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Abstract

Gastrointestinal (GI) diseases have become a global health issue and an economic burden due to their wide distribution, late
prognosis, and the inefficacy of recent available medications. Therefore, it is crucial to search for new strategies for their
management. In the recent decades, mesenchymal stem cells (MSCs) therapy has attracted attention as a viable option for
treating a myriad of GI disorders such as hepatic fibrosis (HF), ulcerative colitis (UC), acute liver injury (ALI), and non-
alcoholic fatty liver disease (NAFLD) due to their regenerative and paracrine properties. Importantly, recent studies have
shown that MSC-derived extracellular vesicles (MSC-EVs) are responsible for most of the therapeutic effects of MSCs. In
addition, EVs have revealed several benefits over their parent MSCs, such as being less immunogenic, having a lower risk
of tumour formation, being able to cross biological barriers, and being easier to store. MSC-EVs exhibited regenerative,
anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic effects in different experimental models of GI diseases.
However, a key issue with their clinical application is the maintenance of their stability and efficacy following in vivo trans-
plantation. Preconditioning of MSC-EVs or their parent cells is one of the novel methods used to improve their effectiveness
and stability. Herein, we discuss the application of MSC-EVs in several GI disorders taking into account their mechanism
of action. We also summarise the challenges and restrictions that need to be overcome to promote their clinical application
in the treatment of various GI diseases as well as the recent developments to improve their effectiveness.
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A representation of the innovative preconditioning techniques that have been suggested for improving the therapeutic efficacy
of MSC-EVs in GI diseases. The pathological conditions in various GI disorders (ALI, UC, HF and NAFLD) create a harsh
environment for EVs and their parents, increasing the risk of apoptosis and senescence of MSCs and thereby diminishing
MSC-EVs yield and restricting their large-scale applications. Preconditioning with pharmacological agents or biological
mediators can improve the therapeutic efficacy of MSC-EVs through their adaption to the lethal environment to which they
are subjected. This can result in establishment of a more conducive environment and activation of numerous vital trajectories
that act to improve the immunomodulatory, reparative and regenerative activities of the derived EVs, as a part of MSCs par-
acrine system. ALI, acute liver injury; GI diseases, gastrointestinal diseases; HF, hepatic fibrosis; HSP, heat shock protein;
miRNA, microRNA; mRNA, messenger RNA; MSC-EVs, mesenchymal stem cell-derived extracellular vesicles; NAFLD,
non-alcoholic fatty liver disease; UC, ulcerative colitis.
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Introduction

Gastrointestinal (GI) diseases are a series of inflammatory
conditions which affect any section of the GI tract, from
the oesophagus to the rectum, in addition to the accessory
digestive organs—Iliver, gall bladder and pancreas. Motil-
ity problems, visceral hypersensitivity, altered mucosal
and immunological function, and altered intestinal micro-
biota are all hallmarks of these conditions (Oshima and
Miwa 2015; Drossman 2016). Irritable bowel diseases
(IBD), gastroesophageal reflux disease, liver diseases,
peptic ulcer, pancreatitis, and GI malignancy are just a
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few of many problems that fall under the umbrella of GI
disorders, which affect patients worldwide (De Filippis
et al. 2020). Many of these diseases negatively impact
patients’ quality of life and productivity (Wang et al.
2023). Moreover, their incidence is high, and oftentimes,
there are no obvious symptoms in the early stages; hence,
most GI diseases are first noted in the middle and late
stages where the prognosis is poor (Chen et al. 2022a)
and are not effectively managed using current medications
(Greenwood-Van Meerveld et al. 2017). As a result, it is
crucial to create new and efficient strategies for treating
GI disorders.
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Over the past few decades, stem cell therapy has attracted
attention as a viable option for treating a wide range of path-
ological conditions. Mesenchymal stem cells (MSCs) have
been of particular importance because of their ability to self-
renew and differentiate into a wide variety of cell types (Kou
et al. 2022). They are commonly extracted from bone mar-
row (BM), amniotic fluid (AM), adipose tissues (AD), dental
pulp, and umbilical cord (Wagner et al. 2005; Hass et al.
2011; Musial-Wysocka et al. 2019). Notably, numerous pre-
clinical and clinical studies have proved the potential role of
MSCs in GI protection and repair (Kubo et al. 2015; Onishi
et al. 2015; Ono et al. 2015; Trounson and McDonald 2015).
It was once thought that MSCs’ therapeutic efficacy arises
from their ability to migrate to and engraft in the target tis-
sues. However, it was shown afterwards that the biological
effects observed following MSCs administration are likely
the result of their soluble secreted factors such as cytokines,
chemokines, growth factors, and extracellular vesicles (EVs)
(Keating 2012; Aghajani Nargesi et al. 2017; Gowen et al.
2020). These biological factors act either on MSCs them-
selves (autocrine functions) to maintain self-renewal capac-
ity, differentiation, and proliferation or on neighbouring
cells (the predominant paracrine functions) to modulate the
immune system, inflammatory response, and apoptosis and
to stimulate neo-angiogenesis (Razavi et al. 2020; Rahimi
et al. 2021). Besides, EVs are the main component of par-
acrine actions of MSCs (Han et al. 2016).

EVs are membrane-bound nanovesicles (with a size
range of 30-1000 nm) that transport vital biomolecules
such as cytokines, growth factors, signalling lipids, mes-
senger RNAs (mRNA), and micro-RNAs (miRs) between
cells and regulate a wide range of cellular processes under
both normal as well as pathological circumstances (Gowen
et al. 2020; Heydari et al. 2021; Ahmed and Al-Massri
2022). MSC-derived EVs (MSC-EVs) are mainly made up
of exosomes (EXOs), microvesicles (MVs), and apoptotic
bodies (ABs). It is worth noting that MSC-EVss revealed
regenerative, anti-oxidant, anti-inflammatory, anti-apoptotic,
and anti-fibrotic effects in different experimental models of
GI diseases such as IBD, severe acute and chronic pancrea-
titis, hepatic fibrosis (HF), acute liver injury (ALI), and non-
alcoholic fatty liver disease (NAFLD) (Zhou et al. 2013;
Yang et al. 2015; Mao et al. 2017; Xie et al. 2019a; Dong
et al. 2020; Ren et al. 2021; Wu et al. 2021; Niu et al. 2022).

Increasing evidence suggested that MSC-EVs, rather than
MSCs themselves, are responsible for the majority of the
therapeutic actions of MSCs (Zhao et al. 2020a). Therefore,
MSC-EVs can be used since they have a better safety profile,
are less immunogenic, and can traverse biological barriers
(Yeo et al. 2013; Natasha et al. 2014). In addition, problems
of MSC:s such as risk of ectopic tumour growth, entrapment
in lung microvasculature, and immunological rejection could
be avoided when MSC-EVs are used (Badillo et al. 2007,

Jeong et al. 2011; Wang et al. 2015; Fennema et al. 2018).
Despite these obvious potentials, the clinical application of
MSC-EVs faces a number of obstacles, such as the inability
of EVs to retain their efficacy and stability over time follow-
ing in vivo transplantation (Wiklander et al. 2015). There-
fore, new strategies, like preconditioning of MSC-EVs or
their parent cells, could be explored to improve their effec-
tiveness and stability upon application (Lee and Kang 2020).

In this review, we first summarised different approaches
used for the isolation, characterisation, purification, and
storage of MSC-EVs. We also illustrated their applica-
tions in different models of GI diseases and the underly-
ing mechanisms of their bioefficacy. Besides, we discussed
recent studies and methods aiming at the improvement of
the therapeutic efficacy of MSC-EVs using different biologi-
cal or pharmacological preconditioning approaches. Finally,
we enumerated challenges and restrictions that should be
overcome to promote the clinical application of MSC-EVs
in various GI diseases.

Biological properties of EVs
Definition and origin of EVs

EVs are heterogenous nanoparticles circumscribed by a
phospholipid membrane carrying transmembrane proteins,
cytosolic proteins, organelles, transcription factors, mRNAs,
miRs and various signal transduction molecules and are gen-
erally detected in MSCs, tumour cells, fibroblasts, neurons,
endothelial cells, and epithelial cells, serving as versatile
messengers between adjacent or distant cells in numerous
pathological and physiological processes (Raposo and Stoor-
vogel 2013; Kalluri 2016; Keshtkar et al. 2018; Kou et al.
2022). Initially, EVs were noticed in the reticulocytes of
sheep in the 1980s (Raposo and Stoorvogel 2013) and were
thought to be secreted in order to eliminate unwanted com-
pounds from the cell (Johnstone et al. 1987). To mention a
few, secreted EVs act primarily on target cells to transfer
intercellular information via various modes of action such as
internalisation, ligand-receptor interaction, secreted factors,
and fusion-mediated transfer of surface receptors (Shah et al.
2019; Rezaie et al. 2022). Commonly, EVs can be classi-
fied according to their mechanism of release and size into
3 major categories; EXOs, MVs) and ABs (He et al. 2018;
Hessvik and Llorente 2018). There are two distinct secretory
processes concerning EXOs and MVs; EXOs are produced
via the endocytic pathway and then fuse with either lys-
osomes or the plasma membrane (Raposo and Stoorvogel
2013; Tetta et al. 2020) in response to elevated intracel-
lular calcium or additional downstream effects of stimuli
like stress (Wei et al. 2021). MVs, on the other hand, are
generated when the cell membrane protrudes outward from
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the cell, generating a closed sphere containing cytoplasm
(Cocucci et al. 2009; Van Niel et al. 2018), and their release
can be induced by various conditions, including oxidative or
shear stress, hypoxia, or injury. As for ABs, they are released
during apoptosis. The increased hydrostatic pressure after
cell contraction causes the plasma membrane to separate
from the cytoskeleton, giving rise to these entities (Doyle
and Wang 2019). ABs contain materials about to be phago-
cytosed, such as organelles and DNA segments (Monsel
et al. 2016).

Preparation and characterisation methods of EVs

Currently, there is no universally recognised standard for
isolation, characterisation, or absolute purification of EVs
for large-scale clinical practice; protocols vary according
to the source material, the size of sample, and the intended
use of EVs (Lotvall et al. 2014; Doyle and Wang 2019).
Several technologies for EVs separation are available such as
ultracentrifugation, ultrafiltration, density gradient centrifu-
gation, immunoaffinity capture, size-exclusion chromatog-
raphy (SEC), and polymeric precipitation approaches. Each
approach has differential advantages and drawbacks, and a
combination of them may be recommended for optimum
EVs enrichment (Weng et al. 2021).

EVs isolation methods

Differential centrifugation (ultracentrifugation) Differ-
ential centrifugation is a traditional technique in term of
separating EVs and it implicates utilising sequential cen-
trifugation operations of increasing pressures to isolate EVs
from impurities-containing samples with respect to their
volume and physical characteristics (Revenfeld et al. 2014;
De Sousa et al. 2023). This technique encompasses a pre-
liminary phase of low-speed centrifugation to remove cell
debris, followed by isolation of vesicles at 19,000-100,000
g (Xu et al. 2017). Different subsets of EVs can be enriched
or concentrated, but they will not be fully isolated (Taleb-
jedi et al. 2021). A common problem that is encountered
when utilising differential ultracentrifugation is the use of
large centrifugal forces which may produce clusters of vesi-
cles as a result of rapid protein aggregation (Linares et al.
2015). Consequently, this method is better suited to labora-
tory settings than to clinical ones, but discrepancies might
arise from several factors such as centrifugation time, speed,
rotor type, and temperature, with the possibility of affecting
the yield, sedimentation, and purity (Van Deun et al. 2017).
In addition, this method is not suitable for isolating EVs
from fluids with high viscosity, as in the case of isolating
EVs from plasma (Momen-Heravi et al. 2012). Importantly,
although it is still used in many studies, ultracentrifugation
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has been reported to significantly damage EXOs and alter
their cargo (Livshts et al. 2015; Sidhom et al. 2020).

Density gradient centrifugation Density gradient centrif-
ugation (isopycnic separation and zone centrifugation) is
an improved method for ultracentrifugation in which EVs
are isolated according to their specific density (1.13-1.19
g/ml) in either sucrose or iodixanol solutions (Szatanek
et al. 2015; Konoshenko et al. 2018). Although zone
centrifugation has been demonstrated to provide greater
purity and require no additional chemicals, this approach
is labour-intensive, time-consuming (250 min-2 day), and
suitable for high sample volumes than for clinical sample
processing (De Sousa et al. 2023).

Ultrafiltration Ultrafiltration, also known as microfiltra-
tion, is one of the most common approaches for isolat-
ing EVs, depending on size. It involves the use of simple
membrane filters to separate EVs quickly and cheaply
from larger elements in a suspension (Grant et al. 2011;
Konoshenko et al. 2018). Ultrafiltration has many sig-
nificant benefits: its procedures are easy to carry out, it
allows for the processing of multiple samples, there are
no constraints on sample volume, and the risk of EVs rup-
ture is also considerably reduced since the vesicles are not
subjected to the same pressures and pressure necessary
for ultracentrifugation approach (Konoshenko et al. 2018;
De Sousa et al. 2023). In spite of this, sample loss due
to clogged filters and the contamination of EVS-samples
with unwanted proteins are among the downsides of this
approach (Carnino et al. 2019), making this technique less
suitable for use in subsequent proteomic analysis if used
alone (De Sousa et al. 2023).

SEC SEC is a most commonly used method for isolat-
ing EVs via the fractionation or filtration of a sample
through a column of porous beads, resulting in a highly
pure preparation (Lozano-Ramos et al. 2015; Benedikter
et al. 2017). SEC has revealed many benefits, including
its high sensitivity, recoverability, reproducibility, adapt-
ability to most laboratories, and insensitivity to highly
viscous samples. SEC can also maintain vesicle integrity
and contents, does not require additional chemicals, and
does not cause EVs aggregation (Konoshenko et al. 2018;
Varderidou-Minasian and Lorenowicz 2020; Sidhom et al.
2020; Clos-Sansalvador et al. 2022). Although SEC shows
many advantages over other conventional isolation tech-
niques, it has a few limitations such as its relatively high
cost, intricate procedures, reliance on specialised appara-
tus and inability to discriminate between EXOs and MVs
of the same size (§tull’k et al. 2003; Konoshenko et al.
2018; Sidhom et al. 2020; Liangsupree et al. 2021).
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Precipitation polymerisation This method relies on the
ability of the hydrophilic polymers such as polyethylene
glycol (PEG) to diminish the solubility of the sample’s
components by competing for the solvent, where it forms
a mesh-like polymeric web which traps EVs in the 60—180
nm size range before pelletising and precipitating upon
centrifugation at low speed (Konoshenko et al. 2018; Clos-
Sansalvador et al. 2022). In order to make a two-phase
method for isolation, dextran and PEG have been utilised,
which has resulted in a great reduction in protein contami-
nation (Zarovni et al. 2015). Despite its low cost, lack of
specialised equipment, and the comparability between low
and high sample volumes, PEG precipitation concentrates
EVs, which makes it inappropriate for detecting EVs bio-
marker, resulting in false negatives (Coumans et al. 2017,
Clos-Sansalvador et al. 2022).

Immunoaffinity capture (immunoaffinity purification
or immunoprecipitation) In this technique, EVs are cap-
tured by treating the sample with immunomagnetic beads
that have been coated with antibodies specific to EV surface
molecules (Liangsupree et al. 2021). Submicron-sized anti-
bodies-coated magnetic beads can improve specificity, sen-
sitivity, and yield of immunoaffinity experiments designed
to isolate EVs. This method guarantees the integrity of iso-
lated EVs regardless of vesicle size and ensures quick isola-
tion with little effort. However, this method shows a number
of limitations, including the difficulty to elute from EVs the
magnetic beads and the negative impact of non-neutral pH
and non-physiological salt concentrations on the biological
activity of EVs (Nakai et al. 2016; Lane et al. 2017; Yoshida
et al. 2017). Moreover, immunoaffinity isolation technolo-
gies remain costly, which may limit the scalability for their
future clinical use (Clos-Sansalvador et al. 2022).

To date, there is no single isolation technique that can
achieve high purity and yield of EVs. Therefore, coupling
a good isolation method like SEC with other methods like
ultracentrifugation or ultrafiltration or PEG-based retrieval
can be the best solution to obtain optimal performance (Sid-
hom et al. 2020).

Purification methods of EVs

Several methods are used for EVs purification, including
differential ultracentrifugation, zone ultracentrifugation,
SEC, and affinity capture (Wang et al. 2021). Differential
ultracentrifugation is an early, well-established, dependable
method and one of the most extensively used methodologies
due to its simplicity and relatively high yield (Gardiner et al.
2016). This method, however, is incapable of distinguish-
ing particles with overlapping ranges, such as EXOs and
MVs (Boing et al. 2014; Talebjedi et al. 2021; Weng et al.
2021). Zone ultracentrifugation, SEC, and filtration all face

similar challenges. Unlike these previous physical separa-
tion approaches, affinity capture can separate highly pure
EVs, but poor yield is obtained because of the interaction
of EVs surface parameters with capture molecules linked to
different carriers (e.g. magnetic beads) (Zhu et al. 2020a;
Weng et al. 2021).

Characterisation of EVs

It is essential to perfectly characterise EVs, according to
the International Society for EV's minimal specification
report, to confirm the validity of their isolation procedures
and demonstrate their molecular and biological properties
(Casado-Diaz et al. 2020; Weng et al. 2021). A complete
EVs characterisation includes the determination of their
size, shape, contents, and surface markers (Casado-Diaz
et al. 2020). The general characterisation can be achieved
by western blot or enzyme-linked immunosorbent assay to
identify at least three positive and one negative EV protein
marker, where positive protein markers should include at
least one transmembrane/lipid-bound protein (e.g. CD63,
CD9, CDS81) and one cytosolic protein (e.g. TSG101,
ALIX) (Abraham and Krasnodembskaya 2020; Weng et al.
2021). Furthermore, the single-vesicle characterisation uti-
lises imaging techniques such as atomic force microscopy,
transmission electron microscopy, and scanning electron
microscopy to capture high-resolution pictures of EVs mor-
phology. Biophysical characterisation can be also used for
single-vesicle characterisation such as nanoparticle tracking
analysis (NTA), dynamic light scattering, and flow cytom-
etry (Shao et al. 2018). Although electron microscopy is
currently used as the most effective way for analysing EVs’
structure, there is no single technology that could simul-
taneously evaluate both structural and biological features
of EVs (Gurunathan et al. 2019). Other quantification and
characterisation methods have been developed to analyse
EVs like NTA and several optical flow-based approaches
that may quantify EVs to an appropriate level, but these
methods are unable to discriminate between particulate and
membrane-bound vesicles, a problem which can be solved
using electron microscopy (Gimona et al. 2017).

EVs storage and stability

Several investigations have been conducted to assess the
impact of different storage temperatures (4 °C, 20 °C, and
—80 °C) and freeze—thaw cycles on the size, content, and
function of isolated EVs (Jeyaram and Jay 2017). Overall, it
was proved that —80 °C is the optimal temperature for main-
taining EVs’ stability and contents for downstream molecu-
lar profiling (Pinky et al. 2021; Sun et al. 2022). Freeze—thaw
cycles, on the other hand, lead to the aggregation or lysis of
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EVs, as well as cargo loss upon their use (Kusuma et al.
2018; Gandham et al. 2020).

Applications of MSC-EVs in different models
of Gl diseases

There is an increasing evidence that EVs alone are respon-
sible for the therapeutic actions of MSCs in different GI
diseases, including ALI, HF, NAFLD, and UC (Jiang et al.
2019; Du et al. 2021, 2022; Cai et al. 2021). Besides, previ-
ous studies showed that MSC-EVs can accumulate in the
injured tissues and impede inflammation, apoptosis, and
fibrogenesis, while modulating immune cells (Li et al.
2013; Zhao et al. 2019; Cheng et al. 2021; Shi et al. 2022).
Consequently, recent researches have focussed on the use of
MSC-EVs as an alternative to MSCs in the management of
GI disorders (Zhao et al. 2021; Du et al. 2022; Didamoony
et al. 2023).

ALI

ALI is considered as one of the well-known life-threaten-
ing diseases that is characterised by sudden deterioration
of normal liver functions, poor clinical prognosis, and high
mortality (Didamoony et al. 2022). The escalation of the dis-
ease usually initiates a series of clinical syndromes, such as
jaundice, coagulation disorders, hepatic encephalopathy, and
ascites (Wendon et al. 2017). In ALI, multiple mechanisms
work simultaneously to cause hepatic injury through induc-
ing oxidative stress, inflammation, and apoptosis in response
to infections, drugs, and chemical toxins (Basir et al. 2022;
Didamoony et al. 2022). Growing evidence has indicated
the successful application of MSC-EXOs in the manage-
ment of ALI owing to their anti-inflammatory, anti-oxidant
and anti-apoptotic features, as summarised in Table 1 (Sun
et al. 2017; Zhao et al. 2019; Wu et al. 2021). Remarkably,
BM-MSC-EXOs attenuated concanavalin A-induced liver
injury through the improvement of tissue regeneration and
the expression of anti-inflammatory cytokines and regula-
tory T cell (Treg) activity (Tamura et al. 2016). BM-MSC-
EXOs may also reverse ALI through hindering apoptosis.
The anti-apoptotic effect arises from diminishing the proa-
poptotic proteins B-cell lymphoma-2 (Bcl2)-associated X
protein (Bax) and cleaving caspase-3, while increasing the
expression of the autophagy markers, LC3-II and Beclinl,
alongside with the anti-apoptotic marker; Bcl2 (Zhao et al.
2019). Interestingly, human umbilical cord MSC-EXOs
was also found to exhibit desirable therapeutic effects on
acetaminophen-induced ALI in vivo and in vitro via dwin-
dling oxidative stress-induced inflammation and apoptosis
after activating extracellular regulated protein kinases 1/2
and phosphoinositide 3-kinase/protein kinase B (PI3K/
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AKT) trajectories (Wu et al. 2021). In this respect, human
umbilical cord MSCs-EXOs enriched in glutathione per-
oxidasel (GPX1) reduced oxidative stress and apoptosis
in the hepatocyte and boosted protective effects of EXOs
both in vivo and in vitro (Yan et al. 2017). Further studies
revealed that human umbilical cord MSC-EXOs ameliorated
hepatic inflammation and apoptosis in ischaemia/reperfusion
(I/R) model via shuttling miR-1246 to decrease the glyco-
gen synthase kinase 3p-mediated Wnt/B-catenin signalling
(Xie et al. 2019a). Another hepatic I/R study indicated the
ability of exosomal miR-1246 derived from human umbili-
cal cord MSCs to inhibit inflammation and modulate Treg
and T-helper 17 (Th17) cells balance via interleukin-6/gly-
coprotein130/signal transducer and activator of transcrip-
tion 3 (IL-6/GP130/STAT3) axis (Xie et al. 2019b). The
ability of human umbilical cord MSC-EXOs to lower ami-
notransferases enzymes in ALI could be also mediated via
downregulating the expression of NOD-like receptor pyrin
domain containing 3 (NLRP3), caspase-1, IL-1f, and IL-6
(Jiang et al. 2019). Of note, manganese superoxide dis-
mutase in human umbilical cord MSC-EVs could dwindle
the infiltration of neutrophils and mitigate apoptosis and oxi-
dative stress (Yao et al. 2019). In case of AD-MSC-EXOs,
Liu et al., (2018) found that they ameliorated lipopolysac-
charide (LPS) and D-galactosamine-induced ALI in miR-
17-dependent manner which reduced thioredoxin-interacting
protein/ NLRP3 inflammasome activation in macrophages.
More specifically, long-chain non-coding RNA H19 in AD-
MSC-EVs curbed hepatic necrosis, inflammation-related
cytokines, inflammatory cells infiltration and hepatocyte
proliferation via hepatocyte growth factor/ hepatocyte
growth factor receptor trajectory in ALI in rats (Jin et al.
2018). In term of BM-MSC-EXOs, it was documented that
miR-223 prohibited NLRP3/caspase-1 signalling and sup-
pressed inflammation-related cytokines in antigen S100-
induced liver injury with consequent alleviation of hepatitis
(Chen et al. 2018).

HF

HF is a frequent pathological condition dominated by the
energization of immune cells and inflammatory-related
cytokines, which leads to hepatic stellate cells (HSCs) acti-
vation and consequent extracellular matrix proteins accumu-
lation (Acharya et al. 2021). The progression of HF results
in irreversible cirrhosis, hepatocellular carcinoma (HCC),
and ultimately liver failure (Doumas et al. 1971; Zhu et al.
2020b). MSC-EVs ameliorated HF in many experimental
models (Table 1) by inhibiting hepatic oxidative damage,
inflammatory cytokines, collagen deposition, and HSC acti-
vation as in the case of AD-MSC-EVs that curbed HSCs
activation through the transfer of miR-150-5p resulting
in CXC motif chemokine-ligand 1 (CXCL1) underexpression
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(Du et al. 2021). In addition, AD-MSC-EXOs expressing
miR-122 prevented HSCs activation in HF model (Lou
et al. 2017). Furthermore, Rong et al. (2019) evidenced
that rat BM-MSC-EXOs can mitigate carbon tetrachlo-
ride (CCl,)-induced HF by impeding HSCs activation via
Whnt/p-catenin pathway both in vivo and in vitro. Moreover,
AD-MSC-EXOs-secreted miR-181-5p was shown to block
STAT3/Bcl-2/Beclinl pathway and increase autophagy,
hence decreasing transforming growth factor-betal (TGF-
B1)-induced HSCs activation with consequent hindrance
of HF (Qu et al. 2017). In the same pattern, circular RNA
mmu_circ_0000623-modified AD-MSC-EXOs was shown
to activate autophagy and suppress HF by controlling miR-
125 (Zhu et al. 2020b). Interestingly, MSC-EXOs derived
from human umbilical cord alleviated HF through obstruct-
ing TGF-B1/Smad axis and epithelial-to-mesenchymal tran-
sition (Li et al. 2013). Specifically, miR-148a released from
human umbilical cord MSC-EXOs was shown to regulate
intrahepatic macrophage and control Kruppel-like factor
6/STAT3 activity and, therefore, inhibited HF progression
(Tian et al. 2022). Tan et al. (2022) revealed that Beclinl
supplied by human umbilical cord MSC-EXOs led to the
stimulation of HSCs ferroptosis as well as the reduction
of GPX4. Furthermore, human umbilical cord MSC-EVs
revealed their inhibitory effect on HF caused by Schisto-
soma japonicum via the downregulation of alpha-smooth
muscle actin (a-SMA), collagen I, and collagen III as well
as inflammatory events including interferon-gamma (IFN-
vY), tumour necrosis factor-alpha (TNF-a), and IL-B1 (Dong
et al. 2020). Likewise, MSC-EXOs containing miR-125b-
and miR-486-5p were found to effectively prevent CCl4-
induced HF by inhibiting smoothened expression and conse-
quently hedgehog pathway activation (Hyun et al. 2015; Kim
etal. 2021). In addition, Ohara et al. (2018) stated that AM-
MSC-EVs improved inflammation and HF by suppressing
the activation of HSCs and Kupffer cells (KCs). Recently,
Ma et al. (2023) revealed that exosomal circular RNA circ-
CDK13 from BM-MSCs inhibited HF by modulating milk
fat globulin-EGF factor 8 expression via miR-17-5p/ lysine
Acetyltransferase 2B axis.

NAFLD

NAFLD is distinguished by intra-hepatocyte triglyceride
buildup and concurrent immune system involvement, with
consequent histological alterations, tissue destruction, and
clinical symptoms due to a sedentary lifestyle and high-
calorie diets (Zhao et al. 2020b; Moayedfard et al. 2022).
It encompasses a cluster of disorders that range from slight
steatosis (pure NAFLD) to non-alcoholic steatohepati-
tis (NASH), ending with cirrhosis, and HCC (Abenavoli
et al. 2021; Mahmoudi et al. 2022). In the case of NASH,
the development of the disease is frequently relevant to

metabolic abnormalities (obesity, insulin resistance, and
dysregulations of glucose and lipid metabolism). In addi-
tion, cellular and molecular changes may occur such as oxi-
dative stress, inflammation altered immune function, and
microvascular and energy dysfunction (Pouwels et al. 2022;
Du et al. 2022). Generally, MSC-EVs have shown protective
effects in NAFLD through controlling fat deposition-induced
insulin resistance, dysregulated lipid metabolism, associated
oxidative stress, and inflammatory responses, as shown in
Table 2 (Niu et al. 2022; Kang et al. 2022; Du et al. 2022).
Niu et al. (2022) revealed that miR-223-3p enriched in AD-
MSC-EVs alleviated NAFLD by suppressing the expression
of E2F transcription factor 1, hence reducing lipid buildup
and HF. More importantly, human umbilical cord MSCs-
derived exosomal miR-627-5p relieved liver damage in
NAFLD by enhancing glucose and lipid metabolism and
curbing fat mass. These metabolic outcomes emerge from
the mitigation of fatty acid oxidation, mediated by the obe-
sity-associated gene and peroxisome proliferator-activated
receptor alpha (PPARa) (Cheng et al. 2021). Another study
has revealed that miR-96-5p-shuttled BM-MSC-EXOs
activated mitochondrial autophagy through suppressing its
downstream caspase-2 (the governing player in high-fat diet-
induced NASH) (El-Derany and AbdelHamid 2021). Kang
et al. (2022) and Du et al. (2022) demonstrated that NASH
was dramatically mitigated after using human umbilical cord
MSCs-EXOs with the involvement of miR-24-3p/ Kelch-like
ECH-associated protein 1(Keap1)/PPAR« and nuclear factor
erythroid 2-related factor 2 (Nrf2)/NADPH quinone oxidore-
ductasel pathways. Besides, human umbilical cord MSC-
EXOs alleviated methionine and choline-deficient diet-
induced NASH in mice by upsurging the anti-inflammatory
phenotype of macrophages and augmenting PPAR« expres-
sion (Shi et al. 2022). Furthermore, AM-MSC-EVs signifi-
cantly prevented HSCs and KCs activation and amended
the degree of hepatocyte inflammation and fibrogenesis in
NASH through affecting LPS/ Toll-like receptor 4 (TLR4)
pathway (Ohara et al. 2018). Importantly, in a recent study,
Yang et al. (2023) reported that calcium/calmodulin-depend-
ent protein kinase 1-enriched human umbilical cord MSC-
EXOs eventually prevented NAFLD in vivo and in vitro
through stimulating fatty acid oxidation and inhibiting fatty
acid synthesis through activation of AMP-activated protein
kinase-mediated PPARa/Carnitine palmitoyltransferase 1 A
and sterol regulatory element-binding protein-1/fatty acid
synthase pathways.

Ulcerative colitis (UC)
UC is one of the common forms of IBD which is manifested
by recurrent inflammation and ulceration of the colonic

mucosa with varying extension from the rectum towards the
cecum (Owusu et al. 2020; Guo et al. 2022). Untreated UC
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may give rise to increased risk of developing colorectal can-
cer (Olén et al. 2020). Inflammation and oxidative stress are
vital factors in the pathogenesis of UC (Soubh et al. 2015;
Arafa et al. 2020; De Oliveira et al. 2021) and are considered
the key targets of MSC-EVs therapy (Yang et al. 2015; Xia
et al. 2021; Zhu et al. 2022). The therapeutic efficacy of
MSC-EVs was related to EVs autonomous targeting capabil-
ities to reach the injured colon tissues, reduce inflammatory
cell infiltration, and, hence, maintain the integrity of colonic
mucosa and mitigate the severity of UC symptoms (Table 2)
(Yang et al. 2015; Heidari et al. 2021; Cai et al. 2021). For
instance, Mao et al. (2017) reported the amelioration of dex-
tran sulfate sodium (DSS)-induced UC by human umbilical
cord MSC-EXOs through profound decline in the recruit-
ment of inflammatory M1 macrophages to the damaged
colon and diminished pro-inflammatory cytokines release
such as TNF-a, IL-1p, and IL-6. Similarly, the study of Wu
et al. (2018) stated that human umbilical cord MSC-EXOs
amended UC and inhibited ubiquitin-associated molecules
(K48, K63, and FK2)-mediated inflammation through turn-
ing off nuclear factor-kappa B (NF-kB) and mammalian tar-
get of rapamycin trajectories. Human umbilical cord MSC-
EXOs enriched in miR-326 also relieved DSS-induced IBD
in mice by preventing the binding of NEDDS to cullin 1
(neddylation process) as well as NF-xB signalling (Wang
et al. 2020). Noteworthy, human umbilical cord MSC-EXOs
mitigated DSS-induced IBD by lessening macrophage
pyroptosis via modulation of miR-378a-5p/NLRP3 path-
way (Cai et al. 2021). Moreover, Yang et al. (2021) pointed
to the anti-inflammatory effect of TNF-a-stimulated gene
6 in human umbilical cord MSC-EXOs that succeeded to
mitigate UC in addition to intestinal function and immune
homeostasis. In addition, olfactory ecto-MSCs-EXOs alle-
viated experimental colitis via suppressing differentiation
of proinflammatory Th1/Th17 cells and inducing differen-
tiation of anti-inflammatory Treg cells (Tian et al. 2020).
Furthermore, BM-MSCs-EXOs were reported to alleviate
DSS-induced UC by endorsing M2 macrophage polarisa-
tion and modulating Janus kinase 1/STAT1/STAT6 axis (Cao
et al. 2019).

In summary, researches that compared EVs to their parent
cells demonstrated a more pronounced or a comparable effi-
cacy for the derived EVs with a better safety profile. Obvi-
ously, Fattore et al. (2015) verified that MSC-EVs reveal
more immunomodulatory effects compared to their parent
cells through enhancement of CD4*, CD25% and CD127'%
Tregs and anti-inflammatory cytokines. As well, another
study proved that MSC-EVs surpassed the lung vasculature
and improved HF and restored its function with comparable
efficacy to their parent MSCs through targeting various cell
types in liver (Rostom et al. 2020; Gupta et al. 2022). Nota-
bly, the absence of major histocompatibility complex class
I-II on allogeneic and autologous MSC-EVs makes them

(Cao et al. 2019)
(Yu et al. 2021)

References

macrophage polarization via modulating the JAK1/STAT1/STAT6 axis
alterations of colon length and crypt loss, preventing rectal bleeding and

inflammatory cell infiltration and colonic inflammation, preventing
reducing histological scores of DAI

Reduction of Th17 production, and arousing the Treg cells percentage, and (Heidari et al. 2021)
thus ameliorating acute colitis

Diminishing of the inflammation in DSS-induced UC by endorsing M2

Homing to the inflammatory sites of the colorectal tissue, inhibiting

Outcomes

from DSS-Induced Inflammatory Bowel Disease by Promoting Intestinal-

attenuate dextran sodium sulfate-induced ulcerative colitis by promoting
stem-cell and Epithelial Regeneration

M2 macrophage polarization
dextran sulfate sodium-induced acute colitis by Treg cell induction and

inflammatory cytokine reduction
Human Adipose Mesenchymal Stem Cell-derived Exosomes Protect Mice

Extracellular vesicles derived from bone marrow mesenchymal stem cells

Adipose-derived mesenchymal stem cell-secreted exosome alleviates

Diseases Title of study

human umbilical cord mesenchymal stem cell, /BD irritable bowel disease, IL-7 interleukin-7, IRAKI IL-1 receptor-associated kinase 1, JAK1 Janus kinase 1, Keapl Kelch-like ECH-asso-
ciated protein 1, NAFLD non-alcoholic fatty liver disease, NASH non-alcoholic steatohepatitis, NF-kB nuclear factor-kappa B, NLRP3 NOD-like receptor family, pyrin domain containing 3,

Nrf2 nuclear factor erythroid 2-related factor 2, NQO-1 NADPH quinone oxidoreductase 1, MCD methionine—choline-deficient diet, miR microRNA, PPARa Peroxisomal proliferator-activated
receptor alpha, STAT signal transducer and activator of transcription, Thl Type 1 T-helper, Thi17 T-helper 17, TRAF6 TNF receptor-associated factor 6, Treg Regulatory T cells, 7SG-6 tumour

CAMKK] calcium/calmodulin-dependent protein kinase 1, DAI Disease Activity Index, DSS dextran sulfate sodium, F70O fat mass and obesity-associated gene, HF hepatic fibrosis, HucMSC
necrosis factor-a stimulated gene 6, UC ulcerative colitis

Table 2 (continued)
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more safely applied as evidenced by Sengupta et al. (2020)
using allogeneic BM-MSC-EVs in COVID-19 patients in
a prospective non-randomised cohort study with no dem-
onstrated adverse effects and satisfied safety endpoints. On
the other hand, MSCs show many safety concerns like their
potential for aberrant differentiation or spontaneous malig-
nancy which have encouraged the replacement of MSCs by
EVs, although some clinical results still support the safety
of MSC:s application (Karussis et al. 2010; Lalu et al. 2012;
Kim et al. 2017; Hosseini et al. 2022). Maji et al. (2017)
and Sun et al. (2016) also revealed no genotoxic effects or
detrimental effects of MSC-EVs on liver and kidneys both
in vitro and in vivo, respectively.

Strategies to enhance the therapeutic
potential of MSC-EVs

Utilising MSC-EVs in various diseases is limited by accu-
mulating drawbacks that restricted their large-scale applica-
tions. These drawbacks include the low yield of MSC-EVs
under conventional culture media (Madrigal et al. 2014) and
the marked decrease in the therapeutic effect of secreted
EVs from MSCs senescence following multiple genera-
tions of cultures in vitro (Joo et al. 2020). In addition, the
poor targeting characteristics to the site of injury after i.v.
administration is regarded as inherent properties of native
or unmodified EXOs (Borrelli et al. 2018; Xu et al. 2020).
Besides, the diminished efficacy of EVs may arise from
their degradation in response to increased oxidative stress
under pathological conditions and its consequent cellular
autophagy activation (Zhang et al. 2022). Accordingly, it is
highly recommended to broaden the clinical applications of
MSC-EVs and improve their therapeutic efficacy (Lopez-
Santalla and Garin 2021; Didamoony et al. 2023).

Preconditioning approaches of MSC-EVs

Preconditioning is a process encompassing enhancement
of the therapeutic efficacy and regenerative abilities of
the administered stem cells or their derivatives and can
be accomplished by two cytoprotective strategies; the first
involves augmenting particular valuable cell trajectory, and
the second one is achieved by providing sublethal environ-
ment to adapt cells to harsh environment to which they are
subjected during pathological conditions (Tilkorn et al.
2012; Touani et al. 2021; Moeinabadi-Bidgoli et al. 2021).
Since the characteristics of MSC-EVss are mainly dependent
on MSC:s status, the preconditioning of MSCs with chemical
agents, biomolecules, or cytokines could improve the immu-
nomodulatory activities as well as the reparative and regen-
erative effects of their derived EVs, a part of MSCs parac-
rine system (Fig. 1) (Noronha Nc et al. 2019). Importantly,
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pharmacological preconditioning appears to be a reasonably
affordable and a valuable technique that can be applied clini-
cally without the use of sophisticated protocols or specific
instrumentations (Chen et al. 2022b).

Pharmacological preconditioning

Preconditioning of MSCs in vitro with drugs or natural med-
ications was documented to enhance the MSCs-EVs thera-
peutic effects as shown in multiple diseases by modifying
various pathways and restoring the lost functions (Hu and Li
2018; Harrell et al. 2019a, b). Optimising MSC-EV's com-
position is one of the important outcomes of in vitro MSCs
preconditioning that result in developing disease-specific,
MSC-based, and cell-free products (Harrell et al. 2019a,
b). For example, the natural yellow agent obtained from
the spice turmeric, curcumin (Cur), provided EXOs with
superior effects for NASH treatment using Cur-pre-treated
MSCs via amendments of hepatic fibrogenesis, inflamma-
tion, oxidative stress in vivo (Motterlini et al. 2000). In
addition, Cur-EXOs repressed lipid synthesis genes such as
PPAR-a and inverted the lipotoxic effect of palmitic acid-
treated HepG2 cells and mitochondrial-dependent apopto-
sis in vitro, as compared to native MSC-EXOs (Tawfeek
and Kasem 2023). In the same manner, the preconditioning
of MSCs with baicalin, a flavonoid isolated from roots of
Scutellaria baicalensis, produced a remarkable enhance-
ment in the function of their derived EXOs in comparison
with unmodified EXOs. This was justified by improving liver
functions in ALI through activating p62/Keap1/Nrf2 signal-
ling and inhibiting oxidative burst, inflammation, and lipid
peroxidation-induced ferroptosis (Zhao et al. 2022).
Preconditioning with pharmacological agents in vivo
robustly urges the survival and therapeutic efficacy of MSCs
and their derivatives (Mortezaee et al. 2017; Feng et al.
2018; Yousefi-Ahmadipour et al. 2019). This was evident by
using rupatadine, an antihistaminic drug which enhanced the
therapeutic effects of MSC-EXOs in vivo against HF in rats
as compared to conventional MSC-EXOs. Rupatadine pro-
vided a more favourable environment by elevating miR-200a
level and hampering oxidative stress, inflammation (platelet
activating factor/TNF-a), necroptosis (receptor-interacting
protein kinase 3/mixed lineage kinase domain-like protein),
and hedgehog pathway with consequent anti-fibrogenic
action (Didamoony et al. 2023). Similarly, Wei et al. (2020)
demonstrated that combining MSC-EXOs with glycyrrhet-
inic acid (a triterpenoid saponin isolated from the root and
rhizome extracts of liquorice) significantly reinforced the
expression of proteins with anti-inflammatory activities and
restored the expression of dysregulated proteins associated
with inflammation and oxidative stress, resulting in further
improvement of MSC-EXOs therapeutic potential in liver
injury both in vivo and in vitro. Moreover, utilising nilotinib,
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a second-generation tyrosine kinase inhibitor, with MSC-
EXOs therapy improved the anti-fibrotic effect of EXOs
in CCl4-induced HF through inhibiting oxidative stress,
inflammation, and apoptosis in comparison with MSC-EXOs
therapy alone (Shiha et al. 2020). Furthermore, Chang et al.
(2019) proved that combining MSC-EXOs with melatonin, a
mitochondrial hormone secreted by the pineal gland (Lopez-
Santalla and Garin 2021), alleviated the inflammatory sta-
tus, apoptosis, and colon injury in rats subjected to DSS,
an effect that was better than that obtained using unmodi-
fied EXOs. Besides, combining green tea with MSC-EXOs
produced better EXOs tolerance to lethal oxidative stress
and inflammation (CXC receptor 2 and TLR4), and hence,
more pronounced therapeutic potential against UC in rats
(El-Desoky Mohamady et al. 2022).

Preconditioning with other mediators

Improving the paracrine efficiency of MSCs results in a
consequent enhancement of their derived EXOs therapeu-
tic activity which can be attained by the aid of biological
molecules or mediators being one of the preconditioning

Improved-MSC-EVs efficacy

<

—— T Anti-apoptotic effects

chymal stem cell-derived extracellular vesicles, MVBs multivesicular
bodies, MVs microvesicles

strategies. Hydrogen sulphide is one of the metabolites
produced by the cells during pathological conditions such
as ischaemia and oxidative stress. Surprisingly, this media-
tor possesses ROS scavenging role leading to enhanced
cell resistance against hypoxia and oxidative stress (Zhang
et al. 2016; Scammahorn et al. 2021). Accordingly, trans-
plantation of the derived EXOs resulted from precondi-
tioning of MSCs with sodium hydrosulfide revealed supe-
rior hepatoprotective and immunosuppressive effects as
compared to unmodified EXOs via upregulation of the
expression of long non-coding RNA metastasis-associated
lung adenocarcinoma transcript 1 and anti-apoptotic fac-
tor Bcl2 in addition to downregulation of the expression
of apoptotic proteins (cleaved caspase-3, Bax and Bcl-2
homologous antagonist/killerl) (Sameri et al. 2022).
Growth factors, a vital group of biological mediators,
were also found to modulate signal transduction involved
in cell growth, proliferation, survival, and other regener-
ative-related capacities (Hu and Li 2018). In comparison
with unmodified MSCs-EXOs, preconditioning of Whar-
ton’s jelly-MSCs with TGF-p1 produced EXOs with maxi-
mum repressive effect on TGF-f1/Smad3 axis and fibrotic
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markers (a-SMA, type I collagen-alpha 1, E-cadherin) in
activated LX-2 cells (Bavarsad et al. 2022).

Furthermore, cytokines such as TNF-«, IL-6 and IFN-y
are mediators that improve the regenerative capacity and
therapeutic potential of MSC-EXOs. This was observed uti-
lising MSC-EXOs preconditioned with IFN-y in a murine
model with liver cirrhosis which revealed alleviation of both
inflammation and fibrosis (Takeuchi et al. 2021). Likewise,
EXOs derived from TNF-a-treated MSCs afforded improved
therapeutic potential in a mouse model of ALI as compared
to untreated EXOs. These outcomes were related to more
pronounced overexpression of miR-299-3p which in turn
inhibited the recruitment and activation of NLRP3-related
inflammatory pathway (Zhang et al. 2020). Similarly, Shao
et al. (2020) demonstrated experimentally the ability of IL-6
pre-treated human umbilical cord MSC-EXOs to diminish
the generation of inflammatory cytokines via miR-455-3p
which targeted the IL-6-related signalling cascades in ALL
In addition, LPS-preconditioned MSC-EXOs mitigated
inflammation and the severity of UC compared to ordinary/
unmodified MSC-EXOs (Gu et al. 2021). Another study
reported that IFN-y enhanced the therapeutic efficacy of
MSC-EXOs for management of colitis in mice through over-
expressing miR-125a and miR-125b in MSC-EXOs which
directly acted on STAT3 and repressed Th17 cell differentia-
tion as well as inflammation (Yang et al. 2020).

Current challenges of clinical applications
of MSC-EVs

MSC-EVs are characterised by similar or even better function
in comparison with their parent cells because of their higher
biocompatibility, greater trajectory in intercellular com-
munication, and higher efficiency in drug delivery (Cheng
et al. 2020; Racchetti and Meldolesi 2021; Yin et al. 2023).
Furthermore, MSC-EVs showed no evidence of spontane-
ous oncogenic potential or any negative immune responses
(Cheng et al. 2020; Hou et al. 2021; Yin et al. 2023). On
the other hand, MSCs can promote and aggravate tumour
growth as demonstrated experimentally in several types of
cancer such as breast and colorectal cancer in addition to
gastric carcinoma (Karnoub et al. 2007; Quante et al. 2011;
De Boeck et al. 2013; Musiat-Wysocka et al. 2019). More
importantly, MSC-EVs are easy to store with extreme sta-
bility and without using harmful cryopreservatives (Cheng
et al. 2020). MSC-EVs also exhibit good penetration of bio-
logical barriers and revealed minimal risk of microvascular
embolism as compared to their parent MSCs which caused
instant blood-mediated inflammatory reaction upon intrave-
nous administration in different experimental studies (Fiedler
et al. 2018; Musiat-Wysocka et al. 2019; Han et al. 2020; Sun
et al. 2022), leading to pulmonary embolism (Tatsumi et al.
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2013). Thus, MSC-EVs show a superior safety profile mak-
ing them a promising therapeutic approach for a wide range
of diseases or disorders (Zhu et al. 2017; Psaraki et al. 2022).
Despite all these advantages, there are numerous chal-
lenges that should be overcome before the clinical application
of MSC-EVs in GI diseases. These concerns stem from: (a)
the inability to choose the optimal EVs source due to the lack
of clear comparison among different MSCs sources (Bruno
et al. 2020); (b) the molecular heterogeneity in EVs prepara-
tions because of the difference in methods of EVs isolation,
purification, and characterisation—which contradicts with
the homogeneity required for clinical practice (Abraham and
Krasnodembskaya 2020; Guo et al. 2021); (c) the difficulty to
ascertain the optimal route of delivery and the therapeutic dos-
age required for each GI condition, which remains a mystery to
clinicians due to the lack of well-recognised and standardised
techniques for EVs isolation and characterisation (Guo et al.
2021; Ahmed and Al-Massri 2022); (d) the contamination of
EVs preparations with apoptotic cells fragments, lipoproteins,
or proteins (Choi et al. 2015; Hou et al. 2021); (e) a dearth of
techniques for large-scale EVs production and extraction (Guo
et al. 2021; Williams et al. 2023); (f) a scarcity of informa-
tion about the exact content within MSC-EVs which can vary
greatly due to different sources and conditions (Cheng et al.
2020); (g) the low temperatures during handling and trans-
plantation, and the freeze—thaw cycles which can induce EVs
clumping and cargo degradation (Pinky et al. 2021).
Therefore, from a practical standpoint, the apparent insig-
nificant results of MSC-EVs in clinical trials could be related
to the disease stage, the timing of their injection, the dose
used, and the source of the MSC-EVs either from healthy
or diseased cells. Further investigations are needed to scale
up and optimise specific and standardised methodologies for
MSC-EVs production, isolation, purification, and charac-
terisation. Besides, it is important to validate the dosage and
half-life of MSC-EVs and evaluate alternative approaches
for EVs storage to enhance their stability. It is also necessary
to examine the potential impacts of EVs derived from differ-
ent sources of MSCs in various GI disorders and to inves-
tigate new techniques for modulating MSC-EVs composi-
tion and their biological activity. Furthermore, specific and
effective markers for analysing EVs at a single-vesicle level
should be identified to distinguish EVs source, ensure their
purity, and preclude unknown harmful impacts of their use.

Conclusion

Because of the alarming rise in incidence and prevalence of
GI diseases, researchers have been working to identify new
approaches for the management of these diseases. MSC-
EVs represent an attractive therapeutic paradigm for treat-
ing various GI diseases through maintaining the therapeutic
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advantages of their parents MSCs, but with reduced risks of
iatrogenic tumour formation, immunogenicity, and micro-
vascular obstructions. MSC-EVs restore homeostasis and
enable the injured cells to recover through their anti-oxidant,
anti-apoptotic, anti-inflammatory, anti-fibrotic, and immu-
nomodulatory actions. Besides, the therapeutic efficacy of
MSC-EVs can be improved by the preconditioning approach
which utilises pharmacological agents or biological media-
tors to adapt them to the lethal environment to which they
are subjected during pathological conditions. Notably, there
have been tremendous efforts to improve the separation and
production yield of MSC-EVs as well as their efficacy and
stability over time following in vivo transplantation. Despite
all these efforts, additional studies and methodologies are still
needed to overcome the challenges and difficulties of their
clinical applications.
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