Skip to main content

Advertisement

Log in

Phytochemical profiling, antioxidant, cytotoxic, and anti-inflammatory activities of Plectranthus rugosus extract and fractions: in vitro, in vivo, and in silico approaches

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Background

Inflammation is a key biological reaction that comprises a complex network of signals that both initiate and stop the inflammation process.

Purpose

This study targets to evaluate the anti-inflammatory potential of the leaves of the Plectranthus rugosus (P. rugosus) plant involving both in vitro and in vivo measures. The current available drugs exhibit serious side effects. Traditional medicines impart an essential role in drug development. P. rugosus is a plant used in traditional medicine of Tropical Africa, China, and Australia to treat various diseases.

Methods

Lipopolysaccharide (LPS), an endotoxin, kindles macrophages to discharge huge quantities of pro-inflammatory cytokines like TNF-α and IL-6. So, clampdown of macrophage stimulation may have a beneficial potential to treat various inflammatory disorders. The leaves of the P. rugosus are used for swelling purpose by local population; however, its use as an anti-inflammatory agent and associated disorders has no scientific evidence.

Results

The extracts of the plant Plectranthus rugosus ethanolic extract (PREE), Plectranthus rugosus ethyl acetate extract (PREAF), and the compound isolated (oleanolic acid) suppress the pro-inflammatory cytokines (IL-6 and TNF-α) and nitric oxide (NO), confirming its importance in traditional medicine.

Conclusion

The pro-inflammatory cytokines are inhibited by P. rugosus extracts, as well as an isolated compound oleanolic acid without compromising cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Adnan M, Begum S, Khan AL, Tareen AM, Lee I-J (2012a) Medicinal plants and their uses in selected temperate zones of Pakistani Hindukush-Himalaya. J Med Plants Res 6:4113–4127

    Google Scholar 

  • Adnan M, Begum S, Latif A, Tareen AM, Lee L (2012b) Medicinal plants and their uses in selected temperate zones of Pakistani Hindukush-Himalaya. J Med Plants Res 6:4113–4127

    Google Scholar 

  • Affendi Raja Ali R, John EL (2011) How to manage the risk of colorectal cancer in ulcerative colitis. Curr Drug Targets 12:1424–1432

    Article  Google Scholar 

  • Ahmad M, Sultana S, Fazl-I-Hadi S, Ben Hadda T, Rashid S, Zafar M, Khan MA, Khan MPZ, Yaseen G (2014) An ethnobotanical study of medicinal plants in high mountainous region of Chail valley (District Swat-Pakistan). J Ethnobiol Ethnomed 10:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Akhtar N, Rashid A, Murad W, Bergmeier E (2013) Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan. J Ethnobiol Ethnomed 9:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Ammon H (2010) Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine 17:862–867

    Article  CAS  PubMed  Google Scholar 

  • Ananthi S, Raghavendran HRB, Sunil AG, Gayathri V, Ramakrishnan G, Vasanthi HR (2010) In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food Chem Toxicol 48:187–192

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2006) How corticosteroids control inflammation: quintiles prize lecture 2005. Br J Pharmacol 148:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton GM (2008) A calculated response: control of inflammation by the innate immune system. J Clin Invest 118:413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braca A, de Tommasi N, di Bari L, Pizza C, Politi M, Morelli I (2001) Antioxidant principles from bauhinia t arapotensis. J Nat Prod 64:892–895

    Article  CAS  PubMed  Google Scholar 

  • Charles JF, Humphrey MB, Zhao X, Quarles E, Nakamura MC, Aderem A, Seaman WE, Smith KD (2008) The innate immune response to Salmonella enterica serovar Typhimurium by macrophages is dependent on TREM2-DAP12. Infect Immun 76:2439–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204

    Article  PubMed  Google Scholar 

  • Cotran R (1999) Cellular pathology I: cell injury and cell death. In: Robbins pathologic basis of disease, pp 23–25

  • Duncan FJ, Wulff BC, Tober KL, Ferketich AK, Martin J, Thomas-Ahner JM, Allen SD, Kusewitt DF, Oberyszyn TM, Vanbuskirk AM (2007) Clinically relevant immunosuppressants influence UVB-induced tumor size through effects on inflammation and angiogenesis. Am J Transplant 7:2693–2703

    Article  CAS  PubMed  Google Scholar 

  • Dunn DL, Barke RA, Ewald DC, Simmons RL (1987) Macrophages and translymphatic absorption represent the first line of host defense of the peritoneal cavity. Arch Surg 122:105–110

    Article  CAS  PubMed  Google Scholar 

  • Ernst E (2000) Prevalence of use of complementary/alternative medicine: a systematic review. Bullet World Health Organ 78:258–266

    Google Scholar 

  • Folmer F, Jaspars M, Dicato M, Diederich M (2008) Marine natural products as targeted modulators of the transcription factor NF-κB. Biochem Pharmacol 75:603–617

    Article  CAS  PubMed  Google Scholar 

  • Freire MO, van Dyke TE (2013) Natural resolution of inflammation. Periodontol 2000(63):149–164

    Article  Google Scholar 

  • Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets-Inflam Allergy 4:281–286

    Article  CAS  Google Scholar 

  • Gautam R, Jachak SM (2009) Recent developments in anti-inflammatory natural products. Med Res Rev 29:767–820

    Article  CAS  PubMed  Google Scholar 

  • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabley S, Sattler I (2003) Natural products for lead identification: nature is a valuable resource for providing tools. In: Hillisch A, Hilgenfeld R (eds) Modern methods of drug discovery. Springer, Basel

    Google Scholar 

  • Ho KY, Gwee KA, Cheng YK, Yoon KH, Hee HT, Omar AR (2018) Nonsteroidal anti-inflammatory drugs in chronic pain: implications of new data for clinical practice. J Pain Res. https://doi.org/10.2147/JPR.S168188

    Article  PubMed  PubMed Central  Google Scholar 

  • Hortelano S (2009) Molecular basis of the anti-inflammatory effects of terpenoids. Inflamm Allergy-Drug Targets 8:28–39

    Article  PubMed  Google Scholar 

  • Hosseinzadeh H, Younesi HM (2002) Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseinzadeh H, Ramezani M, Salmani G-A (2000) Antinociceptive, anti-inflammatory and acute toxicity effects of Zataria multiflora Boiss extracts in mice and rats. J Ethnopharmacol 73:379–385

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Karin M, Sun BJNRCO (2021) Targeting cancer-promoting inflammation—have anti-inflammatory therapies come of age? Nat Rev Clin Oncol 18:261–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Irshad M, Aziz S, Habib-Ur-Rehman Hussain H (2012) GC-MS analysis and antifungal activity of essential oils of angelica glauca, plectranthus rugosus, and Valeriana wallichii. J Essent Oil Bear Plants 15:15–21

    Article  CAS  Google Scholar 

  • Joo T, Sowndhararajan K, Hong S, Lee J, Park S-Y, Kim S, Jhoo J-W (2014) Inhibition of nitric oxide production in LPS-stimulated RAW 264.7 cells by stem bark of Ulmus pumila L. Saudi J Biol Sci 21:427–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Kala CP, Farooquee NA, Dhar U (2004) Prioritization of medicinal plants on the basis of available knowledge, existing practices and use value status in Uttaranchal, India. Biodivers Conserv 13:453–469

    Article  Google Scholar 

  • Karin M, Greten FR (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  CAS  PubMed  Google Scholar 

  • Khan SW, Khatoon S (2007) Ethnobotanical studies on useful trees and shrubs of Haramosh and Bugrote valleys in Gilgit northern areas of Pakistan. Pak J Bot 39:699–710

    Google Scholar 

  • Lawrence T, Fong C (2010) The resolution of inflammation: anti-inflammatory roles for NF-κB. Int J Biochem Cell Biol 42:519–523

    Article  CAS  PubMed  Google Scholar 

  • Lee KH (2010) Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J Natl Prod 73:500–516

    Article  CAS  Google Scholar 

  • Li G, Lou HX (2018) Strategies to diversify natural products for drug discovery. Med Res Rev 38:1255–1294

    Article  PubMed  Google Scholar 

  • Libby P (2002) Ridker PM, and Maseri A. Inflam Atheroscler Circ 105:1135–1143

    CAS  Google Scholar 

  • Lin W-C, Lin J-Y (2010) Five bitter compounds display different anti-inflammatory effects through modulating cytokine secretion using mouse primary splenocytes in vitro. J Agric Food Chem 59:184–192

    Article  PubMed  Google Scholar 

  • Lukhoba CW, Simmonds MS, Paton AJ (2006) Plectranthus: a review of ethnobotanical uses. J Ethnopharmacol 103:1–24

    Article  PubMed  Google Scholar 

  • Mahesh G, Anil Kumar K, Reddanna P (2021) Overview on the discovery and development of anti-inflammatory drugs: should the focus be on synthesis or degradation of PGE2? J Inflam Res. https://doi.org/10.2147/JIR.S278514

    Article  Google Scholar 

  • Mir RH, Masoodi MHJCBC (2020) Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr Bioactive Compounds 16:809–817

    Article  CAS  Google Scholar 

  • Mir RH, Shah AJ, Mohi-Ud-din R, Pottoo FH, Dar M, Jachak SM, Masoodi MH (2021) Natural anti-inflammatory compounds as drug candidates in Alzheimer’s disease. Curr Med Chem 28:4799–4825

    Article  CAS  PubMed  Google Scholar 

  • Mir RH, Banday N, Sabreen S, Shah AJ, Jan R, Wani TU, Farooq S, Bhat Z (2022) Resveratrol: a potential drug candidate with multispectrum therapeutic application. Stud Natl Prod Chem 73:99–137

    Article  Google Scholar 

  • Moore RA, Derry S, Phillips CJ, Mcquay H (2006) Nonsteroidal anti-inflammatory drugs (NSAIDs), cyxlooxygenase-2 selective inhibitors (coxibs) and gastrointestinal harm: review of clinical trials and clinical practice. BMC Musculoskelet Disord 7:1–13

    Article  Google Scholar 

  • Nance CL (2015) Clinical efficacy trials with natural products and herbal medicines. In: Ramzan I (ed) Phytotherapies: efficacy, safety and regulation. Wiley online library, Hoboken

    Google Scholar 

  • Nathan C, Ding AJC (2010) Nonresolving inflammation. Cell 140:871–882

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Patwardhan B (2005) Ethnopharmacology and drug discovery. J Ethnopharmacol 100:50–52

    Article  PubMed  Google Scholar 

  • Patwardhan B, Gautam M (2005) Botanical immunodrugs: scope and opportunities. Drug Discov Today 10:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrone S, Lotti F, Geronzi U, Guidoni E, Longini M, Buonocore G (2016) Oxidative stress in cancer-prone genetic diseases in pediatric age: the role of mitochondrial dysfunction. Oxid Med Cell Long. https://doi.org/10.1155/2016/4782426

    Article  Google Scholar 

  • Rainsford K (1999) Profile and mechanisms of gastrointestinal and other side effects of nonsteroidal anti-inflammatory drugs (NSAIDs). Am J Med 107:27–35

    Article  Google Scholar 

  • Rao P, Knaus EE (2008) Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci 11:81–110s

    Article  Google Scholar 

  • Razdan T, Kachroo V, Harkar S, Koul G, Dhart KJP (1982) Plectranthoic acid, acetylplectranthoic acid and plectranthadiol, three triterpenoids from Plectranthus rugosus. Phytochemistry 21:409–412

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  • Sabeen M, Ahmad SS (2009) Exploring the folk medicinal flora of Abbotabad city, Pakistan. Ethnobotanical Leaflets 2009:1

    Google Scholar 

  • Scharl M, Rogler G (2012) Inflammatory bowel disease: dysfunction of autophagy? Dig Dis 30:12–19

    Article  PubMed  Google Scholar 

  • Schett G (2006) Rheumatoid arthritis: inflammation and bone loss. Wien Med Wochenschr 156:34–41

    Article  PubMed  Google Scholar 

  • Shah AJ, Mir RH, Pottoo FH, Masoodi MH, Bhat ZA (2021) Depression: an insight into heterocyclic and cyclic hydrocarbon compounds inspired from natural sources. Curr Neuropharmacol. https://doi.org/10.2174/1570159X19666210426115234

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaikh RU, Pund MM, Gacche RN, Mediciney C (2016) Evaluation of anti-inflammatory activity of selected medicinal plants used in Indian traditional medication system in vitro as well as in vivo. J Tradit Complement Med 6:355–361

    Article  PubMed  Google Scholar 

  • Shuaib M, Khan I, Sharifullah RK, Hashmatullah SM, Naz R (2014) Ethnobotanical studies of spring flora of Dir Lower, Khyber Pakhtunkhwa, Pakistan. Pak J Weed Sci Res 20:37–49

    Google Scholar 

  • Shuaib M, Khan I, Sharifullah KM (2015) Study of medicinal plants of lower dir, Timergara, Tehsil Balambat, Khyber Paktunkhaw-Pakistan. Am Eurasian J Agric Environ Sci 15:2088–2094

    CAS  Google Scholar 

  • Sibilia J (2003) Corticosteroids and inflammation. Rev Prat 53:495–501

    PubMed  Google Scholar 

  • Singh P, Kumar R, Prakash O, Pant AK, Kumar M, Isidorov VA, Szczepaniak LJ. 2019. Chemical composition, anti-inflammatory, analgesic, antipyretic, myorelaxant, antibacterial and antifungal activity of rabdosia rugosus wall.(Syn. Plectranthus rugosus Wall.). 5, 8–15.

  • Stark K, Massberg S (2021) Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol 18:666–682

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari A, Padalia R, Mathela CJ (2008) Sesquiterpene rich essential oil from plectranthus rugosus wall. J Essent Oil BearPlants 11:58–61

    Article  CAS  Google Scholar 

  • Tuchscherer M, Otten W, Kanitz E, Gräbner M, Tuchscherer A, Bellmann O, Rehfeldt C, Metges CC (2012) Effects of inadequate maternal dietary protein: carbohydrate ratios during pregnancy on offspring immunity in pigs. BMC Vet Res 8:232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahyuni IS, Sufiawati I, Nittayananta W, Levita J (2022) Anti-inflammatory activity and wound healing effect of Kaempferia galanga L. Rhizome on the chemical-induced oral mucosal ulcer in wistar rats. J Inflam Res. https://doi.org/10.2147/JIR.S359042

    Article  Google Scholar 

  • Weyerstahl P, Kaul V, Meier N, Weirauch M, Marschall H (1983a) Volatile constituents of Plectranthus rugosus leaf oil. Planta Med 48:99–102

    Article  CAS  PubMed  Google Scholar 

  • Weyerstahl P, Kaul V, Meier N, Weirauch M, Marschall HJPM (1983b) Volatile constituents of Plectranthus rugosus leaf oil. J Essential Oil Bear Plants 48:99–102

    CAS  Google Scholar 

  • Whelton A (2000) Renal and related cardiovascular effects of conventional and COX-2-specific NSAIDs and non-NSAID analgesics. Am J Therap 7:63–74

    Article  CAS  Google Scholar 

  • Xu X, Yin P, Wan C, Chong X, Liu M, Cheng P, Chen J, Liu F, Xu J (2014) Punicalagin inhibits inflammation in LPS-induced RAW264. 7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation. Inflammation 37:956–965

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Lamya Ahmed Al-Keridis extends her appreciation to Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2024R82), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

This work is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2024R82), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

RHM and MHM contributed to study concept and design, collected/analyzed data, performed project administration, and drafted the original manuscript. RM-ud-d, LAAl-K, BA, NA, MP, and MA contributed to methodology, data curation, investigation, visualization, analysis, review, and editing; RHM, MA, MHM, and RM-ud-d contributed to critical revision of the manuscript, methodology, validation, formal analysis, and study supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Reyaz Hassan Mir or Mubashir Hussain Masoodi.

Ethics declarations

Ethics approval

The protocol for the experiment was approved by the Institutional Animal ethics committee (Registration No. 801/GO/Re/2003/CPCSEA), University of Kashmir, India.

Informed consent statement

Not applicable.

Conflicts of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, R.H., Mohi-ud-din, R., Al-Keridis, L.A. et al. Phytochemical profiling, antioxidant, cytotoxic, and anti-inflammatory activities of Plectranthus rugosus extract and fractions: in vitro, in vivo, and in silico approaches. Inflammopharmacol 32, 1593–1606 (2024). https://doi.org/10.1007/s10787-023-01419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01419-2

Keywords

Navigation