops to around 11,000, which is only

one tenth of the original parameter space. Of course, the introduction of item classes may flat

the difference between similar items and thus lead to errors in predicting ratings. This is the

tradeoff between alleviating data sparseness and maintaining data diversity. We will examine

Springer

364 Inf Retrieval (2006) 9:357–382

Table 1 Parameters for the Joint Mixture Model (JMM) and the Flexible Mixture
Model (FMM)

P(zy | y) Likelihood of assigning user ‘y’ to the user class zy

P(zx) Class prior for item class zx

P(x | zx) Likelihood for item x to be in class zx

P(r | zx , zy) Likelihood for any user in class zy to rate any item in class zx as ‘r’

this issue later in experiments. Table 1 summarizes the parameters used by both models and

the diagrams of corresponding graphical models are displayed in Fig. 3.

As for the three properties in Section 2.2, both models apply separate clustering to users

and items and thus satisfy the property 1. The Flexible Mixture Model satisfies the second

property since it leaves each rated item the freedom to choose the appropriate user class

while the Joint Mixture Model does not. Neither of the two models makes any attempt to

explicitly model the difference between the rating patterns and the intrinsic preference of

users.

3.4. Decoupled models for rating patterns and intrinsic preference (DM)

All mixture models that have been discussed so far fail to explicitly account for the fact that

users with similar interests may have very different rating patterns. In this section, we discuss

decoupled model (Jin et al., 2003), which extends the Flexible Mixture Model by introducing

two hidden variables ZP and ZR that account for rating patterns and intrinsic preference of

users, respectively. Figure 4 displays the graphical representation for the decoupled model.

According to Fig. 4, the decoupled model first determines the class Zx for item ‘X’, the class

ZP and ZR for user ‘Y’. Class ZP accounts for the intrinsic preference of user ‘Y’, namely,

the types of items that ‘Y’ likes and the types of items that he/she does not like. Class ZR

accounts for the rating patterns of user ‘Y’, namely how user ‘Y’ rates items according to

his interests. Unlike the previous mixture models where the user type is modeled by a single

class variable Zy , in this model, users are clustered from two different perspectives, i.e., the

clustering of intrinsic preference by hidden variable ZP and the clustering of rating patterns

(or habits) by hidden variable ZR . To decide the rating category for item ‘X’, the new model

first determines the value of the binary random variable Zpref that indicates whether user ‘Y’

Fig. 3 Graphical model representation for the Joint Mixture Model and Flexible Mixture Model. Diagram
(a) represents the joint mixture model (JMM) and (b) for flexible mixture model (FMM)

Springer

Inf Retrieval (2006) 9:357–382 365

Fig. 4 Graphical model
representation for the decoupled
model (DM)

likes item ‘X’, and the rating variable ‘R’ is jointly determined by the preference variable

Zpref and the rating class ZR of user ‘Y’. Thus, the actual rating value is affected not only

by whether the user likes an item (i.e., Zpref), but also by the specific rating patterns of the

user (i.e., ZR). Therefore, even if a user appears to like a certain type of items, the rating

value can still be low if he has a very ‘tough’ rating criterion. In summary, the new model

has addressed the problem of large rating variance among users of similar interests with two

heuristics:

1. It models the rating patterns and intrinsic preference of users separately;

2. The rating category of an item is decided not only by whether a user likes the item but

also by the rating strategy of the user.

Note that the DM model satisfies all the three desirable properties: cluster users and items

separately; allow each user to be in multiple clusters; and model the difference between

preference patterns and rating patterns.

Following the above description, probability P(x, r |y) is expressed as follows:

P(x, r |y) =
∑

zP ,zR ,zx

P(zP |y)P(zR |y)P(zx)P(x |zx)

⎧⎨⎩ ∑
Zpref ={0,1}

P(zpref |zP , zx)P(r |zR, zpref)

⎫⎬⎭
(9)

where P(zpref |zP , zx) is the likelihood for users in class ZP to like (Zpref = 1) or dislike

(Zpref = 0) items in class Zx , P(r |zR, zpref) is the likelihood for users in class ZR to give rating

‘r’ given that they like (Zpref = 1) or dislike (Zpref = 0) the items. Combining Eq. (7) with Eq.

(9), we have the full description for the decoupled model that determines the likelihood for

a rating database. Table 2 summarizes the parameters for the decoupled model. Compared

with Table 1, more parameters are introduced in the decoupled model to account for the new

variables ZP , ZR , and Zpref , which will raise the complexity of the model and thus has more

chance to over-fit training data.

The decoupled model can be further improved by extending the binary hidden variable

Zpref to a variable with multiple values. Thus, instead of indicating whether or not a user

likes an item, hidden variable Zpref represents the level of preference that the user has for the

item. For example, we can let the variable Zpref have three discrete values, with zero for no

preference, one for slight preference and two for strong preference. In our experiments, the

Springer

366 Inf Retrieval (2006) 9:357–382

Table 2 Parameters for the decoupled model (DM)

P(zP | y) Likelihood of assigning user ‘y’ to the preference class zP

P(zR | y) Likelihood of assigning user ‘y’ to the rating class zR

P(zx) Class prior for item class zx

P(x | zx) Likelihood for item x to be in item class zx

P(zpref = 1 | zP , zx) Likelihood for users in preference class zP to favor items in class zx

P(r | zR, zpref) Likelihood for users in rating class zR to rate items in class zx as ‘r’ given that they

either like the items (i.e., Zpref = 1) or dislike the items (i.e., Zpref = 0)

number of discrete values for variable Zpref is set to be equal to the number of different rating

categories. In this case, Eq. (9) will be rewritten as:

P(x, r | y) =
∑

zP ,zR ,zx

P(zP | y)P(zR | y)P(zx)P(x | zx)

⎧⎨⎩ R∑
zpref =1

P(zpref | zP , zx)P(r | zR, zpref)

⎫⎬⎭
(9′)

Note that by setting P(r | zR, zpref) = δ(r, zpref), the above equation will be turned into Eq. (8),

which leads to the Flexible Mixture Model. Thus, the extended decoupled model is a more

general framework than the Flexible Mixture Model.

3.5. Summary and comparison

In this section, we have discussed five different mixture models:� Bayesian clustering is the simplest approach and does not satisfy any of the three properties.

It makes no effort to model either users or items and each user is restricted to a single class.� Aspect model improves over Bayesian clustering by introducing a hidden variable that

models the interaction between users and items. It satisfies the second property by allowing

each user to be in multiple different classes. However, it does not apply separate clustering

to users and items, and it does not address the problem of rating variance within users of

similar interests. Therefore, it violates both the first and the third properties.� Both the Joint Mixture Model (JMM) and Flexible Mixture Model (FMM) emphasize

separate clustering of users and items. They differ from each other in that FMM allows

each user to be in multiple classes while JMM restricts every user to be in a single class.

Thus, FMM satisfies both the first and the second property while JMM only satisfies the

first one.� The Decoupled Model (DM) extends the Flexible Mixture Model (FMM) by separating

the intrinsic preference of users from their rating strategies. In particular, the final rating

of an item is affected not only by the interest of a user but also by his rating criteria. Thus,

the decoupled model satisfies all three properties.

Table 3 summarizes the properties of each model. On one hand, we expect models that

satisfy more properties to provide better description for the data and achieve more accurate

prediction. On the other hand, to satisfy more properties, we have to increase the model

complexity, which could degrade the accuracy of prediction particularly when the number of

training users is small. As will be seen later in the experiment section, with a large number

Springer

Inf Retrieval (2006) 9:357–382 367

Table 3 Properties of five different mixture models for collabosrative filtering

Property 1 Property 2 Property 3

Bayesian Clustering (BC) – – –

Aspect Model (AM) – x –

Joint Mixture Model (JMM) x – –

Flexible Mixture Model (FMM) x x –

Decouple Model (DM) x x x

Property 1 corresponds to separate clustering for users and items; Property 2
corresponds to the flexibility for a single user or an item to be in multiple clusters;
Property 3 corresponds to the capture of difference between intrinsic preference
and rating patterns.

of training users, models satisfying more properties usually perform better than models

satisfying fewer properties. However, when the number of training users is small, the simple

model may perform even better.

4. Model estimation

In this section, we describe the general Expectation Maximization (EM) algorithm that is

used to estimate the mixture models for collaborative filtering, followed by the description

of the prediction algorithms.

4.1. General approach–EM algorithms

In general, all the mixture models can be estimated using the EM algorithm (Demspter et al.,

1977). As an example, we give details on the EM algorithm for the Joint Mixture Model

(JMM), which is slightly more complicated than the others.

According to the maximum likelihood approach, parameters of JMM model are estimated

by maximizing the log-likelihood of training data, which is written as

L =
∑

y

log P({x, Ry(x)}x∈X (y) | y) (10)

Expand P({x, Ry(x)}x∈X (y) | y) using Eqs. (6) and (8), we have

L =
∑

y

log

{∑
zy

P(zy | y)
∏

x∈X (y)

∑
zx

P(zx)P(x | zx)P(Ry(x) | zx , zy)

}
(11)

To optimize the above objective function, the EM algorithm alternates between the expec-

tation step and maximization step. In the expectation step, the posterior probabilities for

latent variables, i.e., P(zy | {x, Ry(x)}x∈X (y), y) and P(zx | x, Ry(x), y, zy), are computed as

follows:

P(zy | {x, Ry(x)}x∈X (y), y) = P(zy | y)
∏

x∈X (y) P(x, Ry(x) | zy)∑
zy

P(zy | y)
∏

x∈X (y) P(x, Ry(x) | zy)
(12)

P(zx | x, Ry(x), y, zy) = P(zx)P(x | zx)P(Ry(x) | zx , zy)∑
z′

x
P(z′

x)P(x | z′
x)P(Ry(x) | z′

x , zy)
(13)

Springer

368 Inf Retrieval (2006) 9:357–382

In the maximization step, model parameters P(zy | y), P(zx), P(x | zx), and P(r | zx , zy) are

updated using the posterior probabilities that are estimated in the expectation step:

P(zy | y) = P(zy | {x, Ry(x)}x∈X (y), y) (14)

P(zx) =
∑

zy

∑
y

∑
x∈X (y) P(zx | x, Ry(x), y, zy)P(zy | y)∑

zx

∑
zy

∑
y

∑
x∈X (y) P(zx | x, Ry(x), y, zy)P(zy | y)

(15)

P(x | zx) =
∑

zy

∑
y

∑
x ′∈X (y) P(zx | x ′, Ry(x ′), y, zy)P(zy | y)δ(x = x ′)∑

zy

∑
y

∑
x ′∈X (y) P(zx | x ′, Ry(x ′), y, zy)P(zy | y)

(16)

P(r | zx , zy) =
∑

y

∑
x ′∈X (y) P(zx | x ′, Ry(x ′), y, zy)P(zy | y)δ(Ry(x ′) = r)∑

y

∑
x ′∈X (y) P(zx | x ′, Ry(x ′), y, zy)P(zy | y)

(17)

4.2. Smoothing mixture models

The EM algorithm is notorious for finding undesirable local optimal solutions. In this

section, we discuss two techniques that can help avoid unfavorable solutions, both aim-

ing at regularizing the EM algorithm in some way. Again, we use the JMM as an example,

but the smoothing techniques can be applied to other models as well.

The first technique is called Annealed EM algorithm (AEM) (Hofmann and Puzicha,

1998). The idea can be described as follows: to prevent posterior distributions from being

skewed at the early stage of EM iterations, a regularization variable ‘b’ is introduced into

the expectation step. According to the Annealed EM algorithm, ‘annealed’ posteriors for the

JMM model are written as:

P(zy | {x, Ry(x)}x∈X (y), y) =
[
P(zy | y)

∏
x∈X (y) P(x, Ry(x) | zy)

]b∑
zy

[
P(zy | y)

∏
x∈X (y) P(x, Ry(x) | zy)

]b (18)

P(zx | x, Ry(x), y, zy) = [P(zx)P(x | zx)P(Ry(x) | zx , zy)]b∑
z′

x
[P(z′

x)P(x | z′
x)P(Ry(x) | z′

x , zy)]b
(19)

Note that when b = 1, the above equations return back to Eqs. (12) and (13), which correspond

to the expectation step of the normal EM algorithm. On the other hand, when b = 0, the

posteriors estimated in Eqs. (18) and (19) become uniform distributions that completely

ignore any training data. By varying b between 0 and 1, we are able to adjust posteriors

between uniform distributions and the distributions that are estimated from training data. In

the Annealed EM algorithm, parameter b is increased slowly from 0 to 1. Thus, the posteriors

initially start as uniform distributions. With the increasing value for b, the posteriors are more

influenced by training data and move away from uniform distributions. The purpose of slowly

increasing parameter b is to let the information from training data gradually being transferred

into the model, which prevents the model from committing to training data at early stage

and thereby helps the EM algorithm avoid undesirable local optimum. By viewing b as the

inverse of so-called ‘temperature’, the process of increasing b is analogous to the annealing

process that slowly drops system temperature.

The second smoothing strategy is to introduce a model prior into the mixture model.

The mixture models presented in previous sections are based on the maximum likelihood

Springer

Inf Retrieval (2006) 9:357–382 369

estimation, which determines the model parameters by maximizing the likelihood of training

data. To regularize the mixture model, this approach maximizes the posterior of training

data, which is a product of the prior and the likelihood. It is also called maximum a posterior

approach (MAP). Compared to the maximum likelihood approach, MAP has the advantage in

that the choice of parameters is affected not only by training data but also the prior preference

of mixture models. It is particularly useful when the amount of training data is insufficient

for learning a reliable model. Since a uniform distribution is our best guess when no rating

information is exposed, in general, an appropriate prior should favor distributions with equal

probabilities. One choice of such a prior is the Dirichlet prior with uniform means. Using the

JMM as an example, the Dirichlet prior for the JMM can be written as:

P(θ | a, b, c, d) ∝
{∏

zx

P(zx)

}a {∏
x,zx

P(x | zx)

}b {∏
y,zy

P(y | zy)

}c { ∏
zx ,zy ,r

P(r | zx , zy)

}d

(20)

where θ = {P(zx), P(x | zx), P(zy | y), P(r | zx , zy)} represents the parameter space for the

JMM, and a, b, c, and d are hyper parameters for Dirichlet distribution. Combining the prior

in the above equation with the likelihood function in Eq. (11), we have the objective function

for MAP written as:

L =
∑

y

log

{∑
zy

P(zy | y)
∏

x∈X (y)

∑
zx

P(zx)P(x | zx)P(Ry(x) | zx , zy)

}

+ a
∑

zx

log P(zx) + b
∑
x,zx

log P(x | zx) + c
∑
y,zy

log P(zy | y) + d
∑

r,zx ,zy

log P(r | zx , zy)

(21)

Our goal is to find the parameters that maximize the above objective function. In the above

equation, hyper parameters a, b, c, and d have played the role of regularization, and their

values reflect our confidence on the prior preference of the mixture models. When we are

unconfident about the prior preference, all the hyper parameters will be set small and the

resulting parameters will be mainly determined by the likelihood term. On the other hand,

when we are confident about the prior preference, all the hyper parameters will be set large

and the resulting parameters will be mainly determined by the prior term. Thus, by adjusting

hyper parameters a, b, c, and d, we are able to make appropriate tradeoff between the training

data and the prior knowledge of the models. The detailed EM algorithm for maximizing the

objective function in Eq. (21) is listed in Appendix A.

5. Rating prediction

To predict the ratings of items for a test user yt , we need to estimate distributions of latent

variables that are related to the test user. In addition to the ratings provided by training users,

each test user also provides a small number of rated items that can be utilized to discover

distributions of related latent class variables for the test user. Let Dtrain and Dtest stand for the

rating data for training users and test user yt , respectively. Let {hi }m
i=1 be the hidden variables.

Let θtrain and θtest = {P(hi | yt)}m
i=1 represent the parameter space that is related to training

users and the test user, respectively. In order to predict the rating of an item x by the test

Springer

370 Inf Retrieval (2006) 9:357–382

user yt , we need to estimate the likelihood P(r | Dtrain, Dtest , x) for each rating category ‘r’,

which can be approximated as follows:

P(r | Dtrain, Dtest, x) =
∑
Mtest

∑
Mtrain

P(r |θtest,θtrain, x)P(θtrain | Dtrain)P(θtest |θtrain, Dtest)

≈ P(r |θ∗
test,θ

∗
train, x)P(θ∗

train | Dtrain)P(θ∗
test |θ∗

train, Dtest)
(22)

where θ∗
train and θ∗

test stand for the optimal parameters that maximizes likelihood

P(θ∗
train | Dtrain) and P(θ∗

train |θ∗
test, Dtest), respectively. In the above expression, we approx-

imate the average with its optimal value. The advantage of the above approach is that, to

learn θ∗
test, i.e., the parameters related to the test user, we no longer need the training data

Dtrain . Instead, information inside the training data has been summarized into θ∗
train, i.e.,

parameters related to training users. Thus, θ∗
test is decided only by θ∗

train and Dtest. Using this

approximation, we will be able to efficiently predict ratings for the test user. Take the JMM

model as an example, the parameter space related to the test user is θtest = {P(zy | yt)} and

the optimal P(zy | yt) is computed by simply maximizing the likelihood of rating data by the

test user, i.e.,

L = log

{∑
zy

P(zy | yt ;θtest)
∏

x∈X (yt)

∑
zx

P(zx ;θtrain)P(x | zx ;θtrain)P(Ryt (x) | zx , zy ;θtrain)

}

+ c
∑

zy

log P(zy | yt ;θtest) (23)

In the above equation, we add either θtrain or θtest into each probability to illustrate which

parameter space it belongs to. Since Eq. (23) only involves the rated examples from test user

yt , finding optimal solution for P(zy | yt) usually can be done efficiently.

6. Experiments

In previous sections, we have analyzed a number of mixture models with different complexity

in terms of their analytical properties. In this section, we present experiment results that allow

us to examine how their analytical difference is correlated with their empirical performance.

Specifically, we address the following five issues:

1. Is separate modeling of users and items important to collaborative filtering? Recall that

the JMM and the FMM differ from the Aspect Model and Bayesian Clustering in that they

introduce two different class variables for modeling users and items separately. Thus, by

comparing both the JMM and the FMM to the Aspect Model and the Bayesian Clustering,

we will be able to see if separate clustering of users and items is effective for collaborative

filtering.

2. Is it beneficial to allow a user/item to belong to multiple classes? The difference between

the JMM and the FMM is that the JMM assumes a single class for each user while the

FMM allows each user to be in multiple classes. By comparing these two models, we will

be able to see which assumption is more appropriate for collaborative filtering.

3. Which smoothing technique is more effective for collaborative filtering? At the end of

Section 4, we discussed two different methods for smoothing the EM algorithm, including

an Annealed EM algorithm (AEM) and a MAP approach. Both methods prevent the

Springer

Inf Retrieval (2006) 9:357–382 371

Table 4 Characteristics of
movie rating and each movie Movie rating Each movie

Number of Users 500 2000

Number of Items 1000 1682

Avg. Number of rated Items/User 87.7 129.6

The scale of Ratings 1–5 1–6

estimation of parameters from being skewed at the early stage of EM iterations. We will

compare the effectiveness of the two smoothing methods for collaborative filtering.

4. Would modeling the distinction between intrinsic preferences and rating patterns help im-
prove the performance of collaborative filtering? The Decoupled Model (DM) is similar

to the Flexible Mixture Model (FMM) except that it models the intrinsic preferences and

rating strategies of users separately by using two different sets of class variables. We will

compare the Decoupled Model to the Flexible Mixture Model to see whether the distinc-

tion between intrinsic preferences and rating patterns helps improve the performance of

collaborative filtering.

5. How effective are the proposed models compared to other proposed models? We com-

pare all five mixture models to other approaches for collaborative filtering under various

conditions. In previous studies, when compared with the memory-based approaches, the

model-based approaches tend to have mixed results (Breese et al., 1998). It is thus inter-

esting to see if some sophisticated models, such as the Decoupled Model that decouples

the intrinsic preferences of users from their rating patterns, can outperform memory-based

approaches.

Two datasets of movie ratings are used in our experiments, i.e., ‘MovieRating’1 and ‘Each-

Movie’2. Specifically, we extracted a subset of 2,000 users with more than 40 ratings from

‘EachMovie’ since evaluation based on users with few ratings can be unreliable. The global

statistics of these two datasets are summarized in Table 4.

A major challenge in collaborative filtering applications is for the system to operate

effectively when it has not yet acquired a large amount of training data (i.e., the so-called

“cold start” problem). To test our algorithms in such a challenging and realistic scenario, we

vary the number of training users from a small value to a large value. To get a better sense of

the data sparseness problem, we introduce the measurement called ‘movie coverage’, which

measures the average number of times that each movie is rated in the training database. In

particular, we consider three different cases of training data:

1. Small Training Data. In this case, the training database consists of 20 different users, and

the ‘movie coverage’ for ‘MovieRating’ and ‘EachMovie’ is only 1.8 and 1.5, respectively.

In another word, by average each movie is rated by less than 2 training users.

2. Medium Training Data. In this case, the training database consists of 100 different users

for ‘MovieRating’ and 200 users for ‘EachMovie’. Its ‘movie coverage’ is 8.8 and 15.4

‘MovieRating’ and ‘EachMovie’, which is substantially larger than the small training data.

3. Large Training Data. In this case, the training database consists of 200 different users for

‘MovieRating’ and 400 users for ‘EachMovie’. The ‘movie coverage’ for this case is 17.7

and 30.8.

1 http://www.cs.usyd.edu.au/∼irena/movie data.zip
2 http://research.compaq.com/SRC/eachmovie

Springer

372 Inf Retrieval (2006) 9:357–382

By varying the number of training users from a ‘small training data’ to a ‘large training data’,

we are able to examine the robustness of the learning procedure. The other dimension to

examine is the robustness of mixture models with respect to the number of items rated by

the test user. In this experiment, we test mixture models against test users with 5, 10, and

20 given items. By varying the number of given items, we can test the robustness of the

prediction procedure.

For the aspect model (AM), we choose the variant in Fig. 2(a) as a baseline algorithm

since it consists of a smaller number of parameters and appears to be more robust than

the variant in Fig. 2(b). The number of clusters is set to be 10 for Bayesian Clustering

and 20 for Aspect Model. The number of classes for users and items are set to be 10 and

20 respectively, for the Joint Mixture Model, the Flexible Mixture Model, and the Decoupled

Model. These numbers are selected based on the results of cross validation. The number

of classes for rating patterns in Decoupled Model is the same as the number of different

rating category, which leads to 5 classes of rating patterns for ‘MovieRating’ and 6 for

‘EachMovie’.

For evaluation, we look at the mean absolute deviation (Pennock et al., 2000) of the

predicted ratings from the actual ratings on items by the test user, i.e.,

S = 1

m

∑
yt

∑
x∈X̃ (yt)

| Ryt (x) − R̂yt (x) | (24)

where R̂yt (x) is the predicted rating on item x for test user yt , Ryt (x) is the actual rating for

test user yt , and m is the total number of test items that have been rated by all test users. We

refer to this measure as the mean absolute error (MAE) in the rest of this paper. There are

some other measures like the Receiver Operating Characteristic (ROC) as a decision-support

accuracy measure (Breese et al., 1998) and the normalized MAE. But since MAE has been

the most commonly used metric and has been reported in most previous research (Breese

et al., 1998; Herlocker et al., 1999; Melville et al., 2002; SWAMI, 2000; Pennock et al.,

2000), we chose it as the evaluation measure in our experiments to make our results more

comparable.

6.1. Experiments with clustering of users and items

In these experiments, we want to address the first two questions listed at the beginning of this

section, namely whether modeling users and items separately is important to collaborative

filtering and whether it is beneficial to allow a user/item to belong to multiple clusters. MAE

results for the Joint Mixture Model, the Flexible Mixture Model, the Bayesian Clustering,

and the Aspect Model for ‘MovieRating’ and ‘EachMovie’ are summarized in Tables 5

and 6 respectively.

Several interesting observations can be made from Tables 5 and 6:

1. Compared to the Joint Mixture Model (JMM), the Flexible Mixture Model (FMM) per-

forms substantially better in most configurations except for the collection ‘MovieRating’

when the number of training users is only 20. This is because the FMM has more param-

eters to fit than the JMM and thus it fails to perform well when the number of training

users is small. In the next experiment where smoothing methods are applied to the EM

algorithm, we will see that the FMM is able to outperform the JMM substantially even

for this single case. The only difference between these two models is that the FMM al-

lows multiple classes for each user while the JMM does not. Thus, the fact that the FMM

Springer

Inf Retrieval (2006) 9:357–382 373

Table 5 MAE results for
‘MovieRating’ Training 5 items 10 items 20 items

users size Algorithms given given given

20 FMM 1.000 0.994 0.990

JMM 0.990 0.968 0.920

BC 1.10 1.09 1.08

AM 0.982 0.976 0.958

100 FMM 0.823 0.822 0.817

JMM 0.868 0.868 0.854

BC 0.968 0.946 0.941

AM 0.882 0.856 0.836

200 FMM 0.804 0.801 0.799

JMM 0.840 0.837 0.831

BC 0.949 0.942 0.912

AM 0.891 0.850 0.818

‘FMM’ stands for the Flexible
Mixture Model, ‘JMM’ stands for
the Joint Mixture Model, ‘BC’
stands for Bayesian Clustering,
and ‘AM’ stands for Aspect
Model. A smaller value means a
better performance.

outperforms the JMM indicates that allowing a user to be in multiple classes is important

to collaborative filtering. The hypothesis is further confirmed by the fact that the aspect

model performs better than the Bayesian Clustering algorithm for most configurations

(except for the EachMovie dataset when the number of training users is 400).

2. Compared to the Bayesian Clustering and the Aspect Model, the Flexible Model and the

Joint Mixture Model perform substantially better for most configurations except when the

number of training users is small. Again, this is because both the FMM and the JMM are

more sophisticated than the Bayesian Clustering and the Aspect Model and thus tend to

overfit training data when the number of users is small. In the next experiment, we will

see that with appropriate smoothing technique,both the FMM and the JMM perform well

Table 6 MAE results for
‘EachMovie’ Training 5 items 10 items 20 items

users size Algorithms given given given

20 FMM 1.31 1.31 1.30

JMM 1.38 1.37 1.36

BC 1.46 1.45 1.44

AM 1.28 1.24 1.23

200 FMM 1.08 1.06 1.05

JMM 1.17 1.15 1.15

BC 1.25 1.22 1.17

AM 1.27 1.18 1.14

400 FMM 1.06 1.05 1.04

JMM 1.10 1.09 1.09

BC 1.17 1.15 1.14

AM 1.28 1.19 1.16

‘FMM’ stands for the Flexible
Mixture Model, ‘JMM’ stands for
the Joint Mixture Model, ‘BC’
stands for Bayesian Clustering,
and ‘AM’ stands for Aspect
Model. A smaller value means a
better performance.

Springer

374 Inf Retrieval (2006) 9:357–382

Table 7 MAE for the Flexible
Mixture Model (FMM) on the
‘MovieRating’ dataset using
annealed EM algorithm (AEM)
and maximum a posterior (MAP)

Training 5 items 10 items 20 items

users size Algorithms given given given

20 AEM 1.000 0.994 0.990

MAP 0.881 0.877 0.870

100 AEM 0.823 0.822 0.817

MAP 0.821 0.820 0.813

200 AEM 0.804 0.801 0.799

MAP 0.797 0.786 0.781

even in the case of small training. Since both the FMM and JMM distinguish from the

Aspect Model and the Bayesian Clustering in that separate clustering is applied to users

and items, the results from Tables 5 and 6 indicate that modeling users and items separately

is effective for collaborative filtering.

6.2. Experiments with smoothing methods

In Section 3, we discussed two different methods for smoothing the EM algorithms: the

Annealed EM algorithm that avoids undesirable local optimum by slowly increasing variable

‘b’, and the maximum a posterior (MAP) approach that uses Dirichlet priors to regularize the

mixture models. In our experiments, variable ‘b’ in the Annealing EM algorithm is increased

from 0 to 1 at the pace of 0.1. The hyper parameters ‘a’, ‘b’, ‘c’, and ‘d’ in the MAP approach

are set as follows:

a =
∑

y |X (y)|
γ |Zx | b =

∑
y |X (y)|

γ × M × |Zx | c =
∑

y |X (y)|
γ × N × |Z y | d =

∑
y |X (y)|

γ × R × |Zx | × |Z y |

where |X (y)| stands for the number of items rated by the user ‘y’. Parameter γ (is determined

by the cross validation approach. We randomly select 80% of training users as the training

set and 20% of them as validation set. γ is ranged from 100 to 100000. The final value for

γ used in our experiment is 10000.

Tables 7 and 8 summarize the results for the Flexible Mixture Model using two different

smoothing methods. The results of applying smoothing methods to the Joint Mixture Model

are presented in Tables 9 and 10.

Table 8 MAE for thve Flexible
Mixture Model (FMM) on the
‘EachMovie’ dataset using
Annealed EM algorithm (AEM)
and maximum a posterior (MAP)

Training 5 items 10 items 20 items

users size Algorithms given given given

20 AEM 1.31 1.31 1.30

MAP 1.23 1.22 1.22

200 AEM 1.08 1.06 1.05

MAP 1.08 1.05 1.04

400 AEM 1.06 1.05 1.04

MAP 1.06 1.04 1.03

Springer

Inf Retrieval (2006) 9:357–382 375

Table 9 MAE for the Joint
Mixture Model (JMM) on the
‘MovieRating’ dataset using
Annealed EM algorithm (AEM)
and maximum a posterior (MAP)

Training 5 items 10 items 20 items

users size Algorithms given given given

20 AEM 0.990 0.968 0.920

MAP 0.986 0.963 0.920

100 AEM 0.868 0.868 0.854

MAP 0.864 0.863 0.854

200 AEM 0.840 0.837 0.831

MAP 0.837 0.833 0.831

Two observations can be drawn from Tables 7–10:

1. According to Tables 7–10, the MAP (i.e., maximum a posterior) approach outperforms

(or as effective as) the Annealed EM algorithm for both the Joint Mixture Model and the

Flexible Mixture Model in all configurations. In fact, compared to the results that do not

use any smoothing algorithm in Tables 3 and 4, the Annealed EM algorithm only achieves

the same performance as the original EM for all cases. Thus, our studies indicate that the

MAP approach is a more effective smoothing method for collaborative filtering.

2. With a more careful examination of Tables 7 and 8, we see that the MAP approach is

able to improve the performance of the FMM substantially when the number of train-

ing users is small (i.e., 20 for both ‘MovieRating’ and ‘EachMovie’). The improvement

becomes modest when the number of training user becomes large (i.e., 100 and 200 for

‘MovieRating’, and 200 and 400 for ‘EachMovie’). This is consistent with the spirit of

Bayesian statistics, in which a model prior is useful only when the amount of training data

is small. When the amount of training data is sufficiently large, the effect of model prior

will eventually diminish.

3. In the previous experiment, the aspect model is the winner in the case of small training

data. With the help of appropriate smoothing, the FMM model is able to perform better

than the aspect model in the case of small training data. This fact again indicates that the

smoothing method is able to effectively alleviate the problem of sparse data.

Due to the success of the MAP method, it is used for the remaining experiments.

6.3. Experiments with the decoupled model (DM)

Compared to the other four models, the Decoupled Model is unique in that it explicitly ad-

dresses the distinction between preferences and ratings of users by modeling them separately.

Table 10 MAE for the Joint
Mixture Model (JMM) on the
‘EachMovie’ dataset using
Annealed EM algorithm (AEM)
and maximum a posterior (MAP)

Training 5 items 10 items 20 items

users size Algorithms given given given

20 AEM 1.38 1.37 1.36

MAP 1.37 1.35 1.34

200 AEM 1.17 1.15 1.15

MAP 1.17 1.15 1.14

400 AEM 1.10 1.10 1.09

MAP 1.10 1.09 1.09

Springer

376 Inf Retrieval (2006) 9:357–382

Table 11 MAE for the Flexible
Mixture Model (FMM) and the
Decoupled Model (DM) on the
‘MovieRating’ dataset. A smaller
value means a better performance

Training 5 items 10 items 20 items

users size Algorithms given given given

20 DM 0.874 0.871 0.860

FMM 0.881 0.877 0.870

100 DM 0.814 0.810 0.799

FMM 0.821 0.820 0.813

200 DM 0.790 0.777 0.761

FMM 0.797 0.786 0.781

In this experiment we attempt to answer the question, i.e., would modeling the distinction
between the preferences and ratings help improve the performance? The results for the De-

coupled Model on ‘MovieRating’ and ‘EachMovie’ are listed in Tables 11 and 12 together

with the results for the Flexible Mixture Model (copied from Tables 4 and 5) The Flexible

Mixture Model is closely related to the Decoupled Model and differs from it only by the lack

of modeling for rating patterns. By comparing the performance of these two models, we will

be able to see if the introduction of separate class variables for preferences and ratings is

effective for collaborative filtering.

According to Tables 11 and 12 the Decoupled Model outperforms the Flexible Mixture

Model in all configurations. Although the difference in performance appears to be insignif-

icant in some cases, it is interesting to note that when the number of given items increases,

the gap between these two models also increases. One possible explanation is that when

there are only a small number of given items, it is rather difficult to determine the type of

rating patterns for the testing user. As the number of given items increases, this ambiguity

will decrease quickly and therefore the advantage of the Decoupled Model over the Flexible

Mixture Model becomes clearer. Indeed, it is a bit surprising that even with only five given

items and a small number of training users, the Decoupled Model still improves the perfor-

mance slightly as it has many more parameters to estimate than the Flexible Mixture Model.

We suspect that the skewed distribution of ratings among items, i.e., a few items account for

a large number of ratings, may have helped.

6.4. Comparison with other approaches for collaborative filtering

In this subsection, we compare all five mixture models to the memory-based approaches for

collaborative filtering, including the Personal Diagnosis (PD), the Vector Similarity method

Table 12 MAE for the Flexible
Mixture Model (FMM) and the
Decoupled Model (DM) on the
‘EachMovie’ dataset. A smaller
value means a better performance

Training 5 items 10 items 20 items

users size Algorithms given given given

20 DM 1.20 1.18 1.17

FMM 1.23 1.22 1.22

200 DM 1.07 1.04 1.03

FMM 1.08 1.05 1.04

400 DM 1.05 1.03 1.02

FMM 1.06 1.04 1.03

Springer

Inf Retrieval (2006) 9:357–382 377

(VS) and the Pearson Correlation Coefficient method (PCC). We first briefly introduce the

three memory-based approaches and then present the empirical results.

6.4.1. Memory-based methods for collaborative filtering

Memory-based algorithms store the rating examples of training users and predict a test user’s

ratings based on the corresponding ratings of the users in the training database that are similar

to the test user. Three commonly used methods will be compared in this experiment. They

are:� Pearson Correlation Coefficient (PCC)
According to (Resnick et al., 1994), the Pearson Correlation Coefficient method predicts

the rating of a test user yt on item x as:

R̂yt (x) = R̄yt +
∑

y∈Y wyt ,y(Ry(x) − R̄y)∑
y∈Y wyt ,y

where the coefficient wy,yt is computed as

wyt ,y =
∑

x∈X (y)∧ X̃ (yt) (Ry(x) − R̄y)(Ryt (x) − R̄yt)√∑
x∈X (y)∧ X̃ (yt) (Ry(x) − R̄y)2

√∑
x∈X (y)∧ X̃ (yt) (Ryt (x) − R̄yt)2

� Vector Similarity (VS)
This method is very similar to the PCC method except that the correlation coefficient wy,yt is

computed as:

wyt ,y =
∑

x∈X (y)X̃ (yt) Ry(x)Ryt (x)√∑
x∈X (y) Ry(x)2

√∑
x∈X̃ (yt) Ryt (x)2

� Personality Diagnosis (PD)
In the personality diagnosis model, the rating of test user yt on item x is assumed to be

drawn from an independent normal distribution with the mean as the true rating asRT rue
yt (x):

P
(
Ryt (x)

∣∣RT rue
yt (x)

) ∝ e−(Ryt (x)−RT rue
yt (x))2/2σ 2

where the standard deviation σ is set to constant 1 in our experiments. Then, the probability

of generating the observed rating values of the test user by any training user y is written as:

P(Ryt |Ry) ∝
∏

x∈X (yt)

e−(Ry (x)−R
yt (x))2/2σ 2

Finally, the likelihood for test user yt to rate an unseen item x as r is computed as:

P(Ryt (x) = r) ∝
∑

y

P(Ryt |Ry)e−(Ry (x)−r)2/2σ 2

The predicted rating for item ‘x’ by the test user will be the rating category r that has the

largest likelihood P(Ryt (x) = r). Previous empirical studies have shown that the PD method

performs better than several other approaches for collaborative filtering (Pennock et al.,

2000).

6.4.2. Comparison results

The results for five mixture models and three memory-based approaches are summarized in

Tables 13 and 14 Both the Decoupled Model and the Flexible Mixture Model are considerably

Springer

378 Inf Retrieval (2006) 9:357–382

Table 13 MAE for eight
different models on the
‘MovieRating’ dataset, including
a Pearson Correlation Coefficient
approach (PCC), a Vector
Similarity approach (VS), a
Personality Diagnosis approach
(PD), a Aspect Model (AM), a
Bayesian Clustering approach
(BC), a Decoupled Model (DM),
a Flexible Mixture Model (FMM)
and a Joint Mixture Model
(JMM). A smaller value means a
better performance

Training 5 items 10 items 20 items

users size Algorithms given given given

20 PCC 0.912 0.840 0.812

VS 0.912 0.840 0.812

PD 0.888 0.882 0.875

AM 0.982 0.976 0.958

BC 1.10 1.09 1.08

DM 0.874 0.871 0.860

FMM 0.881 0.877 0.870

JMM 0.986 0.963 0.920

100 PCC 0.881 0.832 0.809

VS 0.859 0.834 0.823

PD 0.839 0.826 0.818

AM 0.882 0.856 0.836

BC 0.968 0.946 0.941

DM 0.814 0.810 0.799

FMM 0.821 0.820 0.813

JMM 0.864 0.863 0.854

200 PCC 0.878 0.828 0.801

VS 0.862 0.950 0.854

PD 0.835 0.816 0.806

AM 0.891 0.850 0.818

BC 0.949 0.942 0.912

DM 0.790 0.777 0.761

FMM 0.797 0.786 0.781

JMM 0.837 0.833 0.831

better in most configurations than the other methods for collaborative filtering, including the

three mixture models and three model-based approaches for most cases. The only exception is

when the number of training user is 20, in which the memory-based models perform substan-

tially better than the model-based approaches. The overall success of the Decoupled Model

and the Flexible Mixture Model suggests that, compared to the memory-based approaches,

graphical models are not only advantageous in principle, but also empirically superior due

to their capabilities of capturing the distinction between the intrinsic preferences and rating

patterns in a principled way.

The fact that memory-based approaches perform better in the case of small training data

is because the number of parameters used by the model-based approaches is larger than the

size of training data. When there are only 20 training users, the number of rated items is

less than 3,000 (1700 for the ‘MovieRating’ dataset and 2500 for ‘EachMovie’ dataset),

but the number of parameters is actually over 20,000 for all the models (over 20,000 for

‘MovieRating’ dataset and 30,000 for ‘EachMovie’ dataset.). Therefore, when there are only

20 training users, the amount of training data is insufficient for creating a reliable and effective

model for collaborative filtering.

Springer

Inf Retrieval (2006) 9:357–382 379

Table 14 MAE for eight
different models on the
‘EachMovie’ dataset, including a
Pearson Correlation Coefficient
approach (PCC), a Vector
Similarity approach (VS), a
Personality Diagnosis approach
(PD), a Aspect Model (AM), a
Bayesian Clustering approach
(BC), a Decoupled Model (DM),
a Flexible Mixture Model (FMM)
and a Joint Mixture Model
(JMM). A smaller value means a
better performance

Training 5 items 10 items 20 items

users size Algorithms given given given

20 PCC 1.26 1.19 1.18

VS 1.24 1.19 1.17

PD 1.25 1.24 1.23

AM 1.28 1.24 1.23

BC 1.46 1.45 1.44

DM 1.20 1.18 1.17

FMM 1.23 1.22 1.22

JMM 1.37 .135 1.34

200 PCC 1.22 1.16 1.13

VS 1.25 1.24 1.26

PD 1.19 1.16 1.15

AM 1.27 1.18 1.14

BC 1.25 1.22 1.17

DM 1.07 1.04 1.03

FMM 1.08 1.05 1.04

JMM 1.17 1.15 1.14

400 PCC 1.22 1.16 1.13

VS 1.32 1.33 1.37

PD 1.18 1.16 1.15

AM 1.28 1.19 1.16

BC 1.17 1.15 1.14

DM 1.05 1.03 1.02

FMM 1.06 1.04 1.03

JMM 1.10 1.09 1.09

This analysis indicates that the performance of model-based approaches usually depends

strongly on the availability of training data. When the amount of training data is small, it is

better to use memory-based approaches for collaborative filtering.

7. Conclusions and future work

In this paper, we conduct a systematic study of a large subset of graphicals models – mixture

models – for collaborative filtering. In general, there are three components that need to

be modeled carefully: the users, the items and the ratings. We proposed three desirable

properties that a reasonable graphical model for collaborative filtering should satisfy: (1)

separate clustering of users and items; (2) flexibility for a user/item to be in multiple clusters;

(3) decoupling of users’ preferences and rating patterns.

We thoroughly analyzed five different mixture models, including the Bayesian Clustering

(BC), the Aspect Model (AM), the Flexible Mixture Model (FMM), the Joint Mixture Model

(JMM) and the Decoupled Model (DM) based on the three proposed properties, and found

that (1) The DM is the only model that satisfies all the three properties, and all others fail to

decouple user preferences and rating patterns; (2) The JMM and FMM models allow separate

Springer

380 Inf Retrieval (2006) 9:357–382

clustering of users and items, whereas the BC and AM do not; and (3) Compared with JMM,

the FMM further allows a user to be in multiple clusters.

We study the empirical impact of such analytical difference on real datasets. Experiments

over two datasets of movie ratings under several different configurations show that in general,

the fulfillment of the proposed properties tends to be positively correlated with the model’s

performance. In particular, the Decoupled Model, which satisfies all three properties, outper-

forms the other mixture models as well as most memory-based approaches for collaborative

filtering. Experiments also show that the Flexible Mixture Model is consistently better than

the Joint Mixture Model by the MAE measure, which indicates that it is beneficial to allow

a user to be in multiple classes. Meanwhile, the success of the FMM over the Bayesian

Clustering algorithm and the Aspect Model indicates that it is important to have separate

clustering of users and items for collaborative filtering.

We also empirically study two smoothing methods, the Annealed EM algorithm (AEM)

and the Maximum A Posterior (MAP), and found that smoothing is important for improving

the performance of collaborative filtering systems, particularly when the number of train-

ing users is small. Empirical results show that the MAP is a more effective method for

collaborative filtering.

In summary, our study shows that graphical models are powerful tools for modeling col-

laborative filtering, but careful design of the model is necessary to achieve good performance.

There are several interesting directions for extending this work. First, given the success of

decoupling user preferences from rating patterns, it would be very interesting to explore other

ways of modeling preferences as done in some related work (Ha & Haddawy, 1998; Freund

et al., 1998;Cohen et al., 1999). One potentially promising direction is to treat the rating

problem as a ranking problem, and apply the existing ranking algorithms, such as Prank and

RankBoost, to collaborative filtering. In the future, we plan to study how to incorporate the

ranking algorithm into the graphical models. Second, we also believe that the decoupling

problem that we addressed may represent a more general need of modeling “noise” in similar

problems such as gene microarray data analysis in bioinformatics. We plan to explore a more

general probabilistic framework for all these similar problems.

Apendix A: The EM algorithm for the joint mixture model using maximum a
posterior (MAP) approach

We studied the MAP approach for mixture models in Section 4.2. The idea is to introduce the

model priors that express the preference of parameters given no training data. The resulting

parameters will not only maximize the likelihood of training data but also satisfy the prior

preference. The E-step for the Joint Mixture Model using MAP approach is same as the

original one that is already stated in Eqs. (12) and (13). The updating equations in M-step

are changed to the following expressions:

P(zy | {x, Ry(x)}x∈X (y), y) = c + P(zy | y)
∏

x∈X (y) P(x, Ry(x)|zy)∑
zy

{
c + P(zy | y)

∏
x∈X (y) P(x, Ry(x)|zy)

} (14′)

Springer

Inf Retrieval (2006) 9:357–382 381

P(zx) =
a + ∑

zy

∑
y

∑
x∈X (y) P(zx | x, Ry(x), y, zy)P(zy | y)∑

zx
{a + ∑

zy

∑
y

∑
x∈X (y) P(zx | x, Ry(x), y, zy)P(zy | y)} (15′)

P(x | zx) =
b + ∑

zy

∑
y

∑
x ′∈X (y) P(zx | x ′, Ry(x ′), y, zy)P(zy | y)δ(x = x ′)

Mb + ∑
zy

∑
y

∑
x ′∈X (y) P(zx | x ′, Ry(x ′), y, zy)P(zy | y)

(16′)

P(r | zx , zy) = d + ∑
y

∑
x∈X (y) P(zx | x, Ry(x), y, zy)P(zy | y)δ(Ry(x) = r)

Rd + ∑
y

∑
x∈X (y) P(zx | x, Ry(x), y, zy)P(zy | y)

(17′)

Compared to the EM algorithm for the JMM in Eqs. (14)–(17), hyper parameters a, b, c,

and d in the above equations behave like pseudo counts. In addition to the ‘counts’ that are

collected from training data, all probabilities are also affected by the pseudo counts that

come from hyper parameters. When the number of training examples is small, the pseudo

counts will dominate over the estimation and thus the distribution tends to be uniform. On

the other hand, when the amount of training data is large, the effect of pseudo counts will be

ignored and the results obtained from the maximum a posterior approach will be similar to

the maximum likelihood approach.

References

Breese JS, Heckerman D and Kadie C (1998) Empirical analysis of predictive algorithms for collaborative
filtering. In the Proceeding of the Fourteenth Conference on Uncertainty in Artificial Intelligence

Cohen W, Shapire R and Singer Y (1998) Learning to order things. In: Advances in Neural Processing Systems
10. MIT Press, Denver, CO, 1997

Connor M and Herlocker J (2001) Clustering items for collaborative filtering. In the Proceedings of SIGIR-
2001 Workshop on Recommender Systems, New Orleans, LA

Dempster AP, Laird NM and Rubin DB (1977) Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, B39:1–38

Fisher D, Hildrum K, Hong J, Newman M and Vuduc R (2000) SWAMI: A framework for collaborative filtering
algorithm development and evaluation. In the Proceedings of the 23rd Annual International Conference
on Research and Development in Information Retrieval (SIGIR)

Freund Y, Iyer R, Shapire R and Singer Y (1998) An efficient boosting algorithm for combining preferences.
In Proceedings of ICML 1998

Ha V and Haddawy P (1998) Toward case-based preference elicitation: Similarity measures on preference
structures. In: Proceedings of UAI 1998

Herlocker JL, Konstan JA, Brochers A and Riedl J (1999) An algorithm framework for performing collaborative
filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR)

Hofmann T and Puzicha J (1999) Latent class models for collaborative filtering. In: Proceedings of International
Joint Conference on Artificial Intelligence 1999

Hofmann T and Puzicha J (1998) Statistical models for co-occurrence data (Technical report). Artificial
Intelligence Laboratory Memo 1625, M.I.T

Hofmann T (2003) Gaussian latent semantic models for collaborative filtering. In: Proceedings of the 26th
Annual International ACM SIGIR Conference

Jin R, Si L and Zhai CX (2003) Preference-based graphical models for collaborative filtering. In: Proceedings
of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI)

Melville P, Mooney RJ and Nagarajan R (2002) Content-boosted collaborative filtering for improved recom-
mendations. In the Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI)

Pennock DM, Horvitz E, Lawrence S and Giles CL (2000) Collaborative filtering by personality diagnosis: A
hybrid memory- and model-based approach. In the Proceeding of the Sixteenth Conference on Uncertainty
in Artificial Intelligence

Popescul A Ungar LH Pennock DM and Lawrence S (2001) Probabilistic models for unified collaborative and
content-based recommendation in sparse-data environments. In: Proceeding of the Seventeenth Confer-
ence on Uncertainty in Artificial Intelligence

Springer

382 Inf Retrieval (2006) 9:357–382

Resnick P, Iacovou N, Suchak M, Bergstrom P and Riedl J (1994) Grouplens: An open architecture for
collaborative filtering of netnews. In Proceeding of the ACM 1994 Conference on Computer Supported
Cooperative Work

Ross DA and Zemel RS (2002) Multiple-cause vector quantization. In NIPS-15: Advances in Neural Infor-
mation Processing Systems 15

Si L and Jin R (2003) Product space mixture model for collaborative filtering. In: Proceedings of the Twentieth
International Conference on Machine Learning (ICML)

Ueda N and Nakano R (1998) Deterministic annealing EM algorithm. Neural Networks, 11(2):271–282

Springer

