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Abstract

Nociplastic pain is the third classification of pain as described by the International Association for the Study of Pain (IASP),
in addition to the neuropathic and nociceptive pain classes. The main pathophysiological mechanism for developing nociplas-
tic pain is central sensitization (CS) in which pain amplification and hypersensitivity occur. Fibromyalgia is the prototypical
nociplastic pain disorder, characterized by allodynia and hyperalgesia. Much scientific data suggest that classical activation of
microglia in the spinal cord mediates neuroinflammation which plays an essential role in developing CS. In this review article,
we discuss the impact of microglia activation and M1/M2 polarization on developing neuroinflammation and nociplastic pain,
besides the molecular mechanisms engaged in this process. In addition, we mention the impact of microglial modulators on
M1/M2 microglial polarization that offers a novel therapeutic alternative for the management of nociplastic pain disorders.

Graphical abstract

Illustrating the mechanisms underlying microglia activation in central sensitization and nociplastic pain. LPS lipopolysac-
charide, TNF-a tumor necrosis factor-a, INF-y Interferon gamma, ATP adenosine triphosphate, 49 P2Y12/13R purinergic
P2Y 12/13 receptor, P2X4/7R purinergic P2X 4/7 receptor, SP Substance P, NK-1R Neurokinin 1 receptor, CCL2 CC
motif ligand 2, CCR2 CC motif ligand 2 receptor, CSF-1 colony-stimulating factor 1, CSF-1R colony-stimulating factor 1
receptor, CX3CL1 CX3C motif ligand 1, CX3XR1 CX3C motif ligand 1 receptor, TLR toll-like receptor, MAPK mitogen-
activated protein kinases, JNK jun N-terminal kinase, ERK extracellular signal-regulated kinase, iNOS Inducible nitric oxide
synthase, IL-1f interleukin-1p, IL-6 interleukin-6, BDNF brain-derived neurotrophic factor, GABA y-Aminobutyric acid,
GABAR y-Aminobutyric acid receptor, NMDAR N-methyl-D-aspartate receptor, AMPAR a-amino-3-hydroxy-5-methyl-
4-isoxazolepropi-onic acid receptor, IL-4 interleukin-4, IL-13 interleukin-13, IL-10 interleukin-10, Arg-1 Arginase 1, FGF
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fibroblast growth factor, GDNF glial cell-derived neurotrophic factor, IGF-1 insulin-like growth factor-1, NGF nerve growth

factor, CD Cluster of differentiation.
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What is pain?

Pain is a distressing sensation usually caused by noxious
or intense stimuli. The International Association for the
Study of Pain (IASP) defined pain as “an unpleasant sen-
sory and emotional experience associated with, or resem-
bling that associated with, actual or potential tissue dam-
age” (Raja et al. 2020). Pain is biologically a protecting
reflex and a warning symptom for a condition, but it can
become a pathologic condition itself and lose its adaptive
function, which negatively affects the quality of life (Raf-
faeli and Arnaudo 2017). Furthermore, pain is the primary
motive for doctor consultation in most nations (Debono
et al. 2013); being the main symptom in many medical
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disorders and the main leading cause of patients’ disability
and overall functioning impairment (Breivik et al. 2008).

Classification of pain

Pain can be categorized in many different means according to:
(1) the pathogenesis into nociceptive, neuropathic, and noci-
plastic; (2) the duration into acute and chronic; (3) the etiology
into non-malignant and malignant; and (4) the pain anatomic
location (Abd-Elsayed and Deer 2019).

Nociceptive pain

Nociceptive pain is a type of pain brought on by harmful
stimuli like tissue injury and inflammation, which stimulate
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pain receptors known as nociceptors (Yam et al. 2018).
Nociceptors are specialized receptors located on the sensory
nerve endings of primary afferent nociceptive nerve fibers
that are activated by noxious stimuli. Primary afferent noci-
ceptive fibers are classified into three types. (1) AP (A-beta)
fibers are thickly myelinated, large in diameter, and fast con-
ducting. They have a little activation threshold; thus, they
respond to mild pressure, touch, vibration, and hair move-
ment. (2) Ad (A-delta) fibers are thinly myelinated, small
in diameter, and slower in conduction than Ap fibers. They
respond to mechanical and thermal stimuli. They transmit
sharp, localized, and rapid pain. (3) C fibers are the smallest
primary afferent nociceptive fibers, unmyelinated, and have
the slowest conduction. They have a high activation thresh-
old and react to thermal, chemical, and mechanical stimu-
lation. They transmit slow, burning, diffuse, and dull pain
(Doody and Bailey 2019). Examples for nociceptive pain are
acute trauma, peptic ulcer, and arthritis (Yam et al. 2018).

When nociceptors are stimulated by noxious stimuli, they
transform the stimuli into electrical signals, which travel
to the spinal cord that in turn delivers the signals up to the
higher brain centers. There are four key phases involved in
nociception. (1) Transduction: this process occurs in the
periphery at site of cell damage that is caused by noxious
stimuli. Cell damage releases excitatory neurotransmitters
e.g. substance P (SP), prostaglandins (PG), bradykinin (BK),
and histamine (H) which stimulate nociceptors. (2) Trans-
mission: the pain impulse travels along afferent nociceptive
fibers from the peripheral site, where cell damage occurs,
to the spinal cord’s dorsal horn, then up to the brainstem,
after that it reaches the thalamus and finally the cerebral
cortex. (3) Perception: this phase occurs when the person
becomes conscious or aware of the pain. (4) Modulation:
during this final phase, the brain alters or modulates the pain
by releasing inhibitory neurotransmitters e.g. endorphins,
norepinephrine (NE) and serotonin (5-HT) that run down to
the spinal cord inhibiting the painful impulses transmission
(Ossipov 2012).

Neuropathic pain

Neuropathic pain is a category of pain developed because of
nerve damage or nerve injury rather than nociceptors stimu-
lation. The TASP terms neuropathic pain as “pain initiated
or caused by a primary lesion or dysfunction of the nervous
system” (Hagen and Rekand 2015). It is a pain condition that
is generally chronic and occurs because of progressive nerve
disease. Neuropathic pain is often described by patients as
a burning, squeezing, or shooting painful sensation. It can
happen due to damage anywhere along the nervous system
either centrally e.g. pain associated with spinal cord injury
and central post-stroke pain, or peripherally e.g. post-her-
petic neuralgia and carpal tunnel syndrome (Colloca et al.

2017; Finnerup et al. 2021). The most clinically prevalent
peripheral neuropathic pain is that related with diabetes mel-
litus in which consistent hyperglycemia injures the periph-
eral nerves throughout the body especially those of the feet
and legs (Schreiber et al. 2015; Abdelkader et al. 2022).

Nociplastic pain

Nociplastic pain develops due to changes in nociceptive pro-
cessing, probably due to central sensitization (CS), which
causes amplification of neural signaling and alteration in
pain modulation, ultimately elicits pain hypersensitivity.
Nociplastic pain disorders are often coupled with other
comorbidities, such as sleep disturbances, fatigue, memory
dysfunction, and mood problems. Examples for nociplas-
tic pain are fibromyalgia and irritable bowel syndrome
(Fitzcharles et al. 2021). Central sensitization can explain
why many people suffer from chronic non-specific pain in
the total lack of nerve or tissue damage and a clear activator
of nociceptors. The IASP, who was among the first to rec-
ognize the CS phenomenon, presented the term “nociplastic
pain” in 2017 as the third type of pain, which is distinct
from nociceptive and neuropathic pain. Nociplastic pain
is described by the IASP as “pain that arises from altered
nociception despite no clear evidence of actual or threatened
tissue damage causing the activation of peripheral nocicep-
tors or evidence for disease or lesion of the somatosensory
system causing the pain” (Kosek et al. 2021). The reported
signs and symptoms of CS are present in most nociplas-
tic pain disorders. Moreover, the primary underlying cause
of nociplastic pain is CS. Hereafter, patients who have
been clinically diagnosed with CS are considered to have
a nociplastic pain disorder, such as patients with fibromy-
algia, migraine, irritable bowel syndrome, chronic fatigue
syndrome, chronic back pain, and non-traumatic neck pain
(Nijs et al. 2021). So, we can use nociplastic pain and CS
interchangeably. Despite many diseases coming along with
nociplastic pain, fibromyalgia is the classical nociplastic
pain, which is a long-lasting pain syndrome manifested by
fatigue, generalized musculoskeletal pain, depression, and
sleep problems (Clauw 2014). Allodynia, hyperalgesia, and
spontaneous pain indicate CS.

There are numerous different mechanisms contributing to
the pathophysiology of CS: (1) enhanced SP and glutamate
levels, (2) potentiation of excitatory signaling of N-methyl
D-aspartate (NMDA) receptors and a-amino-3-hydroxy-5-
methyl-4-isoxazolepropi-onic acid (AMPA) receptors, (3)
over-activated glial cell-derived signals, (4) dysfunction of
descending inhibitory pain pathways, and (5) decrease in
the inhibitory neurotransmitter gamma aminobutyric acid
(GABA) (Harte et al. 2018; Rekatsina et al. 2020). Several
studies on fibromyalgia confirmed that higher glutamate lev-
els are essential for the chronic nociplastic pain associated
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with fibromyalgia (Harris et al. 2009; Valdés et al. 2010;
Feraco et al. 2011). The relation between lower levels of
GABA and nociplastic pain development and intensity is
confirmed in many preceding reports (Foerster et al. 2012;
Reckziegel et al. 2016; Cruz-Almeida et al. 2021). Also,
increasing levels of SP in nociplastic chronic pain was
revealed (Vaergy et al. 1988; Russell et al. 1994).

Microglia activation and polarization

Microglia are the brain’s innate immunity cells, which
account for about 10% of the cellular population. They are
the main phagocytes of the brain. They act as guards of the
central nervous system (CNS) and are known for being the
first non-neuronal cells to respond against different CNS
disorders. Two primary states of microglial cells may be
highlighted: resting and active. These states vary based on
the needs of the specific tissue. In normal healthy conditions,
microglia are in a resting state (Nimmerjahn et al. 2005).
However, the cells are actually very mobile and continually
scan their environment with their processes (Banati et al.
2004). The resting state of microglia is the prevailing state
in the absence of pathological signals in the surroundings.
Resting microglial cells transform morphologically and
functionally into amoeboid, active microglia when they
detect any potentially harmful signals or chemicals or abnor-
mal signaling arriving from neurons and other glial cells
(Jurga et al. 2020). Activated and resting microglia are the
two opposing morphological forms that lie on each side of a
broad spectrum of in-between different phenotypes, accord-
ing to the amount of activation and the timing of the inflam-
matory process. Upon activation, microglia can acquire dif-
ferent phenotypes that express diverse intracellular and cell
surface markers, release different factors, and perform dif-
ferent functions. Activated microglia are polarized to either
the classically activated microglia (proinflammatory, M1)
or the alternatively activated microglia (anti-inflammatory,
M?2). Cytokines, chemokines, prostaglandins, proteases,
ferrous iron, and other immunoregulatory components are
primarily produced by activated microglia in the CNS (Lan
et al. 2017).

M1 microglia

The microglia polarization towards M1 phenotype is called
the classical activation pathway. M1 microglia are the pri-
mary responders to an insult. Bacterial-derived products like
lipopolysaccharide (LPS), cytokines released by TH1 cells
and astrocytes like interferon-y and tumor necrosis factor-o
(TNF-a), and trauma-induced cellular debris all activate
the M1 phenotype. M1 microglia release proinflammatory
molecules such as TNF-a, inducible nitric oxide synthase

@ Springer

(INOS), interleukin-1f (IL-1p), and interleukin-6 (IL-6) in
addition to redox signaling molecules. They also express
surface markers e.g. cluster of differentiation (CD) 86,
CD14, CD16, CD32, and CD42. Thus, microglial M1 acti-
vation is thought to be aggressive causing cytotoxicity, acute
immune response, and severe rapid inflammation due to the
production of inflammatory chemokines and cytokines as
well as reactive oxygen species (Lively and Schlichter 2018;
Jurga et al. 2020).

M1 phenotype activation can be measured by detection of
surface markers. Levels of CD86, a membrane co-stimula-
tory receptor in charge of immune cell proliferation, as well
as CD16 and CD32, the membrane receptors of Fc region
of IgG responsible for induction of inflammatory signals,
are raised in activated M1 phenotype. The secreted proin-
flammatory cytokines (like TNF-a, IL-6, IL-12, IL-18) that
are responsible for continuation of inflammation (Kalkman
and Feuerbach 2016), and chemokines (such as CCL20,
CCLS5, CXCL1, CXCL9, CXCL10) that are responsible for
recruitment of immune cells can be measured as M1 micro-
glia markers (Konnecke and Bechmann 2013). In addition,
iNOS, an enzyme that uses L-arginine to produce NO, serves
as a common marker of M1 activation. Its role in microglia
is to act against pathogens and tumors through NO synthesis.
It also enhances the generation of inflammatory mediators
(IL-6) and transcription factors (interferon regulatory factor
1, nuclear factor-kappa B) that are involved in the inflamma-
tory reaction by microglia (Sierra et al. 2014; Bogdan 2015).

M2 microglia

The microglia polarization towards M2 phenotype is called
the alternative activation pathway. It can be thought that
switching the activation phenotype towards M2 will have a
silencing impact, resulting in reintroducing environmental
homeostasis and inducing recovery as opposed to the M1
classical activation pathway. The existence of IL-4, IL-10 or
IL-13 induces M2 activation. The latter leads to the release
of anti-inflammatory molecules [like IL-4, IL-10, arginase-1
(Arg-1)], growth factors (like insulin-like growth factor I,
fibroblast growth factor), neurotrophic mediators (like glial
cell-derived neurotrophic factor, brain-derived neurotrophic
factor (BDNF), nerve growth factor), and colony-stimulating
factor 1 (CSF-1). M2 microglia also expresses surface mark-
ers e.g. CD163 and CD206. The consequences of M2 acti-
vation is inflammation inhibition, cell proliferation, wound
healing, phagocytosis of debris, and homeostasis restoration
(Lan et al. 2017; Wang et al. 2019; Jurga et al. 2020).

M2 microglia activation can be measured by detection of
surface protein markers. CD163, a hemoglobin scavenger
receptor, is responsible for removing oxidative hemoglobin
followed by heme degradation by heme oxygenase-1 releas-
ing CO, ferrous ions, and anti-inflammatory byproducts
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(Etzerodt and Moestrup 2013). CD206 is a receptor found
in cellular and endosomal membranes. It is in charge of the
processes of endocytosis through recognition of pathogenic
polysaccharide chains and glycoproteins (Park et al. 2016;
Ohgidani et al. 2017a). The anti-inflammatory cytokines
(such as IL-4, IL-10, transforming growth factor beta
(TGFp)) and chemokines (such as CCL2, CCL17, CCL22,
CCL24) that inhibit inflammation, are also used as M2
microglia markers (Biswas and Mantovani 2010). Arg-1 is
an important marker for M2 activation. This enzyme trans-
forms arginine amino acid into ornithine and urea, which
are then used to make proline and polyamides required for
healing of wounds and remodeling of tissues (Munder 2009;
Quirié et al. 2013).

Modulation of M1/M2 polarization in nociceptive
pain

Nociceptive pain is a warning sign of tissue damage (such
as burns, sprains and bone fracture), abnormal muscle ten-
sions, inflammation, obstructions, and increased intralumi-
nal pressure. Immune cells appear to participate significantly
in nociceptive pain development. In response to direct or
indirect injury to the primary afferent neurons, immune
cells, such as spinal microglia or peripheral macrophages,
assemble around the neurons. These immune cells generate a
variety of proinflammatory and pro-nociceptive factors that
interact with nociceptors to cause peripheral sensitization.
First, microglia are activated and polarized into M1 mac-
rophages that induce stimulation of the nociceptive fibers,
which might be inhibited by M2 microglia later on (Domoto
et al. 2021). For example, macrophages are responsible for
the chronic pain that happens in rheumatoid arthritis. Rheu-
matoid arthritis patients exhibit an augmented M1/M2 ratio
which encourages inflammation. Peripheral inflammation in
rheumatoid arthritis is essential for the activation of micro-
glia. Activated M1 microglia may directly induce pain via
producing TNF, IL-6, IL-1f and other proinflammatory
cytokines and chemokines that cause synaptic changes cen-
trally and pain hypersensitivity. Hence, chronic nociceptive
pain in rheumatoid arthritis is caused by microglia as a con-
sequence of direct neuroinflammation secondary to arthritis
itself (Siouti and Andreakos 2019).

Modulation of M1/M2 polarization in neuropathic
pain

Numerous research has emphasized the significance of
the neuroimmune process underlying the neuropathic pain
development. The ongoing interactions between the immune
system and the nervous system cause neuroinflammation,
which in turn causes neuropathic pain (Lim and Kam
2020). Macrophages are the key immune cells involved in

the development of neuroinflammation. In neuropathic pain
disorders, M1/M2 phenotype balance between pro- and
anti-inflammatory mediators becomes disrupted and tilted
towards M1 macrophages with continuous production of M1
proinflammatory molecules leading to a persistent phase of
non-resolving neuroinflammation and the development of
long-lasting neuropathic pain (Komori et al. 2011; Kigu-
chi et al. 2017b; Landis et al. 2018). In context, targeting
macrophage polarization has a significant impact on the
inflammatory processes, making it a possible approach for
treating neuropathic pain (Kiguchi et al. 2017a). For exam-
ple, in chronic constriction injury rat model of neuropathy,
vein wrapping promoted M2 activation with high levels of
M2 anti-inflammatory markers (Arg-1, IL-4, IL-10, CD206)
resulting in significant increase in pain withdrawal threshold
(Hirosawa et al. 2018). Similarly, the increased number of
M2 macrophages triggered by IL-4 injection around injured
sciatic nerve of mice resulted in a noticeably decreased level
of pain behavior (Kiguchi et al. 2015). Another study stated
that red light therapy activated M2 macrophages and reduced
pain after spinal cord injury (Hu et al. 2016). Also, it has
been reported that neuropathic pain brought on by spinal
cord injury was relieved by promoting M2 microglia polari-
zation using cerium oxide nanoparticles (Ban et al. 2022).

M1/M2 imbalance and microgliosis as a primary
hallmark of neuroinflammation and a driver
of nociplastic pain

It was documented that patients with nociplatsic pain dis-
orders e.g. fibromyalgia show imbalance in normal M1/
M2 pattern. In fibromyalgia, serum levels of M1 mac-
rophage markers along with proinflammatory cytokines
and chemokines are enhanced, contributing to systemic
inflammation (Tripathi et al. 2021). Instead, levels of M2
microglia markers and anti-inflammatory cytokines and
chemokines are decreased, resulting in unopposed chronic
central inflammatory state (Ugeyler et al. 2006; Sturgill
et al. 2014). Classical microglia activation or microgliosis
and subsequent chronic neuroinflammation are the pivotal
pathophysiological processes connected to the development
of chronic nociplastic pain (Albrecht et al. 2019; Donnelly
et al. 2020; Hankerd et al. 2022; Alvarez-Pérez et al. 2022).

At the level of spinal cord, microglia activation is mod-
ulated by several neuromolecules including adenosine
triphosphate (ATP), chemokine CC motif ligand 2 (CCL2),
chemokine CX3C motif ligand 1 (CX3CL1, known as frac-
talkine), colony-stimulating factor 1 (CSF-1), and SP (John-
son et al. 2016). ATP induces microglia activation through
stimulation of the purinergic P2Y receptors (P2Y 12, P2Y13)
and P2X receptors (P2X4, P2X7) (Tsuda et al. 2010; Trang
et al. 2012). A prior work suggested that microglia in cases
suffering from fibromyalgia were oversensitive to ATP,
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which induced TNF-a expression. Remarkably, there was a
direct correlation between the intensity of fibromyalgia pain
and the ATP-induced overexpression of TNF-a (Ohgidani
et al. 2017b). The Administration of P2 receptor antago-
nists, as suramin and TNP-ATP, inhibited neuroinflamma-
tion and subsequent pain in previous studies (Wu et al. 2004;
Ikeda et al. 2012). Also, CCL2 contributes to microgliosis
through chemokine CC Motif Receptor 2 (CCR2) activation
(Montague and Malcangio 2017). The inhibition of CCL2
and/or its receptor CCR2 inhibits microglia activation and
improves pain in diverse animal models of pain (Padi et al.
2012; Hu et al. 2017; Dubovy et al. 2018). Also, CX3CL1
leads to microglia activation via CX3C chemokine receptor
1 (CX3CR1) stimulation. CX3CL1 or CX3CR1 neutralizing
antibodies reduces neuroinflammation and attenuates persis-
tent pain sensation (Zhuang et al. 2007; Gao and Ji 2010).

Of note, CSF-1 is crucial for microglia activation in the
spinal dorsal horn through binding to its receptor, colony-
stimulating factor 1 receptor (CSF-1R), on the microglia
contributing to spinal neuroinflammation and induction of
pain hypersensitivity (Guan et al. 2016; Yu et al. 2021). As
well, microglia Toll-like receptor (TLR) activation contrib-
utes to microglia stimulation and neuroinflammation leading
to the development of chronic nociplastic pain (Lacagnina
et al. 2018; Liu et al. 2022). In a previous study, the admin-
istration of the TLR4 antagonists naloxone and naltrexone
inhibits TLR4 signaling and the consequential microglia
activation resulting in reducing neuroinflammation and alle-
viating chronic pain (Wang et al. 2016).

Substance P participates in the exacerbation of neuro-
inflammation and its selective receptor, the neurokinin 1
receptor (NK-1R), is highly expressed by M1 microglia.
Substance P and NK-1R interaction activates microglia and
promotes central inflammation that aggravate pain sensation
(Wieseler-Frank et al. 2004; Johnson et al. 2016). High lev-
els of SP were evident in the cerebrospinal fluid of patients
with fibromyalgia (Stratz et al. 2004).

Taken together, these previously mentioned agonist-
receptor interactions lead to activation of microglia intra-
cellular signaling pathways, especially the mitogen-activated
protein kinases (MAPKSs): p38, c-Jun-N-terminal kinase
(JNK) and extracellular signal-regulated kinase (ERK)
(Ji et al. 2009, 2018). Inhibitors of p38 and JNK kinases,
SE203580 and SP600125 respectively, inhibited microglia
activation and neuroinflammation reflected by attenuation
of allodynia and hyperalgesia (Xu et al. 2007; Ikeda et al.
2012). Another p38-MAPK inhibitor, dilmapimod, reduced
pain in patients suffering from carpal tunnel syndrome
(Anand et al. 2011). The activation of MAPKSs is a very
critical step in the potentiation and persistence of pain due
to the generation of multiple proinflammatory cytokines,
chemokines, and growth mediators (such as TNF-a, IL-1p,
IL6, BDNF, CCL2) resulting in neuroinflammation and
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increased glutamate release causing NMDAR and AMPAR
excitatory synaptic signaling stimulation, in addition to
inhibiting GABAR inhibitory signaling in the spinal cord
dorsal horn. Therefore, pain is augmented and persists
resulting in allodynia and hyperalgesia, which are the main
features of CS and also the nociplastic pain (Kawasaki et al.
2008; Ji et al. 2018; Vergne-Salle and Bertin 2021). The
high levels of proinflammatory cytokines are consistently
detected in patients suffering from different types of chronic
nociplastic pain. A previous randomized controlled trial
found that plasma levels of TNF-a and IL-6 were elevated
in fibromyalgia patients (Ernberg et al. 2018). Moreover,
a systematic review reported that TNF-a plasma levels
elevated in patients suffering from chronic lower back pain
(Morris et al. 2020). In context, the level of proinflamma-
tory cytokine TNF-a was elevated in women suffering from
migraine, while the anti-inflammatory cytokine IL-10 level
was declined (Oliveira et al. 2017).

Preclinical and clinical trials focusing
on microglial activation and polarization
for pain treatment

Microglial polarization shift from the M1 to M2 pheno-
type is a potential treatment approach for different types of
chronic pain as indicated in Table 1. In the early phases of
collagen-induced arthritis model, mechanical allodynia and
exaggerated spinal nociceptive withdrawal reflexes occurred
even before the swelling of hind paw, along with spinal
microgliosis and raised IL-1p levels in CSF, suggesting
that microglial-induced neuroinflammation contributes to
rheumatoid arthritis pain. In rat model of collagen-induced
arthritis, administration of microglial inhibitor A-438079
(P2X7 antagonist) decreased the occurrence of mechanical
allodynia, reduced IL-1p levels, inhibited microgliosis, in
addition to the inhibition of spinal nociceptive withdrawal
reflexes (Nieto et al. 2016). In vitro, crotalphine downregu-
lated CD86 expression and enhanced CD206 expression in
LPS-treated BV-2 cells, shifting microglial polarization onto
the anti-inflammatory M2 phenotype, confirming the neuro-
modulatory role contributed to crotalphine analgesic action
(Lopes et al. 2022). In the bone cancer pain mouse model,
spinal cord microglia displayed augmented M1 activation
and reduced M2 polarization, as well as up-regulated IL-1f
and suppressed IL-10 expression throughout the develop-
ment of bone cancer pain. Dehydrocorydaline had marked
antinociceptive properties coupled with inhibiting M1 phe-
notype and increasing M2 phenotype of microglia in the
spinal cord (Huo et al. 2018).

In the chronic constriction injury model of neuropathic
pain, the levels of proinflammatory molecules were raised
along with development of neuroinflammation due to M1
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phenotype activation. Kaempferol alleviated neuropathic
pain in rats via suppressing microglia activation and chang-
ing its polarization from M1 towards M2 phenotype (Chang
et al. 2022). Similarly, dual-specificity phosphatase-1
showed anti-inflammatory properties and alleviated pain
in the chronic constriction injury rat model of neuropathic
pain induced by through blocking MAPK signaling cas-
cade resulting in switching M1-M2 polarization (Wang
et al. 2021). Following chronic constriction injury in mice,
IL-4 is thought to ameliorate pain through shifting mac-
rophages from M1 proinflammatory phenotype to M2 anti-
inflammatory phenotype, this results in blunting the action
of inflammatory mediators and inhibition of pain sensation,
in addition to continuous reduction of neuropathy-induced
mechanical hyperalgesia, beyond the treatment with IL-4
(Celik et al. 2020).

Microglial polarization shift toward the M1 phenotype
is thought to cause the development of bone cancer pain,
while minocycline can mitigate the pain of bone cancer
through re-shifting microglia polarization towards the M2
phenotype and inhibiting M1 polarization as reflected by
augmented expression of M2 microglia marker (CD206)
and anti-inflammatory cytokine IL-10, in addition to low-
ered expressions of M1 microglia marker (CD86) and the
proinflammatory cytokines TNF-a and IL-1f (Dai et al.
2019). Propentofylline is a glial cell modulator, acting pos-
sibly through direct modulation of microglia to inhibit M1
phenotype and decrease the production of proinflammatory
mediators (Sweitzer and De Leo 2011). It attenuates glial
activation in the spinal cord dorsal horn and exhibits antino-
ciception in rats suffering from spinal cord injury-induced
allodynia (Gwak et al. 2008), bone cancer pain (Yao et al.
2011), and nerve injury-induced allodynia (Tawfik et al.
2007), as well as monoarthritic rats (Morales et al. 2012).
Interestingly, promoting microglial polarization to the anti-
inflammatory M2 phenotype by naringenin, a natural fla-
vonoid, suppressed microglia-mediated neuroinflammation
and attenuated pain sensation in rats with bone cancer pain
(Ge et al. 2022).

In rats exposed to spinal nerve ligation-induced cold and
mechanical allodynia, minocycline administration inhib-
ited CD11b expression, a microglial activation marker,
and reduced the M1 proinflammatory cytokine IL-1f but
increased the M2 anti-inflammatory cytokine IL-10 result-
ing in attenuation of central inflammation and the subse-
quent pain (Burke et al. 2014). In a study performed in BV-2
microglia cells, low dose of naltrexone induced a shift from
the classically activated M1 proinflammatory phenotype to
the alternatively activated M2 anti-inflammatory phenotype
resulted in marked reduction of proinflammatory cytokines
and inhibition of neuroinflammation (Kuci¢ et al. 2021).
In chronic compression injury rat model of neuropathic
pain, botulinum toxin type A induces microglial M1/M2

@ Springer

polarization towards the anti-inflammatory M2 phenotype
through inhibition of P2X7 receptor expression, as con-
firmed by lower levels of iNOS, IL-6, TNF-a along with
higher levels of Arg-1, IL-10 (Gui et al. 2020).

Targeting microglia as a new therapeutic
strategy in treating nociplastic pain

Since increased classical microglial activity contributes to
neuroinflammation and CS in patients having chronic noci-
plastic pain, targeting microglia cells might therefore be a
pioneering therapeutic alternative. In context, minocycline
is a suppressor of microglia activation and selectively inhib-
its M1 polarization resulting in decreased proinflammatory
molecules production (Kobayashi et al. 2013). In a double
blind study, fibromyalgia patients who received minocycline
experienced a markedly reduced number of tender points
(Miwa 2021). Furthermore, minocycline remarkably attenu-
ated hyperalgesia and allodynia in multiple continuous stress
rat models of chronic fatigue syndrome and fibromyalgia by
suppressing spinal microglial activation and neural inflam-
mation (Yasui et al. 2014).

The opioid receptor antagonist naltrexone inhibits micro-
glia activation and shows anti-neuroinflammatory proper-
ties. Naltrexone was found to mitigate neuroinflammation
for treatment of several inflammatory pain disorders includ-
ing regional pain syndrome and fibromyalgia. In the pilot
study of Younger et al., administration of naltrexone at a
low dose mitigated the symptoms of fibromyalgia and alle-
viated mechanical and thermal pain thresholds (Younger
and Mackey 2009). In another pilot clinical trial, treatment
with naltrexone resulted in marked inhibition of proinflam-
matory cytokines levels including IL-1f, IL-6 and TNF-«
and reduction of fibromyalgia-associated nociplastic pain
(Parkitny and Younger 2017).

In an experimental model of fibromyalgia, IL-5 elic-
its an analgesic effect through inducing macrophage
polarization toward M2 anti-inflammatory phenotype
(CD206+) serving as a potential strategy to alleviate the
pain along with other fibromyalgia-associated somatic
symptoms (Merriwether et al. 2021). In a group of female
fibromyalgia patients, the M1/M2 imbalance was cor-
rected by an eight-month pool-aquatic exercise program
resulting in lower levels of TNFa and increased IL-10
levels, producing anti-inflammatory effect and enhanc-
ing the quality of patients’ life (Ortega et al. 2012). In
the reserpine-induced fibromyalgia rat model, targeting
the microglial P2X7R using its antagonist Brilliant Blue
G attenuated microglial activation and consequently the
production of pain proinflammatory mediators (IL-1f,
IL-18), resulting in inhibiting neuroinflammation and
fibromyalgia-mediated pain sensitization (D’amico et al.
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2021). Similarly, infliximab administration to rats with
reserpine-induced fibromyalgia inhibited microglial stim-
ulation via decreasing the expression of P2X7R and its
downstream p38-MAPK, resulting in low levels of IL-1p,
IL-6 and TNF-a. Infliximab-treated rats also showed
reduced thermal hyperalgesia and mechanical allodynia
which reflected an improvement in fibromyalgia-associ-
ated symptoms (Cordaro et al. 2022). Also, in the reser-
pine rat model of fibromyalgia, galantamine administra-
tion corrected the M1/M2 balance that was disrupted after
reserpine administration and shifted that balance towards
the anti-inflammatory M2 phenotype. Galantamine inhib-
ited M1 phenotype which was reflected as a reduction in
its markers (iNOS, CD86) and it enhanced M2 polariza-
tion which was confirmed by the elevation of its mark-
ers (Arg-1, CD163). Galantamine-treated rats showed
reduced neuroinflammation and inhibited fibromyalgia-
related nociplastic pain (Atta et al. 2023).

In context, dextromethorphan, a well-known antitus-
sive drug, reduced fibromyalgia-associated pain by 30%
from baseline levels in a previous clinical trial conducted
on 14 women satisfying the fibromyalgia criteria set in
2010 by the American College of Rheumatology. The
analgesic effects of dextromethorphan was thought to be
mediated via its microglia-modulating properties. Dex-
tromethorphan has been proved to diminish microglia
activation and its production of the proinflammatory
cytokines iNOS, TNF-«, and IL-6, resulting in inhibit-
ing neuroinflammatory processes (Mueller et al. 2021).
Milnacipran, the FDA-approved drug for fibromyalgia
treatment, showed analgesic properties in a controlled
clinical trial. It inhibited fibromyalgia-associated central
inflammatory state through turning off glial activation
and subsequent neuroinflammation (Natelson et al. 2015).

Moreover, in the stress-induced irritable bowel syn-
drome rat model, minocycline infusion reversed stress-
induced microgliosis via inhibiting the p38-MAPK
pathway, abolishing visceral hypersensitivity as in stress-
naive rats (Yuan et al. 2020). In the colorectal disten-
sion rat model of irritable bowel syndrome, minocycline
curbed the activated microglia-dependent suppression of
GABAergic neuronal activity which increased the visceral
pain threshold (Ji et al. 2022). In context, cannabidiol has
been demonstrated to attenuate pain sensation through
its microglia modulatory effects. It reduces M1 neuro-
inflammatory mediators IL-1p, IL-6, iNOS and CCL2;
protecting against microglia-mediated neuroinflammation
(Yousaf et al. 2022). Theoretically, cannabidiol can be
used to alleviate fibromyalgia-associated pain hypersen-
sitivity. This hypothesis is now under testing in an active
clinical trial (NCT05283161 2022).

Conclusion

Nociplastic pain is established by the IASP as the third
pain type in addition to neuropathic and nociceptive pain.
The main pathophysiological mechanism of developing
nociplastic pain is CS. Fibromyalgia is the ideal disorder
to describe nociplastic pain phenomena. Microglia acti-
vation and polarization into the M1 phenotype and the
subsequent release of proinflammatory chemokines and
cytokines are essential for developing neuroinflammation
which results in pain hypersensitivity and development
of chronic nociplastic pain. In context, microglial modu-
lators may have therapeutic potential through suppress-
ing microglia-mediated neuroinflammation via impeding
microglial activation and enhancing its polarization toward
the anti-inflammatory M2 phenotype. The current review
improves the understanding of the nociplastic pain aspects
and discusses the modulatory effect of microglial polariza-
tion and microglial modulators as potential new strategies
for treatment of nociplastic pain disorders.
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