Skip to main content

Advertisement

Log in

Rapamycin can alleviate the submandibular gland pathology of Sjögren's syndrome by limiting the activation of cGAS–STING signaling pathway

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Background

Sjögren’s Syndrome (SS) is also known as autoimmune exocrine gland disease. Previous studies have confirmed that adaptive immunity plays an important role in the development of this disease. But less is known about the role of the innate immune system.

Methods

To identify the core pathways, and local infiltrated immune cells in the local immune microenvironment of SS. We verified the activation of these core genes and core signaling pathways in SS model mice by in vivo experiment and transcriptome sequencing.

Results

Finally, we identified 6 core genes EPSTI1, IFI44L, MX1, CXCL10, IFIT3, and IFI44. All the 6 genes had good diagnostic value. Based on multi-omics sequencing results and experimental studies, we found that cGAS–STING signaling pathway is most relevant to the pathogenesis of SS. By in vivo experiments, we verified that autophagy is the key brake to limit the activation of cGAS–STING signaling pathway.

Conclusions

Maladaptive activation of autophagy and cGAS–STING signaling pathway are central contributors to the SG pathogenesis of pSS patient. Regulating autophagy by rapamycin may be a possible treatment for Sjögren's syndrome in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the datasets used in the present research are summarized in the Additional file.

References

  • Björk A, Mofors J, Wahren-Herlenius M (2020) Environmental factors in the pathogenesis of primary Sjögren’s syndrome. J Intern Med 287(5):475–492

    Article  PubMed  Google Scholar 

  • Bodewes ILA, Versnel MA (2018) Interferon activation in primary Sjögren’s syndrome: recent insights and future perspective as novel treatment target. Expert Rev Clin Immunol 14(10):817–829

    Article  CAS  PubMed  Google Scholar 

  • Colafrancesco S, Barbati C, Priori R et al (2021) Maladaptive autophagy in the pathogenesis of autoimmune epithelitis in Sjӧgren's Syndrome. Arthritis Rheumatol 74(4):654-664

    Article  Google Scholar 

  • de Neergaard M, Kim J, Villadsen R et al (2010) Epithelial-stromal interaction 1 (EPSTI1) substitutes for peritumoral fibroblasts in the tumor microenvironment. Am J Pathol 176(3):1229–1240

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox RI, Fox CM, Gottenberg JE et al (2021) Treatment of Sjögren’s syndrome: current therapy and future directions. Rheumatology (oxford) 60(5):2066–2074

    Article  CAS  PubMed  Google Scholar 

  • Hillen MR, Pandit A, Blokland SLM et al (2019) Plasmacytoid DCs From Patients With Sjögren’s Syndrome Are Transcriptionally Primed for Enhanced Pro-inflammatory Cytokine Production. Front Immunol 10:2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath S, Nazmul-Hossain AN, Pollard RP et al (2012) Systems analysis of primary Sjögren’s syndrome pathogenesis in salivary glands identifies shared pathways in human and a mouse model. Arthritis Res Ther 14(6):R238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huijser E, Bodewes ILA, Lourens MS et al (2022) Hyperresponsive cytosolic DNA-sensing pathway in monocytes from primary Sjögren's syndrome. Rheumatology (Oxford) 61(8):3491-3496

    Article  CAS  PubMed  Google Scholar 

  • Jara D, Carvajal P, Castro I et al (2021) Type I Interferon Dependent hsa-miR-145-5p Downregulation Modulates MUC1 and TLR4 Overexpression in Salivary Glands From Sjögren’s Syndrome Patients. Front Immunol 12:685837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Lessard CJ, Li H, Adrianto I et al (2013) Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome. Nat Genet 45(11):1284–1292

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  Google Scholar 

  • Manoussakis MN, Kapsogeorgou EK (2010) The role of intrinsic epithelial activation in the pathogenesis of Sjögren’s syndrome. J Autoimmun 35(3):219–224

    Article  CAS  PubMed  Google Scholar 

  • Mavragani CP, Moutsopoulos HM (2020) Sjögren’s syndrome: Old and new therapeutic targets. J Autoimmun 110:102364

    Article  CAS  PubMed  Google Scholar 

  • Mielle A, Tison A, Cornec D et al (2019) B cells in Sjögren's syndrome: from pathophysiology to therapeutic target. Rheumatology (Oxford) 60(6):2545-2560

    Article  Google Scholar 

  • Mitsias DI, Kapsogeorgou EK, Moutsopoulos HM (2006) The role of epithelial cells in the initiation and perpetuation of autoimmune lesions: lessons from Sjogren’s syndrome (autoimmune epithelitis). Lupus 15(5):255–261

    Article  CAS  PubMed  Google Scholar 

  • Moutsopoulos HM (1994) Sjögren’s syndrome: autoimmune epithelitis. Clin Immunol Immunopathol 72(2):162–165

    Article  CAS  PubMed  Google Scholar 

  • Mowat C, Mosley SR, Namdar A et al (2021) Anti-tumor immunity in mismatch repair-deficient colorectal cancers requires type I IFN-driven CCL5 and CXCL10. J Exp Med 218:9

    Article  Google Scholar 

  • Odani T, Chiorini JA (2019) Targeting primary Sjögren’s syndrome. Mod Rheumatol 29(1):70–86

    Article  PubMed  Google Scholar 

  • Oyelakin A, Horeth E, Song EC et al (2020) Transcriptomic and Network Analysis of Minor Salivary Glands of Patients With Primary Sjögren’s Syndrome. Front Immunol 11:606268

    Article  CAS  PubMed  Google Scholar 

  • Papinska J, Bagavant H, Gmyrek GB et al (2018) Activation of Stimulator of Interferon Genes (STING) and Sjögren Syndrome. J Dent Res 97(8):893–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM et al (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontarini E, Lucchesi D, Bombardieri M (2018) Current views on the pathogenesis of Sjögren’s syndrome. Curr Opin Rheumatol 30(2):215–221

    Article  CAS  PubMed  Google Scholar 

  • Pontarini E, Murray-Brown WJ, Croia C et al (2020) Unique expansion of IL-21+ Tfh and Tph cells under control of ICOS identifies Sjögren’s syndrome with ectopic germinal centres and MALT lymphoma. Ann Rheum Dis 79(12):1588–1599

    Article  CAS  PubMed  Google Scholar 

  • Sjöstrand M, Ambrosi A, Brauner S et al (2013) Expression of the immune regulator tripartite-motif 21 is controlled by IFN regulatory factors. J Immunol 191(7):3753–3763

    Article  PubMed  Google Scholar 

  • Sun JL, Zhang HZ, Liu SY et al (2020) Elevated EPSTI1 promote B cell hyperactivation through NF-κB signalling in patients with primary Sjögren’s syndrome. Ann Rheum Dis 79(4):518–524

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607-d613

    Article  CAS  PubMed  Google Scholar 

  • Tasaki S, Suzuki K, Nishikawa A et al (2017) Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren’s syndrome. Ann Rheum Dis 76(8):1458–1466

    Article  CAS  PubMed  Google Scholar 

  • Verrou CKM, Piperi E et al (2021) Interferon (IFN)-stimulated gene 15: A novel biomarker for lymphoma development in Sjögren’s syndrome. J Autoimmun 123:102704

    Article  PubMed  Google Scholar 

  • Wang B, Chen S, Zheng Q et al (2021) Early diagnosis and treatment for Sjögren’s syndrome: current challenges, redefined disease stages and future prospects. J Autoimmun 117:102590

    Article  PubMed  Google Scholar 

  • Yu G, Wang LG, Han Y et al (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Mears JR, Shakib L et al (2021) IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Med 13(1):64

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Institute of Pediatrics of Nanjing University of Chinese Medicine for its experimental support and research facility.

Funding

This work was supported by the National Natural Science Foundation of China (grant 82274454) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_1682).

Author information

Authors and Affiliations

Authors

Contributions

WZ, YBW performed the experiments, conducted the Major data analysis, and finished the original draft. YG, YHL, and YL all wrote the manuscript and prepared figures. LXS and YW designed this study and finished the revision of the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Lixia sun or Yue Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 350 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Wang, Y., Guan, Y. et al. Rapamycin can alleviate the submandibular gland pathology of Sjögren's syndrome by limiting the activation of cGAS–STING signaling pathway. Inflammopharmacol 32, 1113–1131 (2024). https://doi.org/10.1007/s10787-023-01393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01393-9

Keywords

Navigation