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Abstract
Chronic pain is not only one of the most common health problems, it is often challenging to treat adequately. Chronic pain 
has a high prevalence globally, affecting approximately 20% of the adult population. Chronic inflammatory pain and neuro-
pathic (nerve) pain conditions are areas of large unmet medical need because analgesic/adjuvant agents recommended for 
alleviation of these types of chronic pain often lack efficacy and/or they produce dose-limiting side effects. Recent work has 
implicated the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome in the pathobiology of chronic 
pain, especially neuropathic and inflammatory pain conditions. NLRP3 is activated by damage-associated molecular patterns 
(DAMPs) and pathogen-associated molecular patterns (PAMPs). This in turn leads to recruitment and activation of caspase-1 
an enzyme that cleaves the inactive IL-1β and IL-18 precursors to their respective mature pro-inflammatory cytokines (IL-
1β and IL-18) for release into the cellular milieu. Caspase-1 also cleaves the pyroptosis-inducing factor, gasdermin D, that 
leads to oligomerization of its N-terminal fragment to form pores in the host cell membrane. This then results in cellular 
swelling, lysis and release of cytoplasmic contents in an inflammatory form of cell death, termed pyroptosis. The ultimate 
outcome may lead to the development of neuropathic pain and/or chronic inflammatory pain. In this review, we address a 
role for NLRP3 inflammasome activation in the pathogenesis of various chronic pain conditions.
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Introduction

According to the International Association for the Study of 
Pain (IASP), pain is defined as: “An unpleasant sensory and 
emotional experience associated with, or resembling that 
associated with, actual or potential tissue damage” (Raja 
et al. 2020). Pain can be defined according to its duration 
(acute or chronic), type (nociceptive, inflammatory, neuro-
pathic) and intensity (mild, moderate, severe). In this review, 
we have focused on neuropathic pain and chronic inflam-
matory pain.

Prevalence

Chronic pain is a condition where pain lasts for more than 
3 months and it occurs at least once a week (Debono et al. 
2013). It imposes a significant burden on 30% of the world's 
individuals and economies (Cohen et al. 2021). The preva-
lence of chronic pain ranges from 11 to 40%, and the cure 
rate is low (Dahlhamer et al. 2018; Elliott et al. 2002). In 
a pan-European epidemiological study, the 1-month preva-
lence of moderate and severe chronic non-cancer pain was 
19% (Reid et al. 2011), which was similar to that in Australia 
(15.0% in males, 16.9% in females (Economics 2019), Den-
mark (16%) (Harker et al. 2012) and Sweden (18%) (Harker 
et al. 2012). A study in the United States reported a point 
prevalence of approximately 20.4% (Dahlhamer et al. 2018). 
In a systematic review of the burden of chronic pain in the 
UK, the prevalence of chronic pain was 43.5% and that of 
moderate-to-severe disabling pain was in the range 10% 
to 14% (Fayaz et al. 2016). Compared with the young, the 
elderly have a much higher prevalence of chronic pain at 
66% (Reid et al. 2011). Chronic pain is underpinned not 
only by pathological changes due to disease and neuroplastic 
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changes in the somatosensory nervous system, but also by 
psychological factors and other influences such as region, 
social culture, lifestyle and behavior (Edwards et al. 2016; 
Diatchenko et al. 2013; Mills et al. 2019). Patients suffering 
from chronic pain have a higher incidence of co-morbid con-
ditions such as depression, anxiety and insomnia (Debono 
et al. 2013), affecting their ability to work and impairing 
their quality of life. The annual medical expenses due to 
chronic pain are high. In Australia, approximately 15.4% of 
the population suffer from chronic pain, and the annual cost 
per person is AUD 22,588–42,979 (Economics 2019). From 
a macro-economic perspective, the direct costs of medical 
treatments and the associated socioeconomic costs are huge 
at USD560-635 billion per annum in the USA alone (Insti-
tute of Medicine Committee on Advancing Pain Research 
and Education 2011).

Unmet medical need

Medications recommended for the pharmacological manage-
ment of chronic pain depend upon the type of pain that needs 
to be treated. For example, drugs used to relieve chronic 
inflammatory pain include nonsteroidal anti-inflammatory 
drugs (NSAIDs) such as ibuprofen and COX2 inhibitors 
such as celecoxib (Eccleston et al. 2017). However, treat-
ment with NSAIDs may induce acute hemorrhagic gastritis, 
peptic ulcer and an increased cardiovascular and renal risk 
(Shah and Mehta 2012; Enthoven et al. 2016). Addition-
ally, long-term use of COX2 inhibitors is associated with 
increased risk of cardiovascular side-effects, such as heart 
attack and stroke (Labianca et al. 2012). First-line drug 
treatments for the relief of neuropathic pain include tricy-
clic antidepressants (e.g. amitriptyline), duloxetine and some 
anticonvulsants (e.g. pregabalin and gabapentin) (Finnerup 
et al. 2015), but these drugs often lack efficacy and/or have 

dose-limiting side effects such as orthostatic hypotension, 
tachycardia, sedation and dizziness (Labianca et al. 2012; 
Shah and Mehta 2012). Although opioids also relieve pain, 
they are only recommended as third-line treatments for the 
relief of neuropathic pain (Vowles et al. 2015). Opioids can 
be addictive and they evoke a plethora of side effects when 
used repeatedly (Vowles et al. 2015; Finnerup et al. 2015). 
Since chronic pain is underpinned by complex mechanisms, 
pain treatment should ideally be based not only on the sever-
ity of pain, but also on its underlying pathogenesis. To 
address the large unmet medical need for new highly effec-
tive and well-tolerated analgesics, many researchers over 
the past three decades have investigated the pathogenesis of 
various chronic pain states aimed at identifying novel drug 
targets for use in novel non-opioid analgesic drug discov-
ery programs. One such target is the NLRP3 inflammasome 
and so in the following sections, we review a role for the 
NLRP3 inflammasome in the pathogenesis of neuropathic 
and chronic inflammatory pain.

NLRP3 inflammasome structure

The NLRP3 inflammasome is a macromolecular protein 
complex with a molecular weight in the range 500–700 kDa 
(Broz and Monack 2011). It is comprised of a sensor 
(NLRP3), an adaptor (ASC; also known as PYCARD) and 
an effector (caspase 1) (Bauernfeind and Hornung 2013; 
Tang et al. 2018; Swanson et al. 2019) (Fig. 1). NLRP3 is 
a tripartite protein that contains an amino-terminal pyrin 
domain (PYD), a central NACHT domain and a carboxy-
terminal leucine-rich repeat domain (LRR domain) (Swan-
son et al. 2019; Sutterwala et al. 2014; Tang et al. 2018) 
(Fig. 1). ASC is an important intracellular junction protein 
comprising 195 amino acid residues and a molecular weight 
of 21.5 kDa. It comprises the Pyrin domain (PYD) and the 

Fig. 1   Structure of the NLRP3 
inflammasome
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caspase recruitment domain (CARD) (Wen et al. 2011). ASC 
can connect NLRP3 upstream to Caspase-1 downstream, 
and interact with PYD to recruit pro-caspase-1 through the 
CARD domain (Wen et al. 2011). This in turn facilitates 
NLRP3 to activate the cysteine protease, caspase-1 (Wu 
et al. 2010). ASC is mainly located in the nucleus of human 
monocytes/macrophages, but it can be rapidly distributed 
into the cytoplasm as needed, promoting the activation of 
the NLRP3 inflammasome (Gris et al. 2010). Caspase-1, 
also called IL-1 converting enzyme (ICE), is the effector of 
the NLRP3 inflammasome (Franchi et al. 2009).

Activation of the NLRP3 inflammasome

The NLRP3 inflammasome which is part of the innate 
immune system, is primed and activated by a broad array of 
sterile and microbial stimuli (Swanson et al. 2019). Priming 
(signal 1) upregulates expression of the inflammasome com-
ponents, NLRP3, caspase 1 and pro-IL-1β (Fig. 2) (Swan-
son et al. 2019). This activity is induced via recognition of 
various pathogen-associated molecular patterns (PAMPs) 
(Franchi et al. 2009) via pattern recognition receptors (PRR) 
that include toll-like receptors (TLRs) or nucleotide-binding 
oligomerization domain-containing protein 2 (NOD2) or 

cytokines such as tumor necrosis factor (TNF) and Il-1β that 
leads to nuclear factor-κB (NF-κB) activation and gene tran-
scription (Swanson et al. 2019). The 2nd function of priming 
is stabilization of NLRP3 in an auto-suppressed inactive, 
but signal-competent state, by induction of post-translational 
modifications such as phosphorylation, ubiquitylation and 
sumoylation (Swanson et al. 2019).

Signal 2 (activation) may be provided by numerous 
PAMPs such as bacteria, viruses and fungi, or damage-
associated molecular patterns (DAMPs) including crys-
tals (e.g. urea, cholesterol, silica), particulates (β-amyloid, 
environmental irritants) and adenosine triphosphate 
(ATP) (Fig. 2) (Swanson et al. 2019). Once formed, the 
NLRP3 inflammasome recruits and activates caspase-1 
that cleaves pro-IL-1β and pro-IL-18 to produce the cor-
responding mature cytokines, namely IL-1β and IL18 
(Franchi et al. 2009). These cytokines contribute to the 
removal of the pathogens and activation of the adaptive 
immune response (Franchi et al. 2009) via induction of 
cellular stress (Swanson et al. 2019). Precisely how the 
NLRP3 senses cellular stress and which pathways are 
induced to culminate in NLRP3 activation and inflam-
masome formation remain to be fully elucidated (Swan-
son et al. 2019). Because IL-1β and IL-18 are upstream 
components of the immune response, they can stimulate 
the production of a variety of inflammatory mediators, 

Fig. 2   Priming and activation of the NLRP3 inflammasome 
(TLR: Toll-like receptors; TNF: Tumor necrosis factor; IL-1β: 
interleukin-1β; NOD2: Nucleotide Binding Oligomerization Domain 
Containing 2; TWIK2, two-pore domain weak inwardly rectifying 
K+ channel 2; NF-κB: nuclear factor kappa-light-chain-enhancer of 
activated B cells; IFN-α: interferon-α; TLR4: toll-like receptors 4; 

ATP: adenosine triphosphate; IRF3: interferon regulatory factor 3; 
CLIC: chloride intracellular channel protein; ER: endoplasmic retic-
ulum; P2X7: P2X purinoceptor 7; PtdIns4P: phosphatidylinositol-
4-phosphate; ROS: reactive oxygen species; GlcNAc: N-acetylglu-
cosamine; HK: hexokinase)



1592	 C. Chen, M. T. Smith 

1 3

but their excessive production can lead to inflammatory 
disease (Swanson et al. 2019). Caspase-1 also cleaves the 
pyroptosis-inducing factor gasdermin D (Wu et al. 2010). 
The N-terminal fragment of gasdermin D oligomerizes and 
forms pores in the host cell membrane, leading to cellular 
swelling, lysis, and release of cytoplasmic contents in an 
inflammatory form of cell death, called pyroptosis (Wu 
et al. 2010).

The NLRP3 inflammasome is particularly prominent in 
inflammatory diseases and it is a Fig. 2 potential target for 
discovery of novel analgesics as inflammatory mechanisms 
contribute to the pathophysiology of multiple chronic pain 
conditions (Tang et al. 2018).

There are multiple mechanisms that may activate the 
NLRP3 inflammasome. These include potassium (K+) or 
chloride (Cl−) efflux, calcium (Ca2+) flux, lysosomal dis-
ruption, mitochondrial dysfunction, metabolic changes and 
trans-Golgi disassembly (Swanson et al. 2019).

K+ efflux

Almost all pathways that activate the NLRP3 inflamma-
some are associated with K+ efflux and the NLRP3 inflam-
masome can be activated in a simple hypokalemic environ-
ment (Muñoz-Planillo et al. 2013), which suggests that 
K+ outflow may be a common mechanism (Mathur et al. 
2018). NLRP3 inflammasome agonists, such as extracel-
lular ATP, stimulate translocation to the cell surface and 
activation of purinergic P2X7 receptors which are non-
selective channels for Na+, K+ and Ca2+ ions (Frances-
chini et al. 2015). Interestingly, ATP-induced activation 
of the P2X7 receptor promoted K+ efflux via the K+ 
channel two-pore domain weak inwardly rectifying K+ 
channel 2 (TWIK2) (Di et al. 2018). Additionally, LPS-
induced NLRP3 inflammasome activation is dependent 
upon TWIK2 (Di et al. 2018). Other stimuli that activate 
the NLRP3 inflammasome by inducing K+ efflux include 
particulates such as alum, silica, sodium urate crystals 
and calcium pyrophosphate crystals (Muñoz-Planillo 
et al. 2013). More specifically, K+ efflux drives NLRP3 
oligomerization (Green et al. 2018).

Cl− efflux

A role for Cl− efflux in NLRP3 activation is based upon 
work showing that ATP-induced IL-1β secretion increased 
or decreased in response to extracellular Cl− concentrations 
that were low or high respectively, and that chloride intracel-
lular channel proteins (CLICs) are needed for NLRP3 activa-
tion by multiple stimuli (Domingo-Fernández et al. 2017; 
Tang et al. 2017). Translocation of CLICs from the cytosol 
to the plasma membrane where they form anion channels, is 

dependent upon the release of mitochondrial reactive oxygen 
species (mtROS) whereas Cl− efflux occurs downstream of 
K+ efflux (Tang et al. 2017). The role of Cl− efflux is to 
promote ASC polymerization during NLRP3 inflammasome 
formation (Green et al. 2018).

Ca2+ flux

A role for Ca2+ mobilization in NLRP3 activation is sup-
ported by work suggesting that it may occur downstream 
of both NLRP3 and caspase 1 activation (Katsnelson et al. 
2015). However, others showed that K+ efflux induced Ca2+ 
flux was transduced by the opening of plasma membrane 
channels or by the release of endoplasmic reticulum (ER)-
linked intracellular Ca2+ stores (Di et al. 2018). For example, 
ATP mobilized Ca2+ influx weakly via the P2X7 receptor 
that was coordinated with K+ efflux (Di et al. 2018). This 
in turn promoted the release of ER-linked Ca2+ stores that 
was followed by the opening of membrane Ca2+ channels 
(Murakami et al. 2012; Yaron et al. 2015).

Generation of ROS in mitochondria

Release of mtROS and mitochondrial DNA (mtDNA) from 
dysfunctional mitochondria are key upstream events that 
induce the assembly and activation of NLRP3 inflammas-
omes (Jin and Flavell 2010). ROS production induces dis-
sociation of the thioredoxin-interacting protein (TXNIP) 
from thioredoxin-1(TRX1) in the cytoplasm and promotes 
its binding to NLRP3, thereby activating the NLRP3 inflam-
masome (Lane et al. 2013). At the same time, TXNIP may 
translocate into mitochondria and bind to thioredoxin-2 
(TRX2), resulting in mitochondrial dysfunction (Lane et al. 
2013). Oxidized mitochondrial DNA can directly activate 
the NLRP3 inflammasome by acting as a DAMP for NLRP3 
activation (Lane et al. 2013; Chen et al. 2017; Zhang et al. 
2010). Removal of ROS in macrophages with the ROS scav-
enger, N-acetylcysteine, reduced intracellular caspase-1 acti-
vation that in turn reduced production of the pro-inflamma-
tory cytokine, IL-1β (Zhou et al. 2011). NLRP3 activation 
can also be inhibited by the nuclear factor erythroid 2-related 
factor 2 (NRF2) to limit ROS levels (Liu et al. 2017; Su et al. 
2021). NRF2 may also attenuate NF-κB activation result-
ing in downregulation of the expression of multiple NLRP3 
components thereby negatively regulating NLRP3 inflam-
masome activity (Su et al. 2021; Li et al. 2008).

Lysosomal disruption

Crystalline or granular substances enter cells through mac-
rophage endocytosis resulting in lysosomal acidification and 
reduced stability of the phagolysosome membrane so that 
it ruptures and releases the particulates into the cytoplasm, 
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with the net effect being NLRP3 inflammasome activation 
(Lima et al. 2013; Hornung et al. 2008). Although a role for 
lysosomal cathepsins in particulate-induced NLRP3 activa-
tion was implicated by work using cathepsin inhibitors, this 
was discounted by findings showing that genetic deletion of 
individual cathepsins had a minimal effect on NLRP3 acti-
vation which in turn suggested that the various cathepsins 
may have redundant roles in NLRP3 activation (Orlowski 
et al. 2015). As lysosomal damage in response to particu-
lates activates both K+ efflux and Ca2+ flux, this implicates 
a convergence of these processes in many NLRP3 activation 
pathways (Muñoz-Planillo et al. 2013; Murakami et al. 2012; 
Katsnelson et al. 2016).

Metabolic changes

Although the enzyme, hexokinase, is well known to catalyze 
glucose phosphorylation, it may also have a role in NLRP3 
inflammasome activation. For example, in bacterial infec-
tion, N-acetylglucosamine released from lysosomes, bound 
to hexokinase at the mitochondrial surface to induce its 
relocation to the cytosol (Wolf et al. 2016).This resulted in 
NLRP3 inflammasome activation independent of K+-efflux 
with mtDNA detected in the cytosol (Wolf et al. 2016). In 
other work, the NLRP3 inflammasome was activated by 
free fatty acids (FFAs) derived from dietary sources or by 
upregulation of FA synthesis (Wen et al. 2011; Moon et al. 
2015). Conversely, the anti-inflammatory AMP-activated 
protein kinase, suppressed FA-induced inflammation by 
limiting ROS production and activating autophagy which 
led to inhibition of NLRP3 inflammasome activation (Li 
et al. 2009b). Metabolic changes such as fasting and caloric 
restriction also negatively regulate NLRP3 such as that 
which is mediated by the ketone body, β-hydroxybutyrate, 
which inhibited NLRP3 activation, suppressed caspase-1 
activation and reduced IL-1β release by inhibiting K+ efflux 
(Youm et al. 2015).

Trans‑Golgi disassembly

Trans-Golgi disassembly into vesicles termed the dispersed 
trans-Golgi network (dTGN), may be induced by a range of 
NLRP3 stimuli (Chen and Chen 2018). Phosphatidylinosi-
tol-4-phosphate is a negatively charged phospholipid on the 
dTGN that recruits NLRP3 through ionic bonding with the 
conserved polybasic region of the dispersed dTGN, resulting 
in NLRP3 aggregation, a prerequisite step for downstream 
ASC oligomerization and caspase-1 activation (Chen and 
Chen 2018). Observations that K+ efflux is essential for 
NLRP3 recruitment but not dTGN formation, suggest that 
K+ efflux-dependent and mitochondria-dependent NLRP3 
activation may be separate pathways that converge on Golgi 

disassembly, but this requires additional investigation 
(Swanson et al. 2019).

Apart from the aforementioned pathways that may poten-
tially activate the NLRP3 inflammasome and produce cel-
lular dysfunction and inflammatory diseases, there are mul-
tiple mechanisms that may inhibit this process. These latter 
mechanisms include autophagy (Biasizzo and Kopitar-Jerala 
2020), microRNA (miR) post-transcriptional regulation of 
NLRP3 (Tezcan et al. 2019), and silencing of the heat shock 
protein family (Zuo et al. 2018; Mi et al. 2021), to negatively 
regulate NLRP3 inflammasome activation and so provide 
adequate immune protection and avoid severe tissue damage 
to the host caused by harmful stimuli.

Nociceptive (pain) signaling pathway

Dysregulation of the NLRP3 inflammasome can lead to 
excessive production of the pro-inflammatory cytokines, 
IL-1β and IL-18, leading to severe inflammation and/or a 
variety of diseases (Jin and Flavell 2010). The pro-inflam-
matory cytokines, IL-1β and IL-18 are secreted by mac-
rophages and they can interact with their cognate receptors 
on nerve terminals to sensitize primary afferent sensory 
nerve fibers and induce pro-nociceptive signaling which is 
transduced into the dorsal horn of the spinal cord (Chen 
et al. 2014). This in turn may induce pronociceptive signal-
ing in 2nd order neurons in the spinal cord that is propagated 
via the spinothalamic tract to higher order structures in the 
brain where it is interpreted as pain by the cerebral cortex 
(Doyle et al. 2019) (Fig. 3).

As shown in Fig. 3, key components of the nociceptive 
signaling (pain) pathway include peripheral nociceptors, 
first-order primary afferent sensory nerve fibers, the dorsal 
root ganglia that contain the cell bodies of primary sensory 
neurons, the dorsal horn of the spinal cord where the cen-
tral terminals of primary afferent sensory nerve fibers form 
synapses with second order neurons, the spinothalamic tract 
and the brain.

The NLRP3 inflammasome is associated 
with chronic pain‑related diseases

Neuropathic pain

Neuropathic pain is a major type of chronic pain charac-
terized by spontaneous pain, allodynia and hyperalgesia 
(Zeilhofer et al. 2012; Bahari and Meftahi 2019). It may 
be caused by trauma and/or disease resulting in injury to 
peripheral nerves, posterior roots of the spinal cord, the spi-
nal cord itself, and some central neurons. Neuroinflamma-
tory responses contribute to the development of neuropathic 
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pain following nerve injury with NLRP3 inflammasome 
activation contributing to these inflammatory responses 
(Abbaszadeh et al. 2018).

NLRP3 inflammasome activation in dorsal root 
ganglia (DRGs) from rodent models of neuropathic 
pain

Central neuropathic pain due to multiple sclerosis

Central neuropathic pain is a major complication of mul-
tiple sclerosis (MS) that affects up to 50% of patients with 
MS (Khan and Smith 2014). This type of pain is generally 
thought to be transduced by pathological changes in the 
brain and the dorsal horn of the spinal cord (Khan and 
Smith 2014). However, recent work in the myelin oligo-
dendrocyte glycoprotein (MOG)-induced experimental 
autoimmune encephalomyelitis (EAE) mouse model of 
MS-associated neuropathic pain has implicated an addi-
tional component involving activation of the complement 
system and the NLRP3 inflammasome in the lumbar dorsal 
root ganglia (DRGs) in the pathobiology of MS-associated 
neuropathic pain (Yousuf et al. 2019). In particular, there 
was transient activation of the complement system and 
prolonged activation of the NLRP3 inflammasome in the 
lumbar DRGs of EAE-mice that resulted in a small but 
significant increase in DRG levels of the pro-inflammatory 
cytokine, IL-1β, and marked hyper-excitability of medium-
to-large-diameter Aβ nerve fibers that mediate mechanical 
hyperalgesia (Yousuf et al. 2019). In other work, chronic 
oral administration of the NLRP3 inhibitor, MCC950 in a 
relapsing–remitting EAE mouse model of MS-associated 
neuropathic pain progressively reversed neuropathic pain 
behaviour, further implicating a pathobiological role for 

NLRP3 inflammasome activation in MS-associated neu-
ropathic pain (Khan et al. 2018).

Central post‑stroke pain

Central post-stroke pain (CPSP) is defined as the neu-
ropathic pain that arises either acutely or in the chronic 
phase of a cerebrovascular event and is a result of central 
lesions of the somatosensory nervous system (Liampas 
et al. 2020). CPSP has a prevalence of 11% with 31% of 
patients developing neuropathic pain symptoms within one 
month of stroke onset (Liampas et al. 2020). Ischemia/
reperfusion injury (I/R) of the CNS after stroke, leads 
to cell necrosis or apoptosis, resulting in inflammation 
and an immune response (Li et al. 2009a). In a mouse 
model of thalamic hemorrhagic stroke, there was tempo-
ral development of pain behavior (mechanical and cold 
allodynia, heat hyperalgesia) in the hindpaw contralateral 
to the thalamic lesion, over a 14-day study period post-
infarct induction (Huang et al. 2022). Additionally, there 
was decreased expression of miR-233, a miRNA known 
to negatively regulate the NLRP3 inflammasome, in the 
ipsilateral thalamus as early as 1-day post-infarct induc-
tion that persisted for the 14-day study duration (Huang 
et al. 2022). Concurrently, the NLRP3 inflammasome was 
activated and ipsilateral thalamic expression levels of cas-
pase-1, ASC and NLRP3 were elevated by 1-day post-
infarct which persisted until study completion on day 14 
(Huang et al. 2022). Together, these data implicate a key 
role for NLRP3 inflammasome activation in the pathogen-
esis of post-stroke central neuropathic pain (Huang et al. 
2022).

Fig. 3   Nociceptive (Pain) sign-
aling pathway
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Chemotherapy induced neuropathic pain

In other work in a paclitaxel-induced rat model of chem-
otherapy induced peripheral neuropathy, there was a sig-
nificant increase in NLRP3 inflammasome expression in 
CD68-labeled macrophages in the lumbar DRGs which was 
associated with ectopic firing of primary afferent sensory 
nerve fibers and the development of neuropathic pain behav-
ior in these animals (Jia et al. 2017).

Radiculopathy

In a mouse model of radiculopathy, a neuropathic pain con-
dition notoriously difficult to treat, there was temporal devel-
opment of mechanical hyperalgesia in the bilateral hindpaws 
that was fully developed by day 3 and that persisted until at 
least day 15 of the model (Jin et al. 2017). At day 21 of the 
model, there was a marked increase in mRNA expression 
levels of multiple pro-inflammatory mediators including 
IL-1β, IL-6, TNFα and COX-2 with a fourfold decrease in 
the mRNA expression levels of the anti-oxidant enzyme, 
superoxide dismutase, SOD2 (Jin et al. 2017). Treatment 
of animals with the ‘free radical sponge’ fullerol, alleviated 
pain behavior and it suppressed otherwise increased mRNA 
expression levels of TNFα in the lumbar DRGs (Jin et al. 
2017). In complementary work using cultured mouse lum-
bar DRG explants, incubation of explants with TNFα mark-
edly increased the secretion of IL-1β that was suppressed by 
exposure to fullerol for 24 h (Jin et al. 2017). The increased 
secretion of IL-1β was underpinned by both increased 
expression of the NLRP3 inflammasome and caspase-1 and 
this was inhibited by fullerol (Jin et al. 2017). Together these 
findings suggest a role for NLRP3 inflammasome activation 
in the pathophysiology of radiculopathy, a type of neuro-
pathic back and leg pain that is difficult to alleviate.

Lumbar disc herniation (LDH) is an important cause 
of radiculopathy (Zhang et al. 2017). In a rat model where 
autologous nucleus pulposus (NP) was implanted into one 
L5 DRG to simulate LDH, there was increased expression 
of NLRP3, ASC, Caspase-1, IL-1, IL-18 and other mol-
ecules in DRG neurons by one day after surgery and it 
peaked on day 7 post-implantation (Zhang et al. 2017). In 
the lumbar DRGs of the same animals (Zhang et al. 2017), 
there was also upregulated expression of calcitonin gene 
related peptide (CGRP) which is a pro-nociceptive neuro-
peptide that is a hallmark neurotransmitter released from 
small diameter C-fibers (Orita et al. 2013). Treatment of 
these animals with Bay11-7082, an inhibitor of both NF-kB 
activation and NLRP3 inflammasome activation, alleviated 
neuropathic pain behaviour thereby further implicating the 
NLRP3 inflammasome in the pathobiology of neuropathic 
pain (Zhang et al. 2017).

Neuropathic pain due to partial sciatic nerve injury in mice

In a mouse model of neuropathic pain induced by a partial 
sciatic nerve ligation (pSNL)-injury, there was a significant 
decrease in mRNA expression of miR-23a in the lumbar 
spinal cord (Pan et al. 2018). Conversely, overexpression of 
miR-23a in the spinal cord prevented pSNL-induced neuro-
pathic pain whereas knockdown of miR-23a induced pain-
like behaviour (Pan et al. 2018). In naïve mice, miR-23a 
knockdown increased spinal cord levels of thioredoxin-inter-
acting protein (TXNIP) which was associated with induction 
of the NLRP3 inflammasome (Pan et al. 2018). In the spinal 
cord of pSNL-mice, miR-23a overexpression inhibited the 
increase of TXNIP and NLRP3 inflammasome activation 
and alleviated neuropathic pain behavior (Pan et al. 2018). 
Intrathecal injection of 681-siRNA for 3 consecutive days 
to knock down TXNIP expression, significantly alleviated 
pSNL-induced hyperalgesia and mechanical ectopic pain 
(Pan et al. 2018). Thus, miR-23a was confirmed to regulate 
neuropathic pain via the NLRP3/TXNIP inflammasome axis 
in pSNL-mice (Pan et al. 2018).

Chronic constriction injury of the sciatic nerve induced 
neuropathic pain

Many microRNAs (e.g. miR-145, miR-223, miR-23a, miR-
183, miR-150) have been implicated in the pathogenesis of 
neuropathic pain (Ji et al. 2018; Shi et al. 2018; Xie et al. 
2017). In work by others using the widely used unilateral 
chronic constriction injury (CCI) of the sciatic nerve mouse 
model of neuropathic pain, overexpression of Mir-34c in the 
lumbar spinal cord alleviated neuropathic pain behavior (Xu 
et al. 2019). Additionally, there was suppression of the activ-
ity of the NLRP3 inflammasome (decreased protein levels of 
NLRP3, ASC and caspase-1) and decreased inflammatory 
responses (downregulated production of the pro-inflamma-
tory cytokines, TNFα, IL-1β and IL-18) in the lumbar spinal 
cord of these animals (Xu et al. 2019).

As noted in Sect. "Generation of ROS in mitochondria", 
the nuclear factor E2-related factor- 2 (Nrf2) signaling path-
way can inhibit activation of the NLRP3 inflammasome by 
a mechanism involving nuclear translocation of Nrf2 (Liu 
et al. 2020). This had the same effect as the small molecule 
NLRP3 inhibitor, MCC950, in terms of alleviating neuro-
pathic pain behavior in the CCI-rat model (Cohen and Mao 
2014).

In other work in CCI-mice exhibiting mechanical hyper-
sensitivity in the ipsilateral hindpaws, there was increased 
expression of connexin-43 hemichannels in lumbar spinal 
cord astrocytes and there was increased expression of key 
NLRP3 inflammasome components (NLRP3, ASC, cas-
pase-1) in the lumbar spinal cord of these animals (Tonkin 
et al. 2018). Hindpaw hypersensitivity was significantly 
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reduced in CCI-mice by intrathecal administration of 
the connexin-43 mimetic peptide, Peptide5, that blocks 
hemichannels in spinal cord astrocytes concurrent with a 
reduction to naïve levels of otherwise increased levels of 
NLRP3, its adaptor apoptosis-associated spec-like protein 
(ASC) and caspase-1 protein (Tonkin et al. 2018). Together 
these findings are consistent with that notion that pain relief 
evoked by Peptide 5 was transduced by specific inhibition 
of the NLRP3 inflammasome in the lumbar spinal cord of 
these mice (Tonkin et al. 2018).

In other work in the CCI-mouse model of peripheral 
neuropathic pain, intrathecal injection of divanillyl sulfone 
alleviated mechanical allodynia in the ipsilateral hindpaws 
(Shao et al. 2021). The mechanism likely involving induc-
tion of mitophagy in microglia to promote rapid clearance of 
reactive oxygen species and attenuate NLRP3 inflammasome 
activation in the ipsilateral spinal cord (Shao et al. 2021).

Painful diabetic neuropathy

Painful diabetic neuropathy (PDN) is a long term micro-
vascular complication of poorly controlled diabetes that is 
often difficult to alleviate adequately (Fan and Gordon Smith 
2022). PDN is the most common form of neuropathic pain 
globally as it affects up to 50% of patients with diabetes 
(Bril et al. 2011). Pain symptoms usually present with a 
"sock" and "glove"-like distribution and no single medica-
tion can prevent or completely reverse PDN (Javed et al. 
2015). Although the exact pathogenesis of PDN is unclear, 
there was increased secretion of mRNA encoding NLRP3, 
ASC, IL-1β, and IL-18 in macrophages and peripheral blood 
monocytes of patients with type 2 diabetes mellitus (Lee 
et al. 2013). Additionally, there was increased expression 
of caspase-1, a key enzyme that causes apoptosis, in these 
cells from patients with type 2 diabetes (Lee et al. 2013). 
The secretion of the above related factors is mediated by 
the NLRP3 inflammasome (Lee et al. 2013). In addition, 
in a rat model of type 2 diabetes induced PDN, there was 
increased lumbar spinal cord expression of reactive oxygen 
species (ROS) as well as protein levels of NLRP3, TXNIP, 
caspase-1, interleukin 1-beta (IL-1β) and phosphorylated 
N-methyl-D-aspartic acid receptor subunit 2B (phospho-
NR2B) (Wang et al. 2022). In the same rat model, once-daily 
treatment for 14-days with the ROS scavenger, N-tert-butyl-
α-phenylnitrone (PBN) or TXNIP small interfering RNA, 
alleviated mechanical allodynia and thermal hyperalgesia in 
the bilateral hindpaws of these animals as well as decreas-
ing protein levels of NLRP3, TXNIP, caspase-1, IL-1β, and 
phospho-NR2B (Wang et al. 2022). These findings together 
with complementary data from cultured microglia, implicate 
a role for ROS signaling through the TXNIP-NLRP3-NR2B 
pathway in the pathogenesis of PDN (Wang et al. 2022).

In summary, after nerve injury, there is induction of 
NLRP3 inflammasome activation and upregulated produc-
tion of proinflammatory cytokines in the lumbar DRGs and 
in the lumbar spinal cord, which can lead to sensory neu-
ron sensitization and the development of neuropathic pain. 
Based upon this knowledge, it is clear that new treatments 
that directly or indirectly inhibit NLRP3 inflammasome acti-
vation, have therapeutic potential as novel analgesic agents.

Inflammatory pain

Inflammatory pain is a common type of chronic pain that 
may be induced by inflammation associated with tissue dam-
age due to trauma or bacterial infection (Abrahamsen et al. 
2008). Inflammasomes regulate inflammation through the 
lysis of key cytokine precursors resulting in the secretion of 
mature pro-inflammatory cytokines (IL-1 and IL-18) that 
contribute to the development and maintenance of chronic 
inflammatory pain (Schlesinger 2014).

In the Complete Freund’s Adjuvant (CFA)-induced 
mouse model of chronic inflammatory pain in one hindpaw, 
there was increased expression of pro-inflammatory markers 
including NOX4, P-Jak2 / P-Stat3, and NLRP3 in the lumbar 
spinal cord (Yu et al. 2020). These changes were attenuated 
in CFA-mice administered muscone, the active ingredient 
of the Chinese medicine, musk, by intraperitoneal injection 
once-daily for 7-days (Yu et al. 2020). In addition, pain relief 
was evoked in the same animals in a dose-dependent man-
ner (Yu et al. 2020), thereby implicating a role for NLRP3 
activation in the pathobiology of chronic inflammatory pain.

In other work, intrathecal injection of the highly selective 
sphingosine-1-phosphate (S1P) receptor 1 subtype (S1PR1) 
agonist, SEW2871, evoked mechano-allodynia via activa-
tion of the NLRP3 inflammasome (increased expression of 
NLRP3, cleaved caspase 1 and mature IL-1β) in the lumbar 
spinal dorsal horn of rats (Doyle et al. 2019). These effects in 
rats were attenuated by treatment with S1PR1 antagonists or 
with the NLRP3 inflammasome inhibitor, MCC950 (Doyle 
et al. 2019). Additionally, intrathecal injection of SEW2871 
in mice with astrocyte-specific deletions of S1pr1 did not 
evoke mechano-allodynia and the activation of cleaved 
caspase-1 was reduced (Doyle et al. 2019). Together, these 
findings showed that astrocyte-specific S1PR1 signaling 
is necessary for SIPR1 agonist-induced NLRP3 activation 
that underpins SIPR1 agonist induced mechano-allodynia in 
these animals (Doyle et al. 2019).

Gout

Gout is a sterile inflammatory disease with hyperuricemia, 
that is characterized by chronic monosodium urate (MSU) 
crystal deposition in various tissues (Goldberg et al. 2017). 
Gouty arthritis is one of the most common inflammatory 
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pain disorders. When the serum urate concentration is higher 
than or equal to 0.42 mmol/L(7 mg/dL), it is considered clin-
ically to be hyperuricemia (Dalbeth et al. 2021). Hyperurice-
mia is mainly related to decreased uricase activity (Kratzer 
et al. 2014), a gene mutation in the uric acid transporter 
(URAT1) (Tan et al. 2016). Symptoms of gout include joint 
pain, edema, redness and, in severe cases, disability (Merri-
man and Dalbeth 2011).

In 2006, Martinon et al. (Martinon et al. 2006) were the 
first to report that MSU crystals in the joints of patients with 
gout could activate NLRP3, thereby activating caspase-1 
and promoting the maturation of IL-1β and IL-18. MSU 
crystals are a host-derived DAMP, that activates the NLRP3 
inflammasome (Menu and Vince 2011). MSU crystals can 
cause multiple intracellular changes including mitochondrial 
injury (Nomura et al. 2015), increased xanthine oxidase 
(XO) activity (Bauernfeind et al. 2011), ROS production 
(Zhong et al. 2016), decreased intracellular ATP production 
(Nomura et al. 2015), inhibition of AMP-dependent protein 
kinase (AMPK) (Wang et al. 2016) and increased Nrf2 tran-
scription (Jhang et al. 2015). The toll-like receptor (TLR) 
family of innate immune receptors are transmembrane recep-
tors that bind extracellular ligands to trigger cellular activa-
tion and proliferation (Hsu et al. 2019). The innate immune 
components TLR-2, TLR-4, CD14 (TLR-4 ligand), NLRP3, 
ASC and caspase-1 are critical for the development of MSU 
crystal-induced inflammation (Duan et al. 2019; Giamarel-
los-Bourboulis et al. 2009; Sun and Zhang 2018).

In a mouse model of gouty arthritis involving MSU 
injection into the ankle joint, this induced ankle oedema, 
mechanical allodynia, neutrophil infiltration, oxidative 
stress, NLRP3 inflammasome activation and increased pro-
duction of the pro-inflammatory cytokines, IL-1β and TNFα 
(Yin et al. 2020). Treatment of these mice with 4-doses of 
eucalyptol (anti-inflammatory oil contained in eucalyptus 
leaves) commencing at 1 h prior to model induction and 
continuing at intermittent intervals over 2-days, resulted in 
reduced ankle swelling and attenuation of mechanical allo-
dynia in a manner mirroring mice treated similarly with the 
nonsteroidal anti-inflammatory drug, indomethacin (Yin 
et al. 2020). Both eucalyptol and indomethacin significantly 
reduced the otherwise upregulated mRNA expression of 
NLRP3, caspase-1, IL-1β and TRPV1 channels in ankle 
tissue from MSU-mice (Yin et al. 2020). Thus, eucalyptol 
inhibited MSU-induced activation of the NLRP3 inflamma-
some in the inflamed ankle joint tissues (Yin et al. 2020). 
In addition, for MSU-mice treated with the antioxidants, 
N-acetyl-L-cysteine or 2,2,6,6-tetramethylpiperidine 1-oxyl 
(Tempol) to reduce ROS generation and oxidative stress, 
there was a significant decrease in the otherwise upregu-
lated expression of NLRP3, caspase 1, IL-1β and TRPV1 
proteins in the ankle joint tissues (Yin et al. 2020). These 
findings support the notion that the antioxidants reduced 

NLRP3 inflammasome activation, IL-1β production and 
TRPV1 over-expression in ankle joint tissues of MSU-
mice, in a manner that mimicked the effects of eucalyptol 
and indomethacin (Yin et al. 2020).β-hydroxybutyric acid, 
the most abundant ketone in vivo, inhibits activation of the 
NLRP3 inflammasome by reducing the priming and assem-
bly steps, thereby reducing caspase 1-dependent secretion of 
IL-1β from neutrophils (Goldberg et al. 2017; Youm et al. 
2015). Thus, β-hydroxybutyric acid, is an endogenous anti-
inflammatory molecule with potential as a treatment for gout 
(Goldberg et al. 2017).

In summary, gouty arthritis is a debilitating chronic 
inflammatory arthritis caused by deposition of MSU crystals 
in the joints. MSU crystal-induced gouty flares are charac-
terized by IL-1β-driven acute inflammation and intense pain 
and fever mediated by activation of the NLRP3 inflamma-
some in neutrophils to activate caspase-1 and increase the 
release of mature IL-1β and IL-18 in the inflamed joints 
(Martinon et al. 2006). In patients with gout, chronic deposi-
tion and presence of MSU crystals in the joints, facilitates 
on-going gouty flares underpinned by high systemic levels 
of NLRP3-derived IL-1β (Goldberg et al. 2017).

Fibromyalgia

Fibromyalgia (FM) is a clinical syndrome characterized 
by chronic widespread pain including headaches, pain or 
cramps in the lower abdomen, fatigue, unrefreshing sleep, 
cognitive and somatic symptoms and depression (Häuser 
et al. 2015). In various populations globally, the preva-
lence of fibromyalgia is in the range 2–4% with the ratio of 
women to men sufferers at 12:1 (Häuser et al. 2015). The 
exact pathophysiology of fibromyalgia is unclear but genetic, 
environmental, psychological and behavioral factors are 
implicated (Gupta et al. 2007; Kim et al. 2013).

The NLRP3 inflammasome has been implicated in the 
pathogenesis of FM (Cohen and Mao 2014). In blood mono-
nuclear cells (BMCs) collected from patients with FM, mito-
chondrial dysfunction was accompanied by increased pro-
tein expression of NLRP3, caspase-1 activation and IL-1β 
expression (Cohen and Mao 2014). In these patients, there 
was also increased serum concentrations of the pro-inflam-
matory cytokines, IL-1β and IL-18 and decreased concen-
trations of co-enzyme Q10 (CoQ10) (Cohen and Mao 2014). 
CoQ10 deficiency induced by p-aminobenzoate treatment in 
blood mononuclear cells (BMCs) in mice, showed that there 
was NLRP3 inflammasome activation together with marked 
pain behavior in these mice (Cohen and Mao 2014). In a pla-
cebo-controlled clinical trial of oral CoQ10 in patients with 
FM, there was a reduction in NLRP3 inflammasome activa-
tion as well as the serum concentrations of IL-1β and IL-18 
(Cohen and Mao 2014). Together, these findings implicate 
a role for NLRP3 activation and CoQ10 deficiency in the 
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pathogenesis of FM and suggest that NLRP3 inflammasome 
inhibition may be a therapeutic opportunity for treating this 
disease (Cohen and Mao 2014).

In a rat model of reserpine induced fibromyalgia, intra-
peritoneal administration of the P2X7 purinergic receptor 
antagonist, Brilliant Blue G (BBG) at 50 mg/kg for 7-days, 
attenuated pain behavior and it prevented NLRP3 inflam-
masome activation and consequently inhibited the release of 
the pro-inflammatory cytokines IL-1β and IL-18 (D'Amico 
et al. 2021). Together these data suggest that inhibition of 
the P2X7 receptor to attenuate NLRP3 inflammasome acti-
vation may be a potential therapeutic approach for the treat-
ment of fibromyalgia (D'Amico et al. 2021).

NLRP3 Inhibitors

Although multiple NLRP3 inhibitors have been reported in 
the past decade (Table 1), most have relatively low potency 
(uM) for inhibition of NLRP3 and so there is much room 
for improvement regarding discovery of ligands with nM 
inhibitory potency. Of the NLRP3 inhibitors listed in 
Table 1, only dapansutrile (OLT1177) has entered clinical 
trials in patients with chronic pain (gout) to date.

Table 1   Characteristics of NLRP3 inhibitors

No Inhibitor  ~ IC50 Inhibition mechanism Specificity Clinical status References

1 MCC950
(CP-456773)

8 nM Binds Walker B motif; 
NACHT

ATPase inhibitor

NLRP3 Phase II
in patients with cryopy-

rin associated periodic 
syndrome (CAPS)

(Coll et al. 2015, 2019; 
Swanson et al. 2019)

2 CY-09 5 µM Binds Walker A motif; 
NACHT

ATPase inhibitor

NLRP3 – (Erdag et al. 2023; Swan-
son et al. 2019)

3 Oridonin 0.5 µM Binds irreversibly to 
NLRP3 Cys279 and 
blocks NLRP3-Nek7 
interaction

NLRP3 - (He et al. 2018; Swanson 
et al. 2019)

4 Tranilast 25–50 µM Binds NACHT and 
inhibits the

NLRP3–NLRP3 interac-
tion

NLRP3 Approved (Swanson et al. 2019; 
Huang et al. 2018)

5 MNS 2 µM NACHT ATPase inhibi-
tor

NLRP3 - (Swanson et al. 2019; El-
Sharkawy et al. 2020)

6 OLT1177 dapansutrile 1–100 nM (mouse)
1 µM (human)

NACHT ATPase inhibi-
tor

NLRP3 Phase II in patients with 
gout

(Swanson et al. 2019; 
Marchetti et al. 2018)

7 Bay11-7082 5 µM NACHT ATPase inhibi-
tor

NLRP3
NLRC4

– (Swanson et al. 2019; 
Juliana et al. 2010)

8 BOT-4-one 0.59–1.28 µM Alkylation; NACHT 
ATPase

inhibitor

NLRP3
NLRC4

– (Swanson et al. 2019; 
Shim et al. 2017)

9 Parthenolide 5 µM NACHT ATPase inhibi-
tor and

caspase 1 inhibitor

NLRP3
NLRC4
AIM2
NLRP1

– (Swanson et al. 2019; 
Zahid et al. 2019)

10 INF39 10 µM NACHT ATPase inhibi-
tor

NLRP3 – (Swanson et al. 2019; Shi 
et al. 2021)

11 Ginsenoside Rg3 12.75 µM Inhibition of the NEK7-
NLRP3 interaction

NLRP3
NLRC4
AIM2

Approved (Shi et al. 2020)

12 YQ128 0.3 µM NACHT ATPase inhibi-
tor

NLRP3 – (Jiang et al. 2019)

13 Licochalcone B 2.16 µM Inhibition of the NEK7-
NLRP3 interaction

NLRP3 – (Cao et al. 2020)

14 RRx-001
bromonitrozidine

116.9 nM Inhibition of the NEK7-
NLRP3 interaction

NLRP3 Phase III in patients with 
small cell lung cancer 
(SCLC)

(Jayabalan et al. 2023)
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Conclusion

The NLRP3 inflammasome is a key component of the innate 
immune system that plays an essential role in the pathophys-
iology of various chronic inflammatory pain conditions as 
well as multiple types of central and peripheral neuropathic 
pain. Hence, targeting of the NLRP3 inflammasome may 
be an effective approach to address the large unmet medical 
need for a new generation of well-tolerated, safe and highly 
effective analgesic agents for the relief of chronic inflamma-
tory pain and for alleviating neuropathic pain.
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