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Abstract
Erigeron bonariensis is widely distributed throughout the world's tropics and subtropics. In folk medicine, E. bonariensis has 
historically been used to treat head and brain diseases. Alzheimer’s disease (AD) is the most widespread form of dementia 
initiated via disturbances in brain function. Herein, the neuroprotective effect of the chemically characterized E. bonariensis 
ethanolic extract is reported for the first time in an AD animal model. Chemical profiling was conducted using UPLC–ESI-MS 
analysis. Female rats underwent ovariectomy (OVX) followed by 42 days of D-galactose (D-Gal) administration (150 mg/kg/
day, i.p) to induce AD. The OVX/D-Gal-subjected rats received either donepezil (5 mg/kg/day) or E. bonariensis at 50, 100, 
and 200 mg/kg/day, given 1 h prior to D-Gal. UPLC–ESI-MS analysis identified 42 chemicals, including flavonoids, phenolic 
acids, terpenes, and nitrogenous constituents. Several metabolites, such as isoschaftoside, casticin, velutin, pantothenic acid, 
xanthurenic acid, C18-sphingosine, linoleamide, and erucamide, were reported herein for the first time in Erigeron genus. 
Treatment with E. bonariensis extract mitigated the cognitive decline in the Morris Water Maze test and the histopathologi-
cal alterations in cortical and hippocampal tissues of OVX/D-Gal-subjected rats. Moreover, E. bonariensis extract mitigated 
OVX/D-Gal-induced Aβ aggregation, Tau hyperphosphorylation, AChE activity, neuroinflammation (NF-κBp65, TNF-α, 
IL-1β), and apoptosis (Cytc, BAX). Additionally, E. bonariensis extract ameliorated AD by increasing α7-nAChRs expres-
sion, down-regulating GSK-3β and FOXO3a expression, and modulating Jak2/STAT3/NF-ĸB p65 and PI3K/AKT signaling 
cascades. These findings demonstrate the neuroprotective and memory-enhancing effects of E. bonariensis extract in the 
OVX/D-Gal rat model, highlighting its potential as a promising candidate for AD management.
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Abbreviations
AD  Alzheimer disease
UPLC–ESI-MS  Ultra-performance liquid chromatog-

raphy–electrospray ionization-tandem 
mass spectrometry

D-Gal  D-galactose
E. bonariensis  Erigeron bonariensis
OVX  Ovariectomy
SO  Sham operation
MWM  Morris water maze test
α7-nAChRs  Alpha 7 Nicotinic acetylcholine 

receptors
NF-ĸB  Nuclear factor kappa-light-chain-

enhancer of activated B cells
I.P.  Intraperitoneal injection
AChE  Acetylcholinesterase
GAPDH  Glyceraldehyde 3-phosphate
Aβ  Amyloid-β

Introduction

Alzheimer's disease (AD) is a progressive neurodegen-
erative disorder accounting for most cases of age-related 
dementia (Feigin et al. 2019). Although the etiology of 
AD is still unknown, many factors have been identified as 
major contributors to the disease, including amyloid-β (Aβ) 
deposition, tauopathy, oxidative stress, neuroinflammation, 
and increased activity of apoptotic pathways (Kinney et al. 
2018; Villemagne et al. 2018). Long-term administration of 
D-galactose (D-Gal) to ovariectomized (OVX) rats serves 
as an animal model that imitates behavioral, biochemical, 
and pathological alterations in AD (Hua et al. 2007; Kamel 
et al. 2018; Ibrahim et al. 2019).

Alpha 7 nicotinic acetylcholine receptors (α7-nAChRs) 
are ligand-gated ion channels that are highly expressed in 
brain regions involved in the regulation of cognitive func-
tion (Ma and Qian 2019). The α7-nAChR has been shown 
to play a vital role in the pathogenesis of the early phase 
of AD (Takata et al. 2022). Of note, Aβ accumulation has 
been reported to directly inhibit α7-nAChRs and underpin 
cognitive decline in AD patients (Nakaizumi et al. 2018; 
Potasiewicz et al. 2020). Thus, activation of α7-nAChRs 
exerts cognitive-enhancing effects via various mechanisms, 
including stimulating the cholinergic pathway, regulating 
inflammation and apoptosis, and attenuating the effects of 
Aβ (Hoskin et al. 2019). The α7-nAChRs-mediated neu-
roprotection against Aβ is initiated via activating Jak2 and 
modulating its downstream signaling cascades, including 
STAT3, PI3K, and GSK-3 (Marrero and Bencherif 2009; 
Ma and Qian 2019).

Asteraceae plants are widely distributed worldwide with 
extensive reports on their use in the treatment of several 
diseases (Elgamal et al. 2021). Conyza  species (Family 
Asteraceae), compromising approximately 150 plants (Wang 
et al. 2018), have significant medicinal uses such as treat-
ing rheumatism, diarrhea, toothache, hemorrhoids, bleed-
ing, and skin injuries (Ayaz et al. 2017; Peng et al. 2020; 
Elgamal et al. 2021). Erigeron bonariensis L. (previous 
name: Conyza linifolia (Willd.) Täckh.) is a unique plant in 
tropical and subtropical areas (Gabr 2021) that has not been 
previously reported regarding its chemical profiling. The 
chemical composition of its essential oil revealed its richness 
in terpenoids, including monoterpenes and sesquiterpenes 
(Harraz et al. 2015; Elgamal et al. 2021), exhibiting anti-
bacterial, insecticidal (Harraz et al. 2015), anticancer, and 
anti-aging effects (Elgamal et al. 2021). Recently, Peralta 
et al. (2022) reported on the isolation of highly oxygenated 
compounds, including fatty acids, monoterpenes, phenolic 
acids, and flavonoids from E. bonariensis extracts, with sig-
nificant phytotoxic effects.

Therefore, the present study aimed to: (i) determine 
the chemical composition of E. bonariensis aerial parts 
ethanolic extract via ultra-performance liquid chromatog-
raphy–electrospray ionization-tandem mass spectrometry 
(UPLC–ESI-MS) in an untargeted manner to characterize a 
broad range of polar and non-polar metabolites in a holistic 
manner (Farag et al. 2022); (ii) assess the protective role of 
E. bonariensis extract against OVX/D-Gal-induced memory 
impairments in rats; and (iii) unveil the mechanistic path-
ways of E. bonariensis neuroprotective effects, focusing on 
the role of α7-nAChR as one of the main nAChR subtypes 
that is extensively expressed in brain area implicated in 
learning and memory processes.

Materials and methods

Plant collection

Fresh aerial parts of E. bonariensis were collected from 
Cairo–Alexandria Desert Road, Egypt during the stage of 
plant flowering on the 10th of April 2021, early morning 
at 6:00 am. The plant collection and authentication were 
kindly performed by Prof. Ahmed M. Abdel Gawad, Profes-
sor of Plant Ecology, Mansoura University, Egypt. The plant 
identification was performed as previously described (Bou-
los 2002). A plant specimen [EB(x215)-YD-20197-021] 
was saved in the herbarium of Mansoura University, Egypt. 
The collected plant parts were left for complete drying in a 
shaded, clean open-air place at ± 25 °C for 15 days, and then 
crushed into powder.
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Extraction process

The plant powder (1200 g) was extracted on cold using a 
mixture of ethanol and bi-distilled water at a ratio of 7:3 for 
3 consecutive days at ± 25 °C followed by filtration. This 
process was repeated twice, and the whole extract was dried 
under reduced pressure at 45 °C using a rotary evaporator 
(Heidolph Laborota 4003, Germany) till complete drying. 
The extract was obtained as a black gum (46.5 g) and was 
kept in the fridge (4 °C) inside a dark black glass vial until 
further analysis.

Ultra‑performance liquid chromatography–
electrospray ionization‑high‑resolution tandem 
mass spectrometry profiling of extract

After extraction, the UPLC–ESI-MS profiling of the plant 
extract was performed using an Acquity UPLC system 
(Waters, Germany) equipped with an HSS T3 column (100 
× 1.0 mm, particle size 1.8 µm; Waters), applying the same 
parameters reported by Ayoub et al. (2022), Hassan et al. 
(2023), and Abib et al. (2023).

Drugs and chemicals

D-Gal and donepezil were purchased from Sigma-Aldrich 
Chemical Co., St. Louis, MO, USA, and dissolved in saline. 
A high analytical grade of other chemicals was used.

Animals

Three-month-old female Wistar rats, weighing 160–190 g, 
were acquired from the animal house of the National 
Research Centre (Giza, Egypt). They were habituated for 
1 week before starting the experiment at the animal facility 
of Faculty of Pharmacy, Cairo University (Cairo, Egypt). 
Rats were supplied with food and water ad  libitum and 
housed in monitored environmental conditions of tempera-
ture (23 ± 2 °C), humidity (60 ± 10%), and 12/12 h light/
dark cycle. The investigational procedures were reviewed 
and accepted by the Ethics Committee of Faculty of Phar-
macy, Cairo University (Ethical approval no: PT3352). The 
protocol also followed the guidelines of the National Insti-
tutes of Health Guide for Care and Use of Laboratory Ani-
mals (2011). Every attempt was made to reduce the suffering 
of animals through the experiments.

Experimental design

Sixty female rats were arbitrarily distributed between six 
groups (n = 13/group). Group I (SO): sham operation (SO) 
was conducted on rats and served as the control group. In 
group II (OVX/D-Gal), bilateral ovariectomy (OVX) was 

performed on rats according to the operation method dis-
cussed by Salama et al. (2021) and after a recovery period of 
5 days, they received daily intraperitoneal injection of D-Gal 
(150 mg/kg) for 42 days (Ibrahim et al. 2022; El Sayed et al. 
2023). Group III (Donepezil): OVX/D-Gal-subjected rats 
received donepezil (5 mg/kg/day) (Ademosun et al. 2022) 
orally for 42 days, given 1 h prior to D-Gal administration. 
Group IV, V, and VI (E. bonariensis 50, 100, and 200 mg/
kg/day): OVX/D-Gal-subjected rats received the alcoholic 
extract of E. bonariensis at three different doses (50, 100, 
and 200 mg/kg/day) (Barua et al. 2019; El-Akhal et al. 2021) 
orally for 42 days, given 1 h prior to D-Gal administration. 
Before the end of the experiment by 4 days, all animals were 
subjected to the Morris water maze (MWM) test for memory 
performance evaluation. The MWM was performed over 4 
successive days. The training phase was conducted on days 
39–41 (first 3 days), and 24 h after the last training ses-
sion, the probe trial was performed on day 42 (4th day). One 
day later after performing the probe test (day 43), rats were 
decapitated under anesthesia. Brains were rapidly excised, 
washed, and dried and then weighed. The hippocampi were 
separated from their brains and flash frozen in liquid nitro-
gen, and then stored at – 80 °C for later biochemical analy-
sis. Based on the behavioral and histopathological exami-
nation of the three tested doses of E. bonariensis alcoholic 
extract, the dose 100 mg/kg was selected and used for further 
biochemical assessment.

Ovariectomy

Rats were exposed to OVX under anesthesia using ketamine 
(50 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.). In brief, the 
area located on each lateral side of the abdomen between the 
last rib and the hip was shaved and disinfected, and then, a 
small opening was made in this area exposing the ovaries 
and its associated oviducts. Afterward, a hemostatic clamp 
was positioned underneath the ovaries and a suture knot was 
done below it, and then, the ovaries were cut with sterile 
scissors. Using absorbable and non-absorbable threads, the 
muscle and skin layers were sutured. The SO was done as 
previously illustrated except for ovarian removal. An antibi-
otic spray and anti-inflammatory cream were applied to the 
wound. Rats were given chow devoid of soy to ignore the 
impact of phytosteroids (Khajuria et al. 2012; Ibrahim et al. 
2016; Salama et al. 2021).

Behavioral assay

The MWM assesses the spatial reference memory in rodents. 
The maze is a four-equally divided circular pool with a 
diameter of 150 cm and a height of 60 cm and filled with 
40 cm deep opaque water containing a non-toxic water-sol-
uble black dye. A platform of 8 cm diameter was located just 
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under the water surface in the center of a certain quadrant. 
In each day of the three training days, 2 training trials (120 s 
each) were given for each rat. In the training session, each 
animal was freely left to locate the platform. When the ani-
mal succeeded to reach the platform, it could stay on it for 
10 s. However, when the animal failed to get to the platform 
during the specified time, it was gently guided to the plat-
form and left on it for 30 s. 1 day following the last training, 
the platform was removed to conduct the probe test where 
each rat was left in the pool for 60 s. During this period, 
animals’ performance was videotaped by an overhead cam-
era and then analyzed using the ANY-Maze video tracking 
software (Stoelting Co, USA) (Ibrahim et al. 2020).

Enzyme‑linked immunosorbent assay

In each of the SO, OVX/D-Gal, Donepezil, and E. bonar-
iensis 100 mg/kg groups, the hippocampi of 6 rats were 
homogenized in ice-cold phosphate-buffered saline. Rat-
specific ELISA kits acquired from My BioSource (San 
Diego, CA, USA) were utilized to assess the hippocam-
pal content of Aβ42 (Cat. #MBS726579), Cytc (Cat. 
#MBS727663), NF-κBp65 (Cat. #MBS775083), and IL-1β 
(Cat. #MBS825017). Additionally, BCL-2 and BAX hip-
pocampal contents were measured using rat ELISA kits pro-
vided by Biomatik (Ontario, Canada, Cat. # EKC40527 and 
EKC41377, respectively). Further, AChE was determined 
using an ELISA kit supplied by CUSABIO Technology 
LLC, China (Cat. # CSB-E11304r) and TNF-α quantifica-
tion was performed using the PicoKine ELISA kit (Boster, 
CA, USA, Cat. #MBS175904). All procedures were per-
formed according to the manufacturer’s guidelines. The 
protein content of tissue homogenates was determined as 
previously described (Bradford 1976).

Western blot

The hippocampal protein expression of phosphorylated 
forms of Jak2 and STAT3 was determined in each group of 
SO, OVX/D-Gal, Donepezil, and E. bonariensis 100 mg/
kg groups using Western blot technique. In brief, the pro-
tein content of the right side of hippocampal tissues (n = 
3/group) was extracted by Ready  Prep™ protein extraction 
kit, Bio-Rad Inc., CA, USA, and then assessed as previ-
ously described (Bradford 1976). Equal protein amounts 
were loaded onto SDS-polyacrylamide gel for their electro-
phoresis separation according to the molecular weight, and 
then, they were transported into a nitrocellulose membrane. 
After being soaked in 5% skimmed milk, the blocked mem-
branes were incubated at 4°C overnight on a roller shaker 
with solutions containing the following primary antibodies 
provided by Cell Signaling Technology, USA: anti-p-Jak2 
(Tyr1007/1008), anti-p-STAT3 (Tyr705), and anti-β-actin 

antibodies (Cat. #3771, 9131, and 4967, respectively). 
After washing the membranes, they were incubated with 
the horseradish peroxidase-conjugated secondary antibody 
(Dianova, Hamburg, Germany). The blots were finally 
developed through enhanced chemiluminescence detection 
(Amersham Biosciences, IL, USA). A scanning laser den-
sitometry (Biomed Instrument, Inc., CA, USA) was used to 
determine the intensities of the protein bands. Results were 
presented as arbitrary units relative to β-actin protein expres-
sion (Ragab et al. 2022).

Quantitative real‑time PCR

In each of SO, OVX/D-Gal, Donepezil, and E. bonariensis 
100 mg/kg groups, total RNA was extracted from the left 
side of hippocampi samples (n = 5/group). The Direct-zol 
RNA Miniprep Plus (Cat# R2072, Zymo Research Corp., 
USA) was used according to the manufacturer’s instruc-
tions. Additionally, any possible contaminations of genomic 
DNA were removed via on-column DNA digestion, using an 
RNase free DNase kit. Then, the isolated total RNA was kept 
at – 80 °C. We determined the concentration of total RNA 
by Nano-drop 2000/c (Thermo Fisher Scientific, Wilming-
ton, USA) and confirmed the presence of intact RNA using 
2% agarose electrophoresis. Samples with clear 28 and 
18S ribosomal RNA bands were selected for studying gene 
expression. The quantity and quality of RNA were assessed 
using Beckman dual spectrophotometer (USA). The isolated 
RNA was converted into cDNA using cDNA synthesis kit 
(SuperScript IV One-Step RT-PCR kit (Cat# 12594100, 
Thermo Fisher Scientific, Waltham, MA USA). Comple-
mentary DNA (cDNA) synthesis was performed according 
to the manufacturer's instructions. The expression patterns 
of α7-nAChR, Tau, PI3K, AKT, FOXO 3A, and GSK3B in 
addition to a housekeeping gene (GAPDH) were evaluated 
using the respective primers as described in Table 1. The 
real-time PCR reaction was performed in a thermal profile 
(48-well plate StepOne instrument; Applied Biosystem, 
USA) as follows: 10 min at 55 °C for reverse transcription, 
2 min at 95 °C for RT inactivation and initial denaturation 
by 40 cycles of 10 s at 95 °C, 10 s at 55 °C and 30 s at 
72 °C for the amplification step, then 5 min at 72 °C for final 
extension. The relative expression of the assessed genes was 
quantified versus GAPDH according to the  2−∆∆CT method 
(Livak and Schmittgen 2001).

Histological examination

The whole brain of two rats from each group was rap-
idly removed and fixed in freshly prepared 10 % neu-
tral buffered formalin, processed routinely, and embed-
ded in paraffin. Sections were cut in 5 μm-thickness and 
stained with hematoxylin and eosin (H and E) for blind 
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histopathological examination and scoring under a light 
microscope (Mohamed et al. 2016).

Statistical analysis

Results of the present study were analyzed using one-way 
ANOVA followed by Tukey’s multiple comparisons test and 
were expressed as mean ± SD. GraphPad Prism software 
(version 9) was used to perform the statistical analysis, with 

the level of significance being set at p < 0.05 for all statisti-
cal tests.

Results

Chemical composition of E. bonariensis extract

The chemical composition of E. bonariensis alcoholic 
extract was revealed utilizing UPLC–ESI-MS/MS (Fig. 1), 
operated in positive and negative ionization modes to pro-
vide a comprehensive overview of E. bonariensis metabo-
lome. Assignment of metabolites was performed based on 
the comparison of mass fragmentation patterns to previ-
ously published data. A total of 42 chemicals were identi-
fied including 17 flavonoids, 6 phenolic acid derivatives, 
and 5 fatty acids, in addition to terpenoids and nitrogenous 
compounds as depicted in Table 2.

Flavonoids

Flavonoids is considered the major metabolite class as rep-
resented by 17 entities mostly present as O- or C-glycosides. 
The O-glycosidic linkage, connecting the glycoside group to 
flavonoid aglycone, may easily be cleaved yielding product 
ions with 132, 146, 162, and 176 amu neutral mass losses 
indicating the presence of pentose, deoxyhexose, hexose, 
and hexuronyl moieties, respectively. In contrast, flavo-
noid-C-hexosides exhibited fragmentations at − 90, − 120, 
and – 150 amu due to sugar partial cleavages, while flavo-
noid-C-pentosides showed neutral loss at – 60 amu. Other 

Table 1  Gene names and details of primers used for qRT-PCR analy-
sis

Gene Sequence 5ʹ to 3ʹ Accession no.

α7-nAChR F: CTT CAT GCA ACC AGG ATC 
AG

R: TCT GTG CCC TTG ATA 
GCAC 

S53987

Tau F: ACG ATT TCT GCT CCA TGG TC
R: AAG GTG ACC TCC AAG TGT G

XM_039085764.1

PI3K F: TTA AAC GCG AAG GCA ACG A
R: CAG TCT CCT CCT GCT GTC 

GAT 

XM_032898971.1

AKT F: AAT GAC CGG GGA GTC CGA AT
R: ATG TGC TTC ATC CTG CCC AC

NM_001044712.1

FOXO 3A F: GCC TCA TCT CAA AGC TGG GT
R: AGT TCT GCT CCA CGG GAA AG

NM_001106395

GSK3B F: AGC TGA TCT TTG GAG CCA CC
R: TGG GGC TGT TCA GGT AGA GT

NM_032080

GAPDH F: GTT ACC AGG GCT GCC TTC TC
R: GAT GGT GAT GGG TTT CCC GT

NM_017008

Fig. 1  Representative UPLC–ESI–MS chromatogram of E. bonariensis alcohol extract carried out in A negative and B positive ionization modes
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Table 2  Assigned metabolites in E. bonariensis alcohol extract via UPLC–ESI–MS analysis in negative and positive ion modes

RT [min] Name Class Precursor Formula Error (ppm) Fragments Refs

0.967 Gluconic acid Sugar acid 195.0511 C6H11O7
− 0.3 177, 151, 129, 99, 

87, 75
1.002 Quinic acid Organic acid 191.0557 C7H11O6

− − 2.1 127
2.679 Phenylalanine Amino acid 166.0864 C9H12NO2

+ 0.8 131, 120, 107, 103
3.065 Dihydroxy-dimethyl-

Oxobutyl-Alanine 
(Pantothenic acid)

Nitogenous com-
pound

220.1183 C9H18NO5
+ 1.5 202, 184, 116, 90 (Pantami et al. 2020)

3.275 Xanthurenic acid Quinoline 206.0446 C10H8NO4
+ − 0.8 178, 160, 132 (An et al. 2018)

3.534 Tryptophan Amino acid 203.0825 C11H11N2O2
− − 0.4 159, 142, 116, 74

3.983 Caffeoyl-quinic acid Phenolic 353.0874 C16H17O9
− − 1.1 191

4.459 Apigenin-C-pen-
tosyl-C-hexoside 
(Isoschaftoside)

Flavonoid 565.1553 C26H29O14
+ 0.2 547, 529, 505, 499, 

475, 445, 427, 415, 
409, 385, 356

(Keskes et al. 2018)

4.665 Luteolin-C-hexoside Flavonoid 449.1074 C21H21O11
+ − 0.9 431, 413, 383, 

353,329, 299
(Afifi et al. 2023a)

4.82 O-Caffeoyl-quinic 
acid methyl ester 
(Methyl chlorogen-
ate)

Phenolic 369.1184 C17H21O9
+ 1.1 177, 163

5.044 Trihydroxy-flavone-
C-hexoside (Isovi-
texin)

Flavonoid 433.1133 C21H21O10
+ 0.8 415, 313, 283 (Afifi et al. 2023b)

5.085 Apigenin-O-diglucu-
ronide

Flavonoid 623.1248 C27H27O17
+ 0.8 447, 271

5.581 Isorhamnetin-O-hex-
oside [2 M-H]

Flavonoid 955.2144 C44H43O24
− − 0.6 477

5.65 Quercetin-O-hexo-
side (isoquercitrin)

Flavonoid 465.1025 C21H21O12
+ − 0.5 303

5.76 Kaempferol-O-glu-
curonide

Flavonoid 463.0872 C21H19O12
+ 0.2 287

6.138 Dicaffeoylquinic 
acid (Cynarin)

Phenolic 515.1197 C25H23O12
− 0.3 353, 191 (Fang et al. 2002)

6.183 Quercetin-O-malo-
nylhexoside

Flavonoid 551.103 C24H23O15
+ − 0.2 303, 231, 163

6.281 Cimicifugic acid Phenolic 449.1076 C21H21O11
+ − 0.5 341, 303, 287, 273, 

255, 193
(Li et al. 2003a)

6.656 Luteolin-O-hexoside Flavonoid 447.0938 C21H19O11
− 0.6 285

7.18 Cynarin isomer Phenolic 517.1337 C25H25O12
+ − 0.6 163 (Fang et al. 2002)

7.214 Dicaffeoylquinic 
acid lactone

Phenolic 499.1231 C25H23O11
+ − 0.7 337, 175 (El-Hawary et al. 

2022)
7.463 Luteolin-C-hexoside 

isomer
Flavonoid 447.0934 C21H19O11

− 0.8 357

8.183 Trihydroxy-dimeth-
oxyflavone-O-glu-
curonide (Tricin-
O-glucuronide)

Flavonoid 507.1131 C23H23O13
+ − 0.4 331, 315

9.77 Trihydroxyflavone-
O-dihexoside

Flavonoid 593.1528 C27H29O15
− 2.7 431, 269 (Afifi et al. 2023a)

9.82 Unknown Terpene 249.1481 C15H21O3
+ − 1.6 231, 213, 203, 185, 

177, 175
10.287 Tetrahydroxyflavone 

(Luteolin)
Flavonoid 285.0415 C15H9O6

− 3.6 241, 175

10.673 Quercetin Flavonoid 301.0347 C15H9O7
− 2.17 285, 245, 179, 165, 

151, 133, 121
(Hassan et al. 2023)
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common fragmentations of flavonoid aglycones involve retro 
Diels–Alder fission (Farag et al. 2022).

Peak 8 exhibited molecular ion at m/z 565.1553 [M+H]+ 
indicating a formula  C26H29O14

+, and product ions at m/z 
505 [M+H-60]+, 475 [M+H-90]+, 445 [M+H-120]+, and 
415 [M+H-150]+ suggesting C-pentosyl and C-hexosyl moi-
eties. While, the other fragments at m/z 385 [M+H-180]+ 
and 356 [M+H-209]+, suggesting the aglycone linked to 
sugar residues, viz., apigenin (270) +115 and apigenin (270) 
+ 86, respectively, indicated di-C-substituted flavone. Peak 8 
was annotated as apigenin-C-pentosyl-C-hexoside (isoschaf-
toside) (Keskes et al. 2018) and reported in Erigeron genus 
for the first time. Likewise, peaks 9 and 11 revealed parent 
ions at m/z 449.1074 [M+H]+  C21H21O11

+ and 433.1133 
[M+H]+  C21H21O10

+, respectively and fragment ions at 
[M+H-120]+ and [M+H-150]+ owing to C-hexosyl moie-
ties. Peaks 9 and 11 were identified as luteolin-C-hexoside 
and trihydroxy-flavone-C-hexoside (isovitexin), respec-
tively, and initially reported in E. bonariensis. Peaks 19 and 

22 exhibited similar molecular ion at m/z 447.09 [M-H]- 
 C21H19O11

- albeit different fragmentations at m/z 285 [M-H-
162]- and 357 [M-H-90]- assigning them as luteolin-O-hex-
oside and luteolin-C-hexoside isomer, respectively. Peak 
24 (m/z 593.1528 [M-H]-  C27H29O15

-) demonstrated con-
secutive losses of two O-hexosyl moieties at m/z 431 [M-H-
162]- and 269 [M-H-2×162]- leading to its assignment as 
trihydroxyflavone-O-dihexoside. Such fragmentation pattern 
[M+H-162]+ was also observed in peak 14 (m/z 465.1025 
[M+H]+  C21H21O12

+) and annotated as quercetin-O-hexo-
side (isoquercitrin), previously reported in E. bonariensis 
(Zahoor et al. 2012). In addition, peak 13 (m/z 955.2144 
[2M-H]-  C44H43O24

-) was identified for the first time in E. 
bonariensis as dimer of isorhamnetin-O-hexoside. Further-
more, peak 17 (m/z 551.103 [M+H]+  C24H23O15

+) exhibited 
daughter ion at m/z 303 [M+H-162-86]+ corresponding to 
the loss of O-hexosyl and malonyl moieties. Peak 17 is iden-
tified herein for the first time in E. bonariensis as quercetin-
O-malonylhexoside. The fragmentation pattern of losing 

Table 2  (continued)

RT [min] Name Class Precursor Formula Error (ppm) Fragments Refs

11.392 Trihydroxy-meth-
oxy-flavone

Flavonoid 301.07 C16H13O6
+ − 2.2 286, 283, 255, 241, 

137
(Afifi et al. 2023b)

11.415 Costunolide Terpene 233.153 C15H21O2
+ − 7.3 215, 187, 177, 159

12.021 Dihydroxy-
Tetramethoxyfla-
vone (Casticin)

Flavonoid 375.1061 C19H19O8
+ − 3.5 360, 342, 317, 231, 

215, 179
(Fu et al. 2020)

12.335 Dihydroxy-
Dimethoxyflavone 
(Velutin)

Flavonoid 315.0856 C17H15O6
+ − 2.2 300, 282, 257, 201, 

187
(Gomes et al. 2022)

13.138 Sphingosine Sphingolipid 300.2887 C18H38NO2
+ − 3.3 282, 264, 252 (Saigusa et al. 2012)

14.463 Octadeca-tetraenoic 
acid

Fatty acid 277.2149 C18H29O2
+ − 4.7 259, 135, 121

15.034 Hydroxyoctadecadi-
enoic acid

Fatty acid 295.2276 C18H31O3
− − 0.9 277, 195

15.13 Unknown Nitrogenous com-
pound

305.1071 C12H22N2O3PS+ − 4 277, 249, 181, 169, 
153

15.223 Palmitoyl-glycero-
phosphoethanol-
amine

Phospholipid 454.2925 C21H45NO7P+ − 0.6 436, 393, 313, 282, 
216

(Neves et al. 2020)

15.457 Hydroxy-octadec-
atrienoic acid

Fatty acid 293.2123 C18H29O3
− 0.2 275, 171

15.752 Hydroxy-octade-
catrienoic acid 
[2 M-H]

Fatty acid 587.4309 C36H59O6
− − 1.3 293

16.319 Linoleamide Nitrogenous com-
pound

324.2888 C18H34NO+ − 2.7 307, 263, 245

16.439 Icosatetraenoic acid 
(Arachidonic acid)

Fatty acid 305.2465 C20H33O2
+ − 3.2 287, 259, 163, 149

16.826 Docosenamide (Eru-
camide)

Nitrogenous com-
pound

338.3406 C22H44NO+ − 3.3 321, 303

17.236 Epoxylanostadien-
one (Cornusalterin 
L)

Terpene 439.3557 C30H47O2
+ − 3 249, 203, 191
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hexuronyl moiety (-176 amu) was detected in peaks 12, 15, 
and 23 and identified for the first time in E. bonariensis as 
apigenin-O-diglucuronide, kaempferol-O-glucuronide, and 
tricin-O-glucuronide, respectively.

Peak 30 (m/z 375.1061 [M+H]+  C19H19O8
+) produced 

diagnostic fragment ions at m/z 360, 342 and 317 corre-
lated to [M+H-methyl]+, [M+H-methyl-H2O]+, and [M+H-
2methyl-CO]+, respectively. The identity of peak 30 was 
confirmed as dihydroxy-tetramethoxyflavone (casticin), in 
agreement with previously reported data (Fu et al. 2020). 
The fragmentation pattern of peak 31 was like casticin where 
peak 31 (m/z 315.0856 [M+H]+  C17H15O6

+) revealed daugh-
ter ions at m/z 300 [M+H-methyl]+, 282 [M+H-methyl-
H2O]+, and 257 [M+H-2methyl-CO]+, suggesting a poly-
methoxylated flavonoid, viz., velutin (luteolin 7,3-dimethyl 
ether) (Gomes et al. 2022). Both casticin and velutin were 
reported herein for the first time in Erigeron genus. Other 
flavonoid aglycones were detected on negative ion mode 
in peaks 26 (m/z 285.0415 [M-H]-  C15H9O6

-) and 27 (m/z 
301.0347 [M-H]-  C15H9O7

-) corresponding to tetrahydroxy-
flavone (luteolin) and quercetin, respectively. Quercetin was 
previously reported in E. bonariensis (Zahoor et al. 2012), 
while luteolin was detected in Erigeron acris (Nalewajko-
Sieliwoniuk et al. 2019).

Phenolic acids

Six hydroxyl-cinnamic acid esters were detected for the first 
time in E. bonariensis, which are considered as potent anti-
oxidants (Fraisse et al. 2011). In detail, five quinic acid esters 
were present in peaks 7, 10, 16, 20, and 21, belonging to 
O-caffeoyl-quinic acid derivatives characteristic to Erigeron 
(Zahoor et al. 2012). Peak 7 (m/z 353.0874 [M-H]-  C16H17O9

-), 
characterized by loss of caffeoyl moiety at m/z 191 [M-H-
162]- corresponding to deprotonated quinic acid, was identi-
fied as O-caffeoyl-quinic acid. Another less polar peak 10 (m/z 
369.1184 [M+H]+  C17H21O9

+) revealed fragment ions due to 
neutral loss of quinic acid at m/z 177 [M+H-192]+ and proto-
nated caffeoyl moiety at m/z 193 indicating O-caffeoyl-quinic 

acid methyl ester. Peaks 16 and 20 demonstrated fragment 
ions owing to the loss of two caffeoyl fragments (− 2×162) 
in sequence and were annotated as dicaffeoylquinic acid and 
its isomer, which were reported previously in Erigeron acris 
(Nalewajko-Sieliwoniuk et al. 2019). Likewise, peak 21 (m/z 
499.1231 [M+H]+  C25H23O11

+) showed same fragmentation 
pattern with two consecutive losses of caffeoyl fragments and 
was characterized as dicaffeoylquinic acid lactone. Finally, 
peak 18 (m/z 449.1076 [M+H]+  C21H21O11

+) generated a 
base peak at m/z 255 [M+H-194]+ from neutral loss of ferulic 
acid in addition to a fragment ion at m/z 193 [M+H-194-H2O-
CO2]+. Similarly, the formation of a daughter ion with less 
relative abundance at m/z 273 [M+H-176]+ was observed from 
neutral loss of feruloyl moiety, suggesting that this compound 
was cimicifugic acid (Li et al. 2003b).

Nitrogenous compounds

Several parent peaks revealed even molecular ions, suggest-
ing the presence of nitrogenous atom. Peak 4 (m/z 220.1183 
[M+H]+  C9H18NO5

+) demonstrated successive loss of water 
at m/z 202 [M+H-18]+ and 184 [M+H-36]+. In addition, two 
daughter peaks at m/z 116 and 60 were detected, which were 
attributed to the cleavage of Cα–CO and amidic bonds yield-
ing acyl ion and protonated β-alanine, respectively. Peak 4 
was annotated as pantothenic acid. Likewise, peak 32 (m/z 
300.2887 [M+H]+  C18H38NO2

+) suffered from successive 
loss of water at m/z 282 and 264 besides fragment at m/z 252 
[M+H-18-30]+ corresponding to loss of one water and formal-
dehyde. Peak 32 was characterized as C18-sphingosine. Peak 
5 (m/z 206.0446 [M+H]+  C10H8NO4

+) showed fragments at 
m/z 178 [M+H-CO]+, 160 [M+H-CO-H2O]+, and 132 [M+H-
CO-H2O-CO]+, and was identified as xanthurenic acid. Herein, 
pantothenic and xanthurenic acids and C18-sphingosine were 
reported for the first time in Erigeron genus. Peak 36 (m/z 
454.2925 [M+H]+  C21H45NO7P+) revealed fragments at m/z 
436 [M+H-H2O]+, 393 [M+H-H2O-C2H5N]+, 313 [M+H-
141]+ due to the loss of phosphoethanolamine and m/z 216 
[M+H-238]+ corresponding to loss of palmitoyl moiety. 
This peak was annotated as palmitoyl-glycero-phosphoe-
thanolamine, initially reported in E. bonariensis. Peaks 39 
(m/z 324.2888 [M+H]+  C18H34NO+) and 41 (m/z 338.3406 
[M+H]+  C22H44NO+) were identified as linoleamide and eru-
camide for the first time in Erigeron genus. Both peaks showed 
similar fragmentation pattern owing to the loss of ammonia 
[M+H-17]+ and water [M+H-18]+.

E. bonariensis extract ameliorated memory 
impairment in OVX/D‑Gal‑subjected rats in MWM 
test

The effect of E. bonariensis extract on the spatial memory 
performance of OVX/D-Gal-subjected rats was evaluated 

Fig. 2  Effect of E. bonariensis on OVX/D-Gal-induced spatial mem-
ory deterioration in MWM test. A Time spent in the target quadrant, 
B TIME spent in the opposite quadrant, C latency to platform zone 
first entry, and D Number of platform zone entries. Rats underwent 
either SO or OVX, and after 5 days, they received D-Gal (150 mg/kg/
day, i.p) for 42  days. OVX/D-Gal-subjected rats were orally treated 
with donepezil (5 mg/kg/day) or the alcoholic extract of E. bonarien-
sis at three different doses (50, 100, and 200 mg/kg/day) for 42 days, 
given 1 h prior to D-Gal. Four days before the end of the experiment, 
all animals were subjected to MWM test where the training phase 
was conducted on days 39–41 and the probe trial was performed on 
day 42. Data were expressed as mean ± SD (n = 13), using one-way 
ANOVA followed by Tukey’s post hoc test (P < 0.05). OVX: ovariec-
tomy, D-Gal D-galactose, MWM Morris water maze, SO sham opera-
tion

◂
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at three different doses (50, 100, and 200 mg/kg/day) in the 
MWM. As described in Fig. 2, OVX/D-Gal rats spent less 
time in the target quadrant by 37% (F(5, 72) = 1.730, p = 
0.1386) contrary to more time in the opposite quadrant by 
1.7-fold as compared to the SO group (F(5, 72) = 0.9186, p = 
0.4740). Additionally, rats took longer time to firstly enter 
the platform zone than the SO group rats by 3.4-fold (F(5, 72) 
= 7.307, p < 0.0001) and exhibited reduced frequency of 
platform zone's entry by 64% (F(5, 72) = 1.154, p = 0.3404). 
Administration of E. bonariensis extract in OVX/D-Gal rats 
at the doses of 100 and 200 mg/kg/day ameliorated their 
memory performance in a comparable manner. These doses 
succeeded in preventing OVX/D-Gal-induced memory 
impairment and restoring the values of all the previously 
mentioned behavioral variables to the normal range, produc-
ing equivalent effects to those of donepezil. However, the 
extract at a dose 50 mg/kg failed to exert any ameliorative 
effect on memory functions of OVX/D-Gal rats.

E. bonariensis extract ameliorates histopathological 
alterations in OVX/D‑Gal‑subjected rats

In Table 3 and Fig. 3, cortical sections from the SO group 
showed normal histological structure as indicated by nor-
mally appearing neurons with prominent nucleoli (Fig. 3A). 
The OVX/D-Gal group showed severe histopathological 
alteration including a considerable number of injuries in 
neurons: degeneration, necrosis and perineuronal vacuola-
tion, nuclei of the cells were shrunken, pyknotic, or apop-
totic nuclei along with congestion of cerebral blood ves-
sel (Fig. 3B). In contrast, cortical sections of Donepezil 
group exhibited nearly normal neuronal morphology with 
minimal pyknotic, apoptotic nuclei (Fig. 3C). Likewise, sec-
tions from E. bonariensis 50 mg/kg group showed moderate 
improvement as revealed by pyknosis of few neurons, less 
perineuronal vacuolation, few apoptotic nuclei and acido-
philic cytoplasm, and mild congestion of cerebral blood 
vessels (Fig. 3D). However, cortical tissues of E. bonar-
iensis 100 mg/kg group showed almost normal histological 
structure. Some neurons showed normally stained nuclei 

and other neurons showed minimal apoptotic cells and pyk-
notic nuclei with normal blood vessels (Fig. 3E). Sections 
of E. bonariensis 200 mg/kg group showed almost normal 
neuronal cells of the cortex. Still, a few histopathological 
changes such as minimal pyknotic and apoptotic nuclei with 
normal blood vessels were still seen (Fig. 3F).

In Table 4 and Fig. 4, hippocampal sections of the SO 
control group revealed normal architecture of the pyramidal 
cells (Fig. 4A). The OVX/D-Gal group showed numerous 
histopathological changes including many damaged neurons, 
degenerated pyramidal cells, and vacuolated neurons. Nuclei 
of the cells were shrunken, pyknotic, and hyperchromatic 
(Fig. 4B). The hippocampal sections of Donepezil group 
showed normal architecture of the pyramidal cells with few 
pyknotic nuclei (Fig. 4C). The sections of E. bonariensis 50 
mg/kg group showed moderate tissue changes as mild vacu-
olated neurons with pyknotic nuclei (Fig. 4D), while those of 
E. bonariensis 100 mg/kg group showed noticeable improve-
ment of the hippocampus as evidenced by a nearly normal 
appearance of most of the neurons and normal vesicular 
nucleoli. Some neurons showed pyknotic nuclei (Fig. 4E). 
The hippocampal sections of E. bonariensis 200 mg/kg 
group showed normal appearance of the hippocampal region 
and obvious improvement in most of the neurons and normal 
central vesicular nucleoli. Some neurons showed pyknotic 
nuclei (Fig. 4F).

E. bonariensis extract alleviated OVX/D‑Gal‑induced 
changes in AChE, Tau, and Aβ42 hippocampal levels

The intraperitoneal injection of D-Gal along with OVX 
caused a prominent elevation in the hippocampal levels of 
Tau (3.5-fold) and Aβ42 (2.3-fold), the hallmarks of AD, 
with a significant upsurge in the ACh hydrolyzing enzyme, 
AChE by 2.1-fold, in comparison with the SO group (for 
AChE: F(3, 20) = 2.054, p = 0.1386; for Tau: F(3, 16) = 3.105, 
p = 0.0562; for Aβ42: F(3, 20) = 4.235, p = 0.0180). This was 
ameliorated by E. bonariensis extract (100 mg/kg/day) lead-
ing to a decrease in their levels by 47% (Tau), 51% (Aβ42), 
and 41% (AChE) as compared to the OVX/D-Gal group, 

Table 3  The severity of 
histological alterations 
in cortical tissues of 
histopathological alterations in 
OVX/D-Gal rats treated with E. 
bonariensis extract

− Absent
+ Mild
+  + Moderate
+  +  + Severe

Histopathological damage SO OVX/D-Gal Donepezil E. bonariensis (mg/kg)

50 100 200

Degeneration −  +  +  +  +  +  +  +  +  + 
Perineuronal vacuolation −  +  +  + −  +  +  +  +  + 
Apoptosis −  +  +  + −  +  +  +  + 
Pyknotic nuclei −  +  +  +  +  +  +  +  + 
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and this effect was analogous to that produced by donepezil 
(Fig. 5).

E. bonariensis extract lessens OVX/D‑Gal‑induced 
changes in α7‑nAChR, p‑Jak2, and p‑STAT3 
hippocampal expression

In hippocampus, the key brain area responsible for learn-
ing and memory processing, α7-nAChR is extensively 
expressed. Its gene level in the hippocampi of the OVX/D-
Gal group was significantly depressed by 68% as compared 
to the SO group (F(3, 16) = 1.561, p = 0.2376). This was 
associated with a significant reduction in the hippocam-
pal protein expression of p-Jak2 (79%) and p-STAT3 
(61%), which are important effects of α7-nAChR (F(3, 8) = 
0.6681, p = 0.5950 for p-Jak2; F(3, 8) = 1.254, p = 0.3532 
for p-STAT3). The administration of E. bonariensis extract 
(100 mg/kg) in OVX/D-Gal-subjected rats restored the hip-
pocampal α7-nAChR by 2.2-fold along with a rise in p-Jak2 
and p-STAT3 hippocampal expression by 3.4- and 2-fold, 
respectively, producing a comparable effect with that of the 
donepezil group (Fig. 6).

E. bonariensis extract modulated OVX/
D‑Gal‑induced changes in PI3K, AKT, GSK‑3β, 
and FOXO3a hippocampal expression

The mRNA expression of PI3K, AKT, GSK-3β, and 
FOXO3a were significantly up-regulated in the hippocampi 
of OVX/D-Gal rats by 2.5-, 2.9-, 3.3-, and 3.7-fold, respec-
tively, compared to SO rats (for PI3K: F(3, 16) = 1.019, p = 
0.4101; for AKT: F(3, 16) = 1.924, p = 0.1664; for GSK-3β: 
F(3, 16) = 1.560, p = 0.2380; for FOXO3a: F(3, 16) = 2.180, p 
= 0.1302). Such effects were mitigated by treating the OVX/
D-Gal rats with E. bonariensis at a dose of 100 mg/kg result-
ing in major reduction in their expression by 47% (PI3K), 
60% (AKT), 51% (GSK-3β), and 63% (FOXO3a). Similarly, 
the reference drug donepezil significantly down-regulated 
the gene level of PI3K, AKT, GSK-3β, and FOXO3a pro-
ducing analogous effects to that of E. bonariensis extract 
(100 mg/kg) (Fig. 7).

E. bonariensis extract mitigated OVX/D‑Gal‑induced 
inflammation and apoptosis in rats

Ovarian excision combined with D-Gal administration led 
to a profound state of apoptosis as well as aggravated neuro-
inflammatory response. This was evidenced by a prominent 
elevation in the hippocampal content of the pro-inflamma-
tory markers and cytokines, namely, NF-κBp65 (1.3-fold), 
TNF-α (1.4-fold), and IL-1β (1.1-fold) in the OVX/D-Gal 
group as compared to the SO group (for NF-κBp65: F(3, 20) 
= 0.1082, p = 0.9543; for TNF-α: F(3, 20) = 1.085, p = 

0.3782; for IL-1β: F(3, 20) = 0.6984, p = 0.5640). Likewise, 
the OVX/D-Gal group demonstrated a remarkable depres-
sion in the hippocampal content of BCL-2, the anti-apoptotic 
marker by 37%, along with significant increase in levels of 
the pro-apoptotic markers, BAX and Cytc by about 3.4- and 
2-fold, respectively, in comparison with their control coun-
terparts (for BCL-2: F(3, 20) = 1.074, p = 0.3824; for BAX: 
F(3, 20) = 1.886, p = 0.1645; for Cytc: F(3, 20) = 8.497, p 
= 0.0008). Such effects were mitigated upon E. bonarien-
sis extract administration at the dose of 100 mg/kg, in an 
equivalent manner to that of donepezil, prominently reduc-
ing the NF-κBp65 (18%), TNF-α (30%), IL-1β (16%), Cytc 
(39%), and BAX (66%), while increasing the BCL-2 levels 
(1.7-fold), as compared to the OVX/D-Gal group (Fig. 8).

Discussion

The current study is the first to illustrate the effectiveness 
of E. bonariensis extract in mitigating cognitive decline 
and AD-like pathological alterations in OVX/D-Gal rats. 
This finding is supported by (i) an improvement in spatial 
memory of rats; (ii) attenuation of OVX/D-Gal-induced 
histopathological alterations; (iii) reduction of Aβ1-42 and 
p-Tau, the disease hallmarks; (iv) stimulating the choliner-
gic activity; (v) increase in the expression of α7-nAChRs; 
(vi) modulation of Jak2/STAT3/NF-ĸB p65 and PI3K/AKT 
signaling cascades; (vii) down-regulating the expression of 
GSK-3β and FOXO3a; and (viii) the anti-inflammatory and 
anti-apoptotic activities.

In the present study, OVX/D-Gal group rats exhibited 
spatial learning memory impairments, as evidenced by the 
results of the MWM test, which is in line with former find-
ings (Kamel et al. 2018; Ibrahim et al. 2019, 2023). How-
ever, treatment with E. bonariensis extract (100 or 200 mg/
kg) markedly improved the memory performance of OVX/
D-Gal group rats, producing effects equivalent to those of 
donepezil. This suggests the memory-protective potential 
of the extract in AD. These results were consistent with the 
histopathological analysis, which demonstrated that E. bon-
ariensis extract successfully preserved the cerebral cortex 
and hippocampus tissues of OVX/D-Gal group rats.

The Aβ42 aggregation and formation of neurofibril-
lary tangles containing hyperphosphorylated Tau protein 
are major culprits in the pathogenesis of AD (Zhang et al. 
2021; El-Hawary et al. 2021). These neurotoxic pathologi-
cal hallmarks are responsible for cognitive decline, sig-
nificant inflammatory response, synaptic dysfunction, and 
neuronal death (Kolarova et al. 2012; Sadigh-Eteghad et al. 
2015). Herein, OVX/D-Gal induced a marked elevation in 
the hippocampal level of Aβ42 and expression of p-Tau. 
However, treatment with E. bonariensis extract (100 mg/
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kg) ameliorated the aforementioned effects, supporting its 
neuroprotective role.

Our results also show that OVX/D-Gal group rats dem-
onstrated an upsurge of hippocampal AChE content with 
subsequent cognitive and memory impairments, as reported 
previously (Abdelkader et al. 2020). Treatment with E. 
bonariensis extract (100 mg/kg) succeeded in boosting 

the cholinergic activity through the profound decrease of 
hippocampal AChE content in OVX/D-Gal group rats. In 
agreement, a previous study reported the cholinomimetic 
activities of ethanolic and chloroform extracts of C. bon-
ariensis (Yaseen et al. 2014). Furthermore, various plant 
extracts have begun to gain attention as potential inhibitors 
of AChE that could be used as a therapeutic option for AD 
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(Taqui et al. 2022). Herein, the detected polyunsaturated 
fatty acids, i.e., arachidonic acid, conjugated linolenic, and 
linoleic acids in E. bonariensis extract, can impact the cho-
linergic system. It was reported that the presence of poly-
unsaturated fatty acids is necessary for effective cholinergic 
transmission (Lesa et al. 2003). In addition, flavonoids and 
other polyphenol compounds can reverse motor and cogni-
tive deficits in aging (Ramezani et al. 2023). It was reported 
that kaempferol-O-glucuronide, luteolin, quercetin, and iso-
quercitrin, detected in E. bonariensis extract using LC-MS 
as peak no. 15, 26, 27 and 14, respectively (Table 2), have 
the ability to inhibit the activity of AChE leading to the 
improvement of signal transmission in cholinergic neurons’ 
synapses (Balkis et al. 2015). Moreover, those particular 
flavonoids revealed potent anti-AChE activity than other 
flavonoids lacking free OH group at position 4 of ring B 
(Khan et al. 2018). Noteworthy, xanthurenic acid detected in 
E. bonariensis extract peak no. 5 was reported to impede the 

transport of glutamate into synaptic vesicles, thus reducing 
glutamatergic transmission and, ultimately, lowering gluta-
mate release at the synaptic level (Fazio et al. 2017). How-
ever, this effect was outweighed by major polyunsaturated 
fatty acids, flavonoids, and other polyphenol compounds 
detected in E. bonariensis extract.

Accumulating evidence suggests the role of α7-nAChRs 
in the pathogenesis of cognitive dysfunction in AD (Ma 
et al. 2014). Aβ42 binds to α7-nAChRs with high affinity, 
reducing the expression of the receptor and impairing learn-
ing and memory (Karthick et al. 2019; Tofighi et al. 2021). 
Furthermore, α7-nAChRs present in immune cells are the 
primary receptors in the “anti-inflammatory cholinergic 
pathway” (Hoskin et al. 2019). Activation of α7-nAChRs 
has been reported to inhibit lipopolysaccharide (LPS)-
induced cognitive dysfunction and neuroinflammation in 
the hippocampus of mice (Alzarea and Rahman 2019). 
The derangement of the Jak/STAT pathway has been impli-
cated in neuroinflammation and neuronal survival (Camp-
bell 2005). The α7-nAChR activation inhibits NF-κB p65 
activity by stimulating the Jak2/STAT3 signaling cascade, 
ultimately suppressing the production of pro-inflammatory 
cytokines (Marrero and Bencherif 2009; Egea et al. 2015). In 
the present study, treatment with E. bonariensis extract (100 
mg/kg) up-regulated α7-nAChR mRNA expression, Jak2, 
STAT3 expression in hippocampus of OVX/D-Gal group 
rats, along with consequent suppression of NF-ĸB p65 level. 
These findings suggest the role of α7-nAChR activation in 
the neuroprotective and cognitive-enhancing effects of E. 
bonariensis extract via modulating the Jak2/STAT3, a sign-
aling pathway that negatively regulates NF-κB p65. Of note, 
certain flavonoids or phenolic acids, such as luteolin (Parker-
Athill et al. 2009), quercetin (Wu et al. 2019), cirsimaritin 
(Lee et al. 2016), and caffeoyl-quinic acid (Kour et al. 2022), 
are capable of modulating Jak2/STAT3 signaling.

The other arm upon which E. bonariensis alcoholic 
extract acted to attenuate OVX/D-Gal-induced neuroin-
flammation and cognitive impairment is the PI3K/AKT 
signaling pathway. The PI3K/AKT signaling pathway has 
been proven to play an important role in many physiological 
processes of the CNS, such as cell survival, neurogenesis, 

Fig. 3  Effect of E. bonariensis on OVX/D-Gal-induced cerebral 
cortex histopathological changes. Representative H&E photomicro-
graphs (cerebral cortex region) of all experimental groups (n = 2); 
magnification: Hand E × 200 A SO group showing normal structure 
of cerebral cortex and the neurons with their characteristic large 
vesicular nuclei (N); B OVX/D-Gal group showing numerous histo-
pathological changes including a large number of damaged neurons, 
degenerated, necrotic (arrowhead), perineuronal vacuolation (V), 
pyknotic nuclei (P), apoptotic (A), and congestion of cerebral blood 
vessel (arrow); C Donepezil group showing nearly normal neuronal 
morphology with minimal pyknotic, apoptotic nuclei (P); D E. bon-
ariensis 50  mg/kg group showing less histopathological changes 
except for pyknosis of some neurons (P), apoptotic nuclei, and peri-
neuronal vacuolation (V); E E. bonariensis 100 mg/kg group show-
ing almost normal histological structure. Some neurons had normally 
stained nuclei and other neurons showed minimal apoptotic cells (A) 
and pyknotic nuclei (P) with normal blood vessels (Bv); F E. bon-
ariensis 200  mg/kg group showing almost normal neuronal cells of 
cortex with few histopathological changes such as minimal pyknotic 
(P) and apoptotic nuclei (A). Rats underwent either SO or OVX, and 
after 5  days, they received D-Gal (150  mg/kg/day, i.p) for 42  days. 
OVX/D-Gal-subjected rats were orally treated with donepezil (5 mg/
kg/day) or the alcoholic extract of E. bonariensis at three different 
doses (50, 100, and 200 mg/kg/day) for 42 days, given 1 h prior to 
D-Gal. One day after behavioral testing (day 43), rats were decapi-
tated, and the brains were separated for histopathological examina-
tion. OVX ovariectomy, D-Gal D-galactose, SO sham operation

◂

Table 4  The severity of 
histological alterations in 
hippocampal tissues of 
OVX/D-Gal rats treated with E. 
bonariensis extract

− Absent
+ Mild
+  + Moderate
+  +  + Severe

Histopathological damage SO OVX/D-Gal Donepezil E. bonariensis (mg/kg)

50 100 200

Degeneration −  +  +  +  +  +  +  +  + 
Perineuronal vacuolation −  +  + −  +  +  +  + 
Pyknotic nuclei −  +  +  +  +  +  +  +  + 
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synaptic plasticity, and apoptosis (Long et al. 2021). Ago-
nists of α7 nAChR are reported to stimulate phosphorylation 
of AKT via activation of Jak2 and PI3K (de Jonge and Ulloa 
2007). Once PI3K/AKT pathway is activated, it ameliorates 
neuroinflammation via inhibiting the downstream effec-
tors GSK-3β and FOXO3a (Matsuo et al. 2018). GSK-3β 
induces the production of pro-inflammatory cytokines 

through activation of NF-ĸB and promotes Tau phosphoryla-
tion and neuronal apoptosis (Wang et al. 2010; Martin et al. 
2011). Moreover, GSK-3 negatively influences the learning 
and memory processes by delaying the induction of long-
term potentiation (Peineau et al. 2007). FOXO3a is a key 
regulator of apoptosis that promotes Aβ-induced neurotox-
icity (Qin et al. 2008). Activated AKT phosphorylates and 
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inactivates GSK-3β and FOXO3a (Maiese 2016; Yang et al. 
2020). The findings of the current study showed that treat-
ment with E. bonariensis extract (100 mg/kg) augmented 
PI3K and AKT expression in hippocampus of OVX/D-Gal 
rats along with down-regulating the expression of GSK-3β 
and FOXO3a. These results suggest that PI3K/AKT signal-
ing pathway is involved in neuroprotection by E. bonariensis 

extract in OVX/D-Gal-induced neurotoxicity via α7-nAChR 
stimulation. Certain flavonoids or phenolic acids, such as 
cimicifugic acid (Wang et al. 2017), caffeoyl-quinic acid 
(Yang et al. 2022), casticin (Fan et al. 2018), cirsimaritin 
(Kim et al. 2015), tricin (Liu et al. 2022), quercetin (Tu 
et al. 2021), and luteolin (Park and Song 2013), are capa-
ble of modulating PI3K/AKT signaling, of which several 
were detected as major components in E. bonariensis 
extract using LC–MS with peak no. 18, 7, 30, 23, 27, and 
14, respectively (Table 2).

The association of neuroinflammation with AD is well 
known and is provoked via Aβ aggregation, resulting in 
microglial activation in hippocampal tissues (Glass et al. 
2010). The crosstalk between Jak2/STAT3/NF-ĸB p65 and 
PI3K/AKT can provide the credential for the E. bonarien-
sis extract-induced reduction of the inflammatory cascade 
observed herein, indicated by the reduced levels of the pro-
inflammatory cytokines TNF-α and IL-1β. In agreement, 
it has been reported that E. bonariensis extract attenuated 
LPS-induced depressive-like behavior in mice through 
impeding neuroinflammation (Barua et  al. 2019). This 
promising anti-inflammatory activity could be offered by 
the fatty acids as represented by arachidonic, linoleic, and 
linolenic acids with a reported role to suppress LPS-induced 
expression of COX-2 in macrophages by inhibiting NF-kB 
expression (Tortosa-Caparrós et al. 2017). Further, numer-
ous mechanisms were hypothesized regarding the potential 

Fig. 4  Effect of E. bonariensis on OVX/D-Gal-induced hippocampal 
histopathological changes. Representative H and E photomicrographs 
(hippocampal region) of all experimental groups (n = 2); magnifica-
tion: H and E × 200 A SO group showing normal structure of hip-
pocampus with normal structure of pyramidal cells (N); B OVX/D-
Gal group showing vacuolated pyramidal cells (V) and pyknotic 
nuclei (P); C Donepezil group showing nearly normal architecture of 
the pyramidal cells of hippocampus with few pyknotic nuclei (P); D 
E. bonariensis 50 mg/kg group showing moderate vacuolated pyram-
idal cells (V) and pyknotic nuclei (P); E E. bonariensis 100  mg/kg 
group showing noticeable improvement of the hippocampus showed 
nearly normal appearance of most of the neurons, normal vesicular 
nucleoli. Some neurons showed minimal pyknotic nuclei (P); F E. 
bonariensis 200  mg/kg group showing nearly normal structure of 
pyramidal cells with mild pyknotic nuclei (P). Rats underwent either 
SO or OVX, and after 5 days, they received D-Gal (150 mg/kg/day, 
i.p) for 42 days. OVX/D-Gal-subjected rats were orally treated with 
donepezil (5 mg/kg/day) or the alcoholic extract of E. bonariensis at 
three different doses (50, 100, and 200 mg/kg/day) for 42 days, given 
1  h prior to D-Gal. One day after behavioral testing (day 43), rats 
were decapitated, and the brains were separated for histopathological 
examination. OVX ovariectomy, D-Gal D-galactose, SO sham opera-
tion

◂

Fig. 5  Effect of E. bonariensis on OVX/D-Gal-induced changes in 
hippocampal levels of A AChE, B Tau, and C Aβ42. Rats underwent 
either SO or OVX, and after 5 days, they received D-Gal (150 mg/kg/
day, i.p) for 42  days. OVX/D-Gal-subjected rats were orally treated 
with donepezil (5  mg/kg/day) or the alcoholic extract of E. bonar-
iensis (100  mg/kg/day) for 42  days, given 1  h prior to D-Gal. One 
day after behavioral testing (day 43), rats were decapitated, and the 

hippocampi were separated for biochemical analysis. Data were 
expressed as mean ± SD (n = 6 for AChE and Aβ42 concentrations, 
while n = 5 for Tau gene expression), using one-way ANOVA fol-
lowed by Tukey’s post hoc test (P < 0.05). OVX ovariectomy, D-Gal 
D-galactose, AChE acetylcholinesterase, Aβ42 amyloid-β42, SO sham 
operation
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of flavonoids for decreasing Aβ accumulation (Hole and 
Williams 2021). Flavonoids can reduce Aβ production 
(Uddin et al. 2020), suppress GSK-3β-mediated Tau phos-
phorylation (Pierzynowska et al. 2019), and directly inhibit 
aggregation (Hole and Williams 2021).

Furthermore, enhanced neuronal apoptosis is also 
highly correlated with AD (Choi et al. 2023). The Bcl-2 
family proteins have been postulated as the key regulators 
of mitochondria-mediated apoptosis and are implicated in 
neuronal apoptosis (Li et al. 2016). Bcl-2 family members 
are classified into those that protect cells from apoptosis 
(e.g., Bcl-2), and those that induce apoptosis (e.g., Bax) 
(Sayed et al. 2016). Moreover, apoptotic stimuli induce the 

release of Cyt C into the cytosol from the mitochondria 
(Zhang et al. 2018). Piling evidence exists toward numer-
ous apoptotic insults of neuronal cells involved in the 
downregulation of Bcl-2 and up-regulation of Bax (Mat-
tioli et al. 2005). The α7 nAChR/Jak2/STAT3 signaling 
is reported to induce the production of the anti-apoptotic 
protein Bcl2 in Aβ-induced apoptosis of PC12 cells (Mar-
rero and Bencherif 2009). Our findings showed that E. 
bonariensis extract (100 mg/kg) increased Bcl-2, while 
suppressing Bax and Cyt C levels in the hippocampus of 
OVX/D-Gal rats. These findings reveal that E. bonariensis 
extract could inhibit neuronal apoptosis in via α7-nAChR 
activation.

Fig. 6  Effect of E. bonariensis on OVX/D-Gal-induced changes in 
hippocampal expression of A α7-nAChR, B p-Jak2, and C p-STAT3. 
Rats underwent either SO or OVX, and after 5  days they received 
D-Gal (150  mg/kg/day, i.p) for 42  days. OVX/D-Gal-subjected rats 
were orally treated with donepezil (5  mg/kg/day) or the alcoholic 
extract of E. bonariensis (100 mg/kg/day) for 42 days, given 1 h prior 
to D-Gal. One day after behavioral testing (day 43), rats were decapi-

tated, and hippocampi were separated for biochemical analysis. Data 
were expressed as mean ± SD (n = 5 for α7-nAChR gene expression, 
while n = 3 for p-Jak2 and p-STAT3 protein expression), using one-
way ANOVA followed by Tukey's post hoc test (P < 0.05). OVX: ova-
riectomy, D-Gal: D-galactose, Jak2: Janus kinase 2, SO; sham opera-
tion, STAT3: signal transducer and activator of transcription 3
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Conclusion

The current study demonstrates the neuroprotective and 
memory-enhancing capacity of E. bonariensis extract 
in the OVX/D-Gal rat model of AD through increas-
ing α7-nAChRs expression and modulating Jak2/STAT3/
NF-ĸB p65 and PI3K/AKT signaling cascades. Treatment 
with E. bonariensis extract also alleviated Aβ aggregation, 

tau hyperphosphorylation, neuroinflammation, and apop-
tosis caused by OVX and D-Gal administration. Thus, E. 
bonariensis extract may be a promising candidate for the 
management of AD. Identification of the most active fraction 
or isolating active chemicals in that complex mixture of E. 
bonariensis extract should now follow, alongside standardi-
zation to promote its use as future nutraceutical for neuro-
degenerative diseases.

Fig. 7  Effect of E. bonarien-
sis on OVX/D-Gal-induced 
changes in hippocampal gene 
expression of A PI3K, B AKT, 
CGSK-3β, and D FOXO3a. Rats 
underwent either SO or OVX, 
and after 5 days they received 
D-Gal (150 mg/kg/day, i.p) for 
42 days. OVX/D-Gal-subjected 
rats were orally treated with 
donepezil (5 mg/kg/day) or the 
alcoholic extract of E. bonarien-
sis (100 mg/kg/day) for 42 days, 
given 1 h prior to D-Gal. One 
day after behavioral testing 
(day 43), rats were decapitated, 
and hippocampi were separated 
for biochemical analysis. Data 
were expressed as mean ± SD 
(n = 5), using one-way ANOVA 
followed by Tukey’s post hoc 
test (P < 0.05). OVX ovariec-
tomy, D-Gal D-galactose, PI3K 
phosphoinositide-3 kinase, 
Akt protein kinase B, GSK-3β 
glycogen synthase kinase-3β, 
FOXO3a forkhead box O3, SO 
sham operation
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Fig. 8  Effect of E. bonariensis on OVX/D-Gal-induced altera-
tions in hippocampal contents of (A) BCL-2, (B) BAX, (C) Cytc, 
(D) NF-κBp65, (E) TNF-α, and (F) IL-1β. Rats underwent either 
SO or OVX, and after 5 days, they received D-Gal (150 mg/kg/day, 
i.p) for 42 days. OVX/D-Gal-subjected rats were orally treated with 
donepezil (5  mg/kg/day) or the alcoholic extract of E. bonariensis 
(100 mg/kg/day) for 42 days, given 1 h prior to D-Gal. One day after 

behavioral testing (day 43), rats were decapitated, and hippocampi 
were separated for biochemical analysis. Data were expressed as 
mean ± SD (n = 6), using one-way ANOVA followed by Tukey’s post 
hoc test (P < 0.05). OVX ovariectomy, D-Gal D-galactose, BCL-2 
B-cell lymphoma 2, BAX BCL-2 associated X, Cytc cytochrome C, 
NF-κBp65 nuclear factor- κBp65, TNF-α tumor necrosis factor-α, IL-
1β interleukin-1β, SO sham operation
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