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Abstract
Parkinson’s disease (PD) is the second most common progressive age-related neurodegenerative disorder. Paramount evi-
dence shed light on the role of PI3K/AKT signaling activation in the treatment of neurodegenerative disorders. PI3K/AKT 
signaling can be activated via cAMP-dependent pathways achieved by phosphodiesterase 4 (PDE4) inhibition. Roflumilast is 
a well-known PDE4 inhibitor that is currently used in the treatment of chronic obstructive pulmonary disease. Furthermore, 
roflumilast has been proposed as a favorable candidate for the treatment of neurological disorders. The current study aimed 
to unravel the neuroprotective role of roflumilast in the rotenone model of PD in rats. Ninety male rats were allocated into 
six groups as follows: control, rotenone (1.5 mg/kg/48 h, s.c.), L-dopa (22.5 mg/kg, p.o), and roflumilast (0.2, 0.4 or 0.8 mg/
kg, p.o). All treatments were administrated for 21 days 1 h after rotenone injection. Rats treated with roflumilast showed an 
improvement in motor activity and coordination as well as preservation of dopaminergic neurons in the striatum. Moreover, 
roflumilast increased cAMP level and activated the PI3K/AKT axis via stimulation of CREB/BDNF/TrkB and SIRT1/PTP1B/
IGF1 signaling cascades. Roflumilast also caused an upsurge in mTOR and Nrf2, halted GSK-3β and NF-ĸB, and suppressed 
FoxO1 and caspase-3. Our study revealed that roflumilast exerted neuroprotective effects in rotenone-induced neurotoxicity 
in rats. These neuroprotective effects were mediated via the crosstalk between CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 
signaling pathways which activates PI3K/AKT trajectory. Therefore, PDE4 inhibition is likely to offer a reliable persuasive 
avenue in curing PD via PI3K/AKT signaling activation.
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Abbreviations
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SIRT1  Silent information regulator type 1
PI3K  Phosphoinositide 3-kinase
cAMP  Cyclic adenosine monophosphate
TrKB  Tropomyosin receptor kinase B
IGF1  Insulin growth factor 1

Introduction

Parkinson’s disease (PD) is the second most common pro-
gressive age-related neurodegenerative disorder (Aarsland 
et al. 2021; Tryphena et al. 2023). The most distinctive 
symptoms of PD are motor deficits, such as bradykinesia, 
tremors, and freezing gait disturbances (Tarakad and Janko-
vic 2017). These motor symptoms result from persistent loss 
of striatal dopaminergic (DAergic) neurons in the substan-
tia nigra pars compacta (SNpc) leading to dopamine (DA) 
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deficiency in the striatum (Chakrabarti and Bisaglia 2023). 
The degeneration of dopaminergic neurons is driven by 
Lewy bodies, which are formed from misfolded α-synuclein 
(α-Syn) protein aggregates (Iarkov et al. 2021). Oxidative 
stress, mitochondrial dysfunction, neuroinflammation, and 
apoptosis are regarded to be the main mechanisms exac-
erbating the deleterious potential of α-Syn predisposing 
dopaminergic neurons to further demise (Hassanzadeh and 
Rahimmi 2018; Musgrove et al. 2019; Dionísio et al. 2021).

The currently approved pharmacological treatment for 
PD includes levodopa, dopaminergic receptor agonists, and 
anticholinergic drugs (Rezak 2007). However, they provide 
symptomatic relief only without halting the disease progres-
sion. Furthermore, these drugs produce significant adverse 
effects such as levodopa-induced dyskinesia and wearing-
off phenomenon (Armstrong and Okun 2020). Therefore, 
research is diverted toward investigating novel therapeutic 
approaches in PD treatment (Keighron et al. 2023).

Paramount evidence shed light on the activation of phos-
phoinositide 3-kinase (PI3K)/protein kinase B (AKT) signal-
ing pathway and its worthwhile neuroprotective role in PD 
(Yao et al. 2022; Li et al. 2023b). PI3K/AKT cascading axis, 
via its impact on a plethora of proteins, has been established 
to be one of the most crucial pathways capable of ameliorat-
ing neuronal survival, improving neurogenesis, and repress-
ing apoptosis induced by neurotoxins in PD models (Zheng 
et al. 2021a, b; Khezri and Ghasemnejad-Berenji 2022; 
Wang et al. 2022). PI3K/AKT is activated after the binding 
of diverse neurotrophic factors to their membrane receptors 
including brain-derived neurotrophic factor (BDNF)/tropo-
myosin receptor kinase B (TrKB) (Jin et al. 2022; Gendy 
et al. 2023) and silent information regulator type 1 (SIRT1)/
insulin growth factor 1 (IGF1) cascading axes (Yang et al. 
2018; Flores et al. 2023; Arjunan et al. 2023).

Noteworthy, BDNF and SIRT1 cascading axes can 
be provoked with the aid of enhancing cyclic adenosine 
monophosphate (cAMP) magnitude (Bhat et  al. 2020; 
Dong et al. 2021). The cAMP level is proven to be elevated 
via phosphodiesterase 4 (PDE4) inhibition (Kelly 2018). 
Intriguingly, PDE4 inhibition was implicated as a reliable 
target in ameliorating PD (Nthenge-Ngumbau and Mohana-
kumar 2018; Roy et al. 2023) as well as promoting protea-
somal degradation of α-Syn deposits in PD (Desouky et al. 
2023).

Roflumilast is a selective PDE4 inhibitor that is approved 
by the FDA for the treatment of severe chronic obstructive 
pulmonary disease (COPD) (Janjua et al. 2020). Roflumilast 
is established to be brain penetrant targeting PDE4 sites in 
the cortico-striatal-thalamic circuitry including the nigral 
area (Vanmierlo et al. 2016; Heckman et al. 2018). Further-
more, roflumilast has been proposed as a favorable candidate 
for the treatment of neurological disorders such as Alzhei-
mer’s disease, cerebral ischemia, sleep deprivation-induced 

cognitive deficits, and depression via improving neuroin-
flammation, memory, and cognition (Wang et al. 2020a; 
Vilhena et al. 2021; Bhat et al. 2022; Zaki et al. 2023). 
Recently, Desouky et al. (2023) illustrated that roflumilast 
is capable of prompting proteasomal degradation of detri-
mental α-Syn deposits in PD animal model. Also, Essam and 
Kandil (2023) reported that roflumilast halts the progression 
of rotenone-induced PD in rats via activation of cAMP-PKA 
signaling pathways. Taken together, the current study aimed 
to unravel the plausible neuroprotective role of roflumilast 
in the rotenone model of PD in rats by focusing on targeting 
PI3K/AKT signaling cascade.

Material and methods

Chemicals and drugs

Rotenone and roflumilast were purchased from Sigma-
Aldrich (St. Louis, MO, USA), while dimethyl sulfoxide 
(DMSO) and carboxymethylcellulose (CMC) were obtained 
from Merck (Darmstadt, Germany) and Santa Cruz Biotech-
nology (Santa Cruz, CA, USA), respectively. Levodopa was 
acquired from Merck and Co. Inc. (New Jersey, USA). All 
used chemicals were of the highest purity and analytical 
grade. Rotenone was prepared in 1% DMSO, while roflu-
milast was suspended in 1% CMC.

Animals

Male Wistar rats weighing 200–250 g were obtained from 
the National Scientific Research Centre (Giza, Egypt). The 
animals were grouped before the experiment and housed 
under controlled environmental conditions of constant tem-
perature (25 ± 2 °C), humidity (60 ± 10%), and a 12/12-h 
light/dark cycle with free access to standard chow diet and 
water. The investigation compiled with the Guide for the 
Care and Use of Laboratory Animals published by the US 
National Institutes of Health (NIH Publication No. 85–23, 
revised 2011) and was performed in agreement with ethical 
procedures approved by the Ethics Committee of Faculty 
of Pharmacy, Cairo University (Permit Number: PT 2481).

Experimental design

As shown in Fig. 1, a total of ninety rats were randomly 
divided into 6 groups, each of 15 animals. Group I 
received 1% CMC (2.5 ml/kg, p.o.) daily in addition to 
11 injections of 1% DMSO (0.2 ml/kg, s. c.) on rotenone 
corresponding days and served as a control group. Group 
II was treated with 11 injections of rotenone (1.5 mg/kg, 
s.c) dissolved in 1% DMSO every other day for 21 days 
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(Mansour et al. 2018). Group III was treated daily with 
L-dopa dissolved in saline solution (22.5 mg/kg, p.o) 1 h 
after rotenone injection (Ahmed-Farid et al. 2021) for 
21 days. Roflumilast (0.2, 0.4, or 0.8 mg/kg, p.o., sus-
pended in 0.5% CMC) was administered daily for 21 days 
1 h after rotenone injection to rats of Group IV, V, and VI, 
respectively (Feng et al. 2019). Twenty-four hours after the 
last rotenone injection, rats were screened for motor per-
formance using the open field, rotarod, and wire hanging 
tests. These tests were set in order from the least stressful 
to the most stressful and were all conducted during the 
animals’ light cycle to decrease circadian variability.

After behavioral assessments, animals were sacrificed 
by cervical dislocation under light anesthesia. Brains were 
rapidly excised and washed with ice-cold saline. Dissec-
tion of each brain was conducted on an ice-cold glass plate 
for separation of striata. Animals in each group were fur-
ther divided into three sets. In the first set (n = 6), both 
striata were homogenized in 10% (w/v) saline and were 
used for assessments via the enzyme-linked immunosorb-
ent (ELISA) technique. The striata of the second set (n = 6) 
were designated for Western blot and qRT-PCR analysis. 
Brains of the last set (n = 3) were fixed in 10% (v/v) for-
malin for 24 h to execute histopathological staining with 
hematoxylin and eosin (H&E). Nuclear extraction was 
done for proteins whose active forms are mainly expressed 
in the nucleus including NF-κB and Nrf2.

Behavioral assessment

Open field test

The open field test was carried out using a square wooden 
box measuring 80 × 80 × 40 cm with red walls and a black 
smooth polished floor divided by white lines into 16 equal 
squares. Each rat was placed gently in the central area of 
the open field and allowed to freely explore the area for 
3 min. The floor and walls were cleaned with 10% alco-
hol after testing each rat to eliminate possible bias due to 
odors left by previous rats. A video camera was fixed on 
the top of the box to record the movement and behavior 
of rats for later offline analysis. Ambulation frequency 
(number of squares traversed by the animal) was recorded 
(Tatem et al. 2014).

Rotarod test

Evaluation of motor coordination and balance using 
a rotarod apparatus (3 cm diameter, 90 cm height, and 
10 rpm) was performed. Rats were trained for 3 succes-
sive days to remain on the stationary and rotating rod 
(three sessions, 5 min each). Before the sacrifice and after 
accomplishing the open field test, animals were allowed 

Rot (s.c./48 h/11 doses) [Gp II]

1% DMSO (s.c./48h/11 doses) – 0.5% CMC (p.o./daily) [Gp I]

Rot (s.c./48 h/11 doses) + L-dopa (22.5 mg/kg, p.o./daily) [Gp III]
Rot (s.c./48 h/11 doses) + Rof (0.2 mg/kg, p.o./daily) [Gp IV]

Day 1 Day 213 5 7 9 11 13 15 17 19 24 h

Rot (s.c./48 h/11 doses) + Rof (0.4 mg/kg, p.o./daily) [Gp V]
Rot (s.c./48 h/11 doses) + Rof (0.8 mg/kg, p.o./daily) [Gp VI]

Behavioural assessment:
Open field
Rotarod

Wire hanging

Fig. 1  Experimental design. DMSO dimethylsulfoxide, CMC carboxymethylcellulose, Rot rotenone, Rof roflumilast
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to move over the rotarod for 5 min, and their falling time 
was recorded (Jones and Roberts 1968).

Wire hanging test

To evaluate motor strength and muscular rigidity, rats were 
suspended by their forelimbs from a steel rod (20 cm long 
and 0.25 cm in diameter) located 20 cm above the bench 
(Model 47200, Ugo Basile, Comerio, Italy). The forelimb 
grip strength was assessed using a grip strength meter. Each 
rat was placed horizontally over a base plate facing a triangle 
bar and then dragged steadily by its tail away from the bar 
upon grasping it until its grip was lost. The latency time to 
fall was recorded (Massicotte et al. 2015).

Biochemical parameters

ELISA

The striatal contents of BDNF, nuclear factor erythroid 
related factor 2 (Nrf2), nuclear factor kappa beta (NF-κB 
p65), cAMP, SIRT1, and protein tyrosine phosphatase 1B 
(PTP1B) were estimated according to the manufacturer’s 
prescripts provided by rat ELISA kits (Cat. # MBS824814, 
MBS012148, MBS015549, MBS2700004, MBS2600246, 
MBS3809151 MyBioSource, CA, USA, respectively). Like-
wise, IGF1 and caspase-3 were assayed using rat ELISA 
assay kits (Cat. # CSB-E04582r, CSB-E08857r Cusabio, 
Wuhan, China, respectively) using BioTek Elisa Reader 
ELx808. The procedures were performed following the 
manufacturers’ directions. The results were expressed as 
pg/mg protein for BDNF, NF-ĸB p65, cAMP, and Nrf2; ng/
mg protein for SIRT1, IGF1, and caspase-3 levels; and as 
µg/mg protein for PTP1B; where the protein content was 
determined using Bradford method (Bradford 1976).

Western blot analysis

The protein expression of striatal cAMP response ele-
ment-binding protein (CREB), AKT, mammalian target of 
rapamycin (mTOR), and glycogen synthase kinase-3 beta 
(GSK-3β) proteins was assessed using the Western blot 
analysis. After protein solutions were extracted from stri-
atal tissues, equal amounts of proteins were loaded onto 
a sodium dodecyl sulfate–polyacrylamide gel electropho-
resis, which allows the separation of proteins according to 
their molecular weight. Subsequently, the samples were 
electro-transferred onto nitrocellulose membranes (Amer-
sham Bioscience, Piscataway, NJ, USA) using a semidry 
transfer apparatus (Bio-Rad, Hercules, CA, USA). These 
membranes were blocked with 5% non-fat dry milk in 
Tris-buffered saline with 0.05% Tween-20 (TBST) for 1 h 

at room temperature, and incubated overnight at 4 °C on a 
roller shaker with antibody against rat anti p-CREB (ser133) 
(1:1000, Catalog No. # MA5-11192), anti p-PI3K (ser110α) 
(1:500, Catalog No. # PA5-87398), anti p-AKT1 (ser473) 
(1:500, Catalog No. # PA5-85513), anti p-mTOR (ser2448) 
(1:500, Catalog No. #MA5-35832), anti-Nrf2 (1:500, Cat # 
PA5-27882), anti-Keap1 (1:500, Cat #PA5-99434) and anti 
p-GSK-3β (Tyr216) (1:1000, Catalog No. # 44-604G) (Ther-
moFisher Scientific Inc., USA), Afterward, membranes were 
washed and then incubated with horseradish peroxidase-
conjugated secondary antibody anti-rat immunoglobulin 
(1:2000; Fluka, St. Louis, MO, USA). Finally, the blots were 
developed with enhanced chemiluminescence detection rea-
gents (Amersham Biosciences, Arlington Heights, IL, USA). 
The amount of CREB, AKT, mTOR, and GSK-3β proteins 
was quantified by densitometric analysis using a scanning 
laser densitometer (GS-800 system, Bio-Rad, Hercules, CA, 
USA). Finally, chemiluminescence detection was performed 
with the Amersham detection kit according to the manu-
facturer’s protocols and exposed to X-ray film. The protein 
bands intensities were  quantified by densitometric analysis 
of the autoradiograms using a scanning laser densitometer 
(Biomed Instrument Inc., USA). Results were expressed 
as arbitrary units after normalization with β-actin protein 
expression (Catalog No. #MA5-15739) (ThermoFisher Sci-
entific Inc., USA).

Quantitative real‑time PCR analysis

Striatal TrKB and forkhead box (FoxO1) mRNA expressions 
were assessed using qRT-PCR technique. Total RNA was 
extracted from striatal tissue using SV Total RNA Isola-
tion system (Promega, Madison, WI, USA) and the purity 
of obtained RNA was verified spectrophotometrically at 
OD 260/280 nm. The extracted RNA was then reverse tran-
scribed into complementary DNA using RT-PCR kit (Strata-
gene, La Jolla, CA, USA) according to the manufacturer's 
procedure. QRT-PCR was performed using SYBR Green 
JumpStart Taq ReadyMix (Sigma-Aldrich, St. Louis, MO, 
USA) as described by the manufacturer. The primers were 
obtained from Macrogen Inc. Seoul, South Korea and were 
designed using Primer-Blast (Basic Local Alignment Search 
Tool) of NCBI (National Center for Biotechnology Informa-
tion). The primer sequences are listed in Table 1. Briefly, in 
a 25 μl reaction volume, 5 μl of complementary DNA was 
added to 12.5 μl SYBR Green mixture, 5.5 μl RNase free 
water, and 2 μl of each primer (5 pmol/μl). The PCR ampli-
fications were performed with the following steps: initial 
denaturation at 50 °C for 2 min followed by 40 cycles of 
denaturation at 95 °C for 15 s, annealing at 60 °C for 1 min, 
and extension for 60 s at 72 °C. After the qRT-PCR run, the 
relative expression of the target gene was obtained using 
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the  2−ΔΔCT formula using β-actin as a housekeeping gene 
(Pfaffl 2001).

Histopathological examination

H&E stain

Brains were fixed in 10% formalin for 24 h. The specimens 
were dehydrated in ascending grades of alcohol, cleared in 
xylene, and embedded in paraffin at 56 degrees in a hot air 
oven for 24 h. Paraffin beeswax tissue blocks were prepared 
for sectioning at 4 μm thickness by a sledge microtome. 
The obtained tissue sections were collected on glass slides, 
deparaffinized, stained by hematoxylin and eosin (H&E) 
stain, and examined through the light electric microscope. 
During the histopathological analysis, the investigator was 
blinded to sample identity, and sample coding and decoding 
were performed by an independent experimenter.

Immunohistochemistry

The immunohistochemical technique was used to assess 
striatal dopaminergic tyrosine hydroxylase. The brain sam-
ples were processed into paraffin blocks; thereafter, 4 μm 
sections were prepared on positively charged glass slides. 
Endogenous peroxidase activity was quenched by first incu-
bating the specimens in 3% hydrogen peroxide. The speci-
mens were then incubated with primary monoclonal anti-
tyrosine hydroxylase (TH) antibody obtained from Abcam, 
USA (Cat. # ab112), followed by sequential incubations 
with biotinylated link antibody and peroxidase-labeled 
streptavidin (Dako, Carpinteria, CA, USA). Labeling was 
then revealed by diaminobenzidine chromogen. Slides were 
counterstained with hematoxylin, dehydrated, covered and 
examined through the light electric microscope (Olympus 
CX21, Tokyo, Japan). The area percent of TH-positive fibers 
in the striatum was determined microscopically (magnifica-
tion × 40) using the Leica Qwin 500 Image Analyzer (Leica 
Microsystems, Wetzlar, Germany) from four randomly 
selected fields for each animal. The results were presented 
as the area percentage of TH-positive cell.

Statistical analysis

Data sets are presented as mean ± S.E.M. Comparison 
between groups was carried out using one-way analysis of 
variance (ANOVA), followed by Tukey’s multiple compar-
isons test; except the histopathological scoring data were 
analyzed using Kruskal–Wallis nonparametric one-way 
ANOVA followed by Dunn’s multiple comparisons test and 
presented as median and range. A probability level of less 
than 0.05 was accepted as statistically significant. Statisti-
cal analysis was performed using GraphPad Prism software 
version 6 (San Diego, CA, USA).

Results

Roflumilast ameliorates rotenone‑induced 
behavioral changes in rats

Rats receiving rotenone showed worsened locomotor activ-
ity as manifested by significantly decreased ambulation fre-
quency, deteriorated motor coordination in rotarod mobility, 
and significantly lessened latency time to fall from the wire 
as compared to the control group (Fig. 2). L-dopa alleviated 
rotenone-induced motor disability, where ambulation fre-
quency, mobility time on rotarod, and the latency time to fall 
from the wire were boosted by 2.5-fold. 2.8-fold, and 6-fold, 
respectively, as compared to rotenone group. Treatment with 
roflumilast (0.2, 0.4, or 0.8 mg/kg) reversed rotenone’s inju-
rious effects via amplifying ambulation frequency by 1.4-
fold, 2-fold, and 3-fold as well as enhancing mobility time 
in rotarod test by 1.5-fold, 2.3-fold, and 3.2-fold, respec-
tively as compared with the rotenone group (Fig. 2a and b). 
Moreover, roflumilast (0.2, 0.4, and 0.8 mg/kg) succeeded to 
significantly increase the latency time to fall from the wire 
by 2.5-fold, 4.3-fold, and 6.7-fold, respectively (Fig. 2c) as 
compared with the rotenone group.

Roflumilast amends rotenone‑induced alterations 
in striatal cAMP, PI3K, and AKT in rats

Striatal tissues of rotenone-treated rats revealed a dramatic 
decline in cAMP level, PI3K, and AKT expressions by 67%, 
74%, and 81%, respectively, as compared to control group 

Table 1  The primer sequences used in RT-PCR

Gene Accession no. Forward primer Reverse primer

TrKB NM_012731.3 5′-CTA CCT GGC ATC CCA ACA CT- 3′ 5′-CTC GGT GGT GAA TTT CCT GT-3′
FoxO1 NM_001191846.3  5′-CCG ACC TCA TCA CCA AGG -3′ 5′-TCT CCA GGA CCC TCT TGC-3′
β-Actin XM_039089807.1 5′-CGT TGA CAT CCG TAA AGA CCTC-3′ 5′-TAG GAG CCA GGG CAG TAA TCT-3′
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values (Fig. 3). Treatment with L-dopa resulted in a significant 
elevation of cAMP level (2.6-fold), PI3K expression (3.2-fold), 
and AKT expression (3.6-fold) as compared to rotenone group. 
Similarly, roflumilast (0.2, 0.4, or 0.8 mg/kg) elicited a remark-
able upsurge in cAMP level by 1.9-fold, 2.1-fold, and 2.6-
fold, respectively, which triggered massive increments in PI3K 
expression by 2.7-fold, 2.9-fold, and 3.3-fold, respectively, and 

AKT expression by 2.9-fold, 3.1-fold, and 4-fold, respectively, 
as compared to rotenone group values.

Roflumilast reverses rotenone‑induced alterations 
of striatal CREB, BDNF and TrKB in rats

Striatal tissues of rotenone-treated rats showed a marked 
depletion in p-CREB expression, BDNF level, and TrKB 
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Kramer multiple comparison test at p < 0.05. Rot rotenone, Roflum 
roflumilast
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mRNA expression by 79%, 60%, and 82%, respectively, as 
compared to control group values (Fig. 4). Treatment with 
L-dopa resulted in a significant elevation of p-CREB expres-
sion (3.8-fold) as compared to rotenone group. Similarly, rof-
lumilast (0.2, 0.4, or 0.8 mg/kg) escalated p-CREB expression 
by 3.1-fold, 3.5-fold, and 4.1-fold, respectively, as compared 
to rotenone group. In parallel, BDNF level and TrKB mRNA 
expression were highly augmented by L-dopa and roflumilast. 
Distinctly, roflumilast (0.8 mg/kg) was the most effective in 
boosting the prosurvival BDNF cascade through triggering 
magnificent increments of BDNF level (2.4-fold) as compared 
to the rotenone group (Fig. 4b). This effect was verified by sig-
nificant concurrent amplifications in the mRNA expression of 
the downstream BDNF effector TrkB (4.5-fold) as compared 
to the rotenone group (Fig. 4c).

Roflumilast alleviates rotenone‑induced alterations 
in striatal contents of SIRT1, IGF1, and PTP1B in rats

Striatal SIRT1 and IGF1 levels were reduced after rotenone 
injection by 72% and 74%, respectively, as compared to their 
normal control counterparts. These effects were mitigated by 

treatment with L-dopa and roflumilast (0.2, 0.4, or 0.8 mg/kg) 
that boosted striatal SIRT1 level by 2.7-fold, 2.3-fold, 2.8-fold, 
and 3.3-fold, respectively, and striatal IGF1 level by 2.2-fold, 
2-fold, 2.5-fold, and 2.6-fold, respectively, as compared to the 
rotenone group (Fig. 5). Besides, L-dopa and roflumilast (0.2, 
0.4, or 0.8 mg/kg) significantly suppressed PTP1B, a major 
IGF1 inhibitor, level by 62%, 32%, 55%, and 66%, respec-
tively, in comparison to the rotenone group.

Roflumilast attenuates rotenone‑induced 
alterations of striatal mTOR, Nrf2, Gsk‑3β, NF‑κB, 
FoxO1, and caspase‑3 in rats

Repeated rotenone injection caused an obvious 72% decrease 
in striatal mTOR expression, along with 80% decrement in 
Nrf2 level as compared to the control group. Rotenone’s 
deleterious effect extends to exhibit a prominent increase 
in Keap1 expression by 5.6-fold, in addition to escalating 
inflammatory and apoptotic mediators including Gsk-3β 
expression, NF-κB level, FoxO1 mRNA expression, and 
caspase-3 level by 5.7-fold, 2.3-fold, 6.4-fold, and 4.9-fold, 
respectively, as compared to control rats (Fig. 6). On the 
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Fig. 4  Roflumilast reverses rotenone-induced alterations of striatal 
a CREB, b BDNF, and c TrKB in rats. Each bar with vertical line 
represents the mean ± S.E.M (n = 6). *Significantly different from 
control, @significantly different from rotenone, #significantly different 

from L-dopa, &significantly different from Roflum 0.2 mg/kg, %signif-
icantly different from Roflum 0.4 mg/kg. Statistical analysis was per-
formed using one-way ANOVA followed by Tukey–Kramer multiple 
comparison test at p < 0.05. Rot rotenone, Roflum roflumilast
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Fig. 5  Roflumilast alleviates rotenone-induced alterations in striatal 
contents of a SIRT1, b IGF1, and c PTP1B in rats. Each bar with 
vertical line represents the mean ± S.E.M. (n = 6). *Significantly dif-
ferent from control, @significantly different from rotenone, #signifi-
cantly different from L-dopa, &significantly different from Roflum 

0.2 mg/kg, %significantly different from Roflum 0.4 mg/kg. Statistical 
analysis was performed using one-way ANOVA followed by Tukey–
Kramer multiple comparison test at p < 0.05. Rot rotenone, Roflum 
roflumilast
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(e) (f) (g)

Fig. 6  Roflumilast attenuates rotenone-induced alterations of stri-
atal a mTOR, b Nrf2, c Keap1, d GSK-3β, e NF-κB, f FoxO1, 
and g caspase-3 in rats. Each bar with vertical line represents the 
mean ± S.E.M. (n = 6). *Significantly different from control, @signifi-
cantly different from rotenone, #significantly different from L-dopa, 

&significantly different from Roflum 0.2 mg/kg, %significantly differ-
ent from Roflum 0.4 mg/kg. Statistical analysis was performed using 
one-way ANOVA followed by Tukey–Kramer multiple comparison 
test at p < 0.05. Rot rotenone, Roflum roflumilast
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contrary, L-dopa and roflumilast (0.2, 0.4, or 0.8 mg/kg) 
markedly enhanced neurogenesis which was evidenced by 
upregulating striatal mTOR expression by 2.5-fold, 2.3-
fold, 2.5-fold, and 2.8-fold along with upleveling Nrf2 level 
by 4.3-fold, 3.2-fold, 3.3-fold, and 4.1-fold, respectively. 
Moreover, treatment with L-dopa and roflumilast (0.2, 0.4 
or 0.8 mg/kg) dampens Keap1 expression by 68%, 45%, 
48%, and 63%, respectively, and switched “off” the surge 
of Gsk-3β expression by 69%, 60%, 63%, and 70%, respec-
tively, NF-κB level by 49%, 37%, 42%, and 50%, respec-
tively, FoxO1 mRNA expression by 69%, 55%, 56%, and 
72%, respectively, and caspase-3 level by 67%, 45%, 61%, 
and 73%, respectively, versus the rotenone-treated group 
values.

Roflumilast mitigates rotenone‑induced 
histopathological changes

Sections from control group showed normal histological stri-
atal neuronal structure (Fig. 7A). On the contrary, striata of 
rotenone-treated rats revealed severe focal encephalomalacia 
associated with neuronal degeneration, dark pyknotic nuclei 
accompanied by severe diffused gliosis (Fig. 7B). These nox-
ious histopathological changes were reversed in the striata of 
parkinsonian rats treated with L-dopa and roflumilast (0.2 
or 0.4 mg/kg), where fewer scattered degenerated neurons 
and mild interspersed gliosis were seen (Fig. 7C, D, and E). 
Rats treated with roflumilast (0.8 mg/kg) revealed marked 
improvement with almost normal striatal architecture, intact 
neurons, and very slight gliosis (Fig. 7F).

Fig. 7  Roflumilast mitigates rotenone-induced histopathological 
changes. Striatal sections from control rats stained with hematoxy-
lin and eosin (H&E). Striatal tissue in control group showed nor-
mal histological structure (A), while rats receiving rotenone showed 
encephalomalacia (one arrow), nuclear pyknosis (two arrows), degen-
erative gliosis (thick arrow) of several striatal neurons (B). Striatal 
sections from rats treated with L-dopa showed slight gliosis (C). 
Striatal sections from rats treated with roflumilast (0.2 or 0.4  mg/

kg) showed moderate gliosis with dispersion of encephalomalacia 
(D and E, respectively). Sections from rats treated with roflumilast 
(0.8 mg/kg) showed almost manifested intact nigral neurons with vis-
ible nuclei (F). Histological scoring of neuronal degeneration in the 
striatum (G). Data are expressed as median and range of three rats per 
group; *versus control, @versus Rot. Statistical analysis was done by 
Kruskal–Wallis one-way ANOVA followed by Dunns multiple com-
parison test at p < 0.05
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Roflumilast restores TH enzyme immunoreactivity

Figure 8 revealed a prevalent injury of striatal dopamin-
ergic neuronal fibers in rotenone-treated rats, declared by 
a significant reduction (85%) of TH immunoreactivity as 
compared to the control group. Administration of roflumi-
last (0.2 or 0.4 mg/kg) alleviated rotenone-induced dopa-
minergic degeneration as shown by mild increased striatal 
TH immunoreactivity. Interestingly, roflumilast (0.8 mg/kg) 
outperformed L-dopa in reversing the reduced TH immuno-
reactivity in the rotenone model displaying fourfold increase 
in striatal TH immunoreactive positive cells in roflumi-
last (0.8 mg/kg)-treated group versus 3.6-fold increase in 
L-dopa-treated group.

Discussion

The present study reveals the neuroprotective effect of rof-
lumilast against rotenone-induced PD in rats. This notion 
is supported by: (a) an improvement in rats’ motor activity 
and coordination; (b) the preservation of dopaminergic neu-
rons in the striatum; (c) an increase in cAMP level; (d) the 
activation of PI3K/AKT axis; (e) the stimulation of CREB/
BDNF/TrKB and SIRT1/PTP1B/IGF1 signaling cascades; 
(f) an upsurge in the prosurvival proteins mTOR and Nrf2; 
(g) the anti-inflammatory activity via halting GSK-3β and 
NF-ĸB; and (h) the suppression of apoptotic markers FoxO1 
and caspase-3.

Chronic rotenone exposure in rats elicits neuropatho-
logical and behavioral features mimicking the gradual 

Fig. 8  Roflumilast restores TH enzyme immunoreactivity. Immuno-
histochemical expression of TH in control rats (A) showed marked 
strong tyrosine hydroxylase expression, while rats receiving rotenone 
(B) showed very weak tyrosine hydroxylase expression. Sections 
from rats treated with L-dopa showed moderate tyrosine hydroxylase 
expression (C). Sections from rats treated with roflumilast (0.2 or 
0.4 mg/kg) showed moderate tyrosine hydroxylase expression (D and 
E, respectively). Sections from rats treated with roflumilast (0.8 mg/

kg) showed an obvious tyrosine hydroxylase expression (F). G: The 
area % of TH-immunoreactivity.  Data were expressed as mean and 
range of three rats per group; *versus control, @versus Rot, #versus 
L-dopa, &versus Roflum 0.2 mg/kg, %versus Roflum 0.4 mg/kg. Sta-
tistical analysis was performed using one-way ANOVA followed by 
Tukey–Kramer multiple comparison test at p < 0.05. Rot rotenone, 
Roflum roflumilast
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progression of PD observed in humans (Xiong et al. 2012; 
Johnson and Bobrovskaya 2015). In line, repeated exposure 
of rats to rotenone in the current study resulted in dopamin-
ergic neuronal death and reduced locomotor activity, loss of 
grip strength, and a decrease in the fall time in the rotarod 
test, indicating motor impairments accompanied with severe 
loss of dopaminergic neurons in the SN, which are in line 
with previous studies (Abdelkader et al. 2020; El-Saiy et al. 
2022; El-Latif et al. 2023).

Empirical evidence revealed the potential role of defec-
tive PI3K/AKT signaling in neurodegenerative disorders 
including PD (Malagelada et al. 2008; Levy et al. 2009; 
Goyal et al. 2023). Additionally, various drugs were reported 
to have neuroprotective effects in PD via PI3K/AKT activa-
tion (Hu et al. 2018; Huang et al. 2021; Shao et al. 2022). 
AKT is a master signaling serine/threonine-specific protein 
kinase found downstream of PI3K, possessing a greatly 
expanded functional repertoire as it maintains cell growth 
and proliferation by controlling the phosphorylation of a 
vast array of trafficking nodes (Long et al. 2021). Activation 
and phosphorylation of PI3K/AKT signaling are initiated 
after the binding of diverse convergent neurotrophic fac-
tors, cytokines and insulin to their receptors (Rai et al. 2019; 
Radak et al. 2020; Lu et al. 2023b). PI3K/AKT signaling 
can be activated via cAMP/PKA-dependent pathways (Wang 
and Liu 2023). Activated cAMP/PKA pathway in response 
to PDE4 inhibition was reported to ameliorate movement 
deficits accompanied with PD and to preserve the survival of 
TH-positive neurons in the SN (Yang et al. 2008; Erro et al. 
2021). In line, our results revealed that roflumilast enhanced 
cAMP level with subsequent activation of PI3K and AKT. 
The elevation of cAMP level by roflumilast is attributed to 
its ability to inhibit PDE4. These findings are in harmony 
with a recent study demonstrating the potential neuroprotec-
tive effect of roflumilast against rotenone-induced PD in rats 
through the activation of the cAMP/PKA pathway (Essam 
and Kandil 2023).

Activated cAMP/PKA signaling phosphorylates CREB 
at Ser133 and promotes its transcriptional activity (Guo 
et al. 2017). CREB activation is vital for neuronal survival, 
synaptic transmission and transcription of antioxidant genes 
(Lin et al. 2015; Wu et al. 2018). CREB phosphorylation at 
ser 133 is associated with increased expression of NURR1, 
one of the essential genes crucial for nigral dopaminergic 
neurons survival (Xu et al. 2022). Activated p-CREB evokes 
the transcription of BDNF (Narasimhamurthy et al. 2022), 
which is a prosurvival neurotrophic factor that is highly 
expressed in the striatum (Palasz et al. 2020). BDNF elicits 
its neuroprotective action after binding to TrKB receptor 
and its phosphorylation (Jin 2020). BDNF/TrKB axis pro-
motes neurogenesis by stimulating AKT pathway (Bai et al. 
2019). In the present study, roflumilast increased p-CREB 
expression, BDNF level, and TrKB mRNA expression in the 

striatum of rotenone-treated rats. These findings reveal the 
potential role of activating p-CREB/BDNF/TrKB signaling 
in the neuroprotective effect of roflumilast observed in the 
current study via stimulation of PI3K/AKT axis. In parallel, 
previous studies showed that activation of p-CREB/BDNF/
TrKB signaling pathway was neurorestorative in PD animal 
models through induction of PI3K/AKT signaling cascade 
(Yu et al. 2019; Mousa et al. 2023; Singh et al. 2023).

cAMP/PKA activation could also trigger PI3K/AKT 
signaling and exhibit neuroprotective properties in neu-
rodegenerative disorders via SIRT1 downstream cascade 
(Wang et al. 2020b), which is a nicotinamide adenine dinu-
cleotide (NAD)-dependent histone deacetylase (Ichiro and 
Johnson 2018). Modulating SIRT1 activity counteracts the 
aging process, inducing neuronal vitality, adjusting cel-
lular homeostatic defense against stress, and superimpos-
ing a paramount life longevity impact (Mishra et al. 2021; 
Ziętara et  al. 2022). SIRT1 overexpression also fosters 
insulin signaling by impairing PTP1B, a major inhibitor of 
insulin receptor (Sun et al. 2007; Lu et al. 2023a; Wu et al. 
2023). In response to PTP1B inhibition, IGF1 binds to its 
corresponding receptor and triggers downstream neuropro-
tective signaling pathways of PI3K/AKT (Yang et al. 2018; 
Li et al. 2023a; Tuohongerbieke et al. 2023). α-Syn aggre-
gation in PD could be suppressed via augmenting SIRT1 
and IGF1 activities (Kakoty et al. 2023). Herein, we showed 
that roflumilast increased levels of SIRT1 and IGF1 along 
with reduced expression of PTP1B in striatum of rotenone-
injected rat, verifying the role of this signaling in the neu-
roprotective effect of roflumilast. In agreement, roflumilast 
was showed to abolish doxorubicin-induced inflammation 
and diabetes-associated cardiac dysfunction by upregulating 
SIRT1 (Zhang et al. 2021).

The crosstalk between CREB/BDNF/TrkB and SIRT1/
PTP1B/IGF1 signaling pathways offered by roflumilast leads 
to the activation of PI3K/AKT trajectory. Active PI3K/AKT 
signaling was manifested to evoke neuroprotection in PD via 
upregulating numerous downstream prosurvival substrates, 
including mTOR (Zheng et al. 2021a) and Nrf2 (Liu et al. 
2021). Moreover, PI3K/AKT signaling axis was demon-
strated to alleviate neuroinflammation and apoptosis in PD 
via downregulating GSK-3β, NF-ĸB, FoxO1 (Cheong et al. 
2020) and caspase-3 (Feng and Xi 2022).

mTOR is a master regulator kinase that possesses a cru-
cial role in cellular development, neuronal survival, and syn-
aptic plasticity (Querfurth and Lee 2021). Overexpression 
of mTOR is a prerequisite for neuronal viability in vitro PD 
models (Gugliandolo et al. 2020; El-Sherbeeny et al. 2020). 
The PI3K/AKT/mTOR signaling network of the nervous 
system governs neuronal differentiation and survival, along 
with learning, memory, synaptic plasticity, and neuronal 
oxidative stress (Li et al. 2020). Our results herein showed 
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that roflumilast prohibits rotenone neurotoxicity by elevating 
p-mTOR protein expression.

PI3K/AKT signaling was elucidated to also promote 
the activation of Nrf2 signaling in Alzheimer’s disease 
(Lin et al. 2022) and traumatic brain injury (Cheng et al. 
2023). Nrf2 regulates transcription of plenty of genes 
encoding protective molecules against inflammation and 
oxidative stress (Singh et al. 2010; Li et al. 2014). Under 
normal physiological conditions, Nrf2 is chelated by its 
endogenous inhibitor, kelch-like ECH-associated protein 
1 (Keap1) within the cytoplasm (Luo et al. 2021). Nrf2 
is activated after being liberated from Keap1-mediated 
degradation and gets imported to the nucleus (Chen et al. 
2022). Upon nuclear translocation, Nrf2 stimulates the 
transcription of multiple antioxidant and anti-inflamma-
tory genes after binding to antioxidant response elements 
(ARE) located in the promoter region of those genes 
(Magesh et al. 2012). Thus, Nrf2 activators could be effec-
tive in breaking down α-syn aggregates and hampering 
NF-κB-associated neuroinflammation elucidated in PD 
via maintaining cellular redox homeostasis (Chakkittu-
kandiyil et al. 2022; de Siqueira et al. 2023). Our results 
clarified that roflumilast ameliorates rotenone-induced 
neurotoxicity by upsurging striatal Nrf2 expression along 
with downregulating Keap 1 expression, which is in line 
with a previous study showing the neuroprotective effect 
of roflumilast against ischemic stroke-induced neuronal 
damage via activating Nrf2 (Xu et al. 2021).

PI3K/Akt pathway also provokes a prosurvival effect by 
inhibiting glycogen synthase kinase 3 β (GSK-3β), which 
is reported to be activated in PD (Teixeira et al. 2016; 
Arab et al. 2021). Consequences of GSK-3β activation not 
only encompass increasing α-synuclein aggregates in vitro 
PD models (Arciniegas Ruiz and Eldar-Finkelman 2022) 
but also extend to amplification of mitochondrial apop-
tosis (King et al. 2001; Linseman et al. 2004). GSK-3β 
participates in neuroinflammatory progression through 
activating the NF-κB pathway which exacerbates inflam-
matory insults in PD (Huang et al. 2018; Samim Khan 
et al. 2023). PI3K/AKT signaling favorable impact extends 
to halting the transcription of FoxO1-driven pro-apoptotic 
genes (Sánchez-Alegría et al. 2018; Maiese 2021). FoxO1 
negatively regulates TH expression, the rate-limiting 
enzyme of dopamine synthesis (Doan et al. 2016). Our 
results showed that treatment with roflumilast antagonized 
rotenone-induced neurotoxicity through downregulating 
GSK-3β, NF-κB, FoxO1 and caspase-3. These findings are 
in harmony with previous studies emphasizing the same 
fruitful impact of PDE4 inhibition in suppressing those 
injurious parameters in other degenerative models (Wang 
et al. 2020b; Arcaro et al. 2021; Hasan et al. 2022). Our 
study revealed that roflumilast exerted neuroprotective 
effects in rotenone-induced neurotoxicity in rats. These 

neuroprotective effects were mediated via the crosstalk 
between CREB/BDNF/Trk Bans SIRT1/PTP1B/IGF1 
signaling pathways which activates PI3K/AKT trajec-
tory along with the anti-inflammatory and anti-apoptotic 
effects. Therefore, PDE4 inhibition by roflumilast is likely 
to offer a reliable persuasive avenue in curing PD via 
PI3K/AKT signaling activation.
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