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Abstract
Oral submucous fibrosis (OSF) is a chronic, progressive, and precancerous condition mainly caused by chewing areca nut. 
Currently, OSF therapy includes intralesional injection of corticosteroids with limited therapeutic success in disease manage-
ment. Therefore, a combined approach of in silico, in vitro and in vivo drug development can be helpful. Polyphenols are 
relatively safer than other synthetic counterparts. We used selected polyphenols to shortlist the most suitable compound by 
in silico tools. Based on the in silico results, epigallocatechin-3-gallate (EGCG), quercetin (QUR), resveratrol, and curcumin 
had higher affinity and stability with the selected protein targets, transforming growth factor beta-1 (TGF-β1), and lysyl 
oxidase (LOX). The efficacy of selected polyphenols was studied in primary buccal mucosal fibroblasts followed by in vivo 
areca nut extract induced rat OSF model. In in vitro studies, the induced fibroblast cells were treated with EGCG and QUR. 
EGCG was safer at higher concentrations and more efficient in reducing TGF-β1, collagen type-1A2 and type-3A1 mRNA 
expression than QUR. In vivo studies confirmed that the EGCG hydrogel was efficient in improving the disease conditions 
compared to the standard treatment betamethasone injection with significant reduction in TGF-β1 and collagen concentra-
tions with increase in mouth opening. EGCG can be considered as a potential, safer and efficient phytomolecule for OSF 
therapy and its mucoadhesive topical formulation help in the improvement of patient compliance without any side effects.
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systemic side effects such as adrenal insufficiency, edema, 
osteonecrosis, osteoporosis, myopathies and central serous 
chorioretinopathy, Hence, there is a need to identify an 
effective strategy for the treatment of OSF, which can be an 
alternative to the currently available treatment and provide 
symptomatic relief. The literature states that non-steroidal 
anti-inflammatory drugs (NSAIDs), angiotensin-converting 
enzyme (ACE) inhibitors, and angiotensin receptor blockers 
(ARB) can be used to treat OSF (Wollina et al. 2015) but 
there efficacy is not yet proved in the treatment of OSF. As 
per one research studies, It was observed that among various 
selected patients for study, 05 (45.46%) and 06 (54.54%) 
patients showed mild and severe fibrosis when they were 
using the NSAIDs for about 6 months (Hira et al. 2016). 
Therefore the drugs having all the activities such as anti-
fibrotic, anti-inflammatory and oxygen radical scavenging 
properties are more beneficial for the effective treatment of 
OSF (Xia and Li 2019; Chandran et al. 2022). The use of 
plant-based active moieties shows significant benefits with 
required safety. Medicinal plants such as cruciferous veg-
etables, garlic, andrographolide are explored for the treat-
ment of different disorders such as cancer (Akkol et al. 2020; 
Aǧagündüz et al. 2022; Mitra et al. 2022), psychiatric and 
neurological disorders (Vieira et al. 2020; Akkol et al. 2020; 
Farooq et al. 2021), thrombotic, inflammatory and nocicep-
tive conditions (Khan et al. 2020; Uddin Chy et al. 2021), 
fibromyalgia (Ferrarini et al. 2022), hyperglycemic and dia-
betic conditions (Mechchate et al. 2021; Haque et al. 2022), 
antidepressant, antidiarrheal and anxiolytic activity (Hos-
sain et al. 2021; Jahan et al. 2022) and many other chronic 
disorders (Iqbal et al. 2020).

The naturally occurring polyphenols, lycopene (LYP) 
and curcumin (CUR) were attempted as therapeutic agents 
for the treatment of OSF. Saran et al. proved that polyphe-
nol LYP is better than CUR in the management of OSF 
(Saran et al. 2018). Polyphenols such as epigallocatechin 
3-gallate (EGCG) (Hsieh et al. 2017), quercetin (QUR) (Li 
et al. 2018), matrine (MAT) (Liu et al. 2018) and resveratrol 
(RSV) (Zeng et al. 2018) have been reported to possess anti-
fibrotic, anti-inflammatory and oxygen radical scavenging 
properties. Based on the literature evidence, in the present 
study, an attempt was made to screen the potential polyphe-
nols that can be used to treat OSF. Thus, in the present work, 
in silico studies such as molecular docking and molecular 
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Introduction

Oral submucous fibrosis (OSF) is a chronic and inflamma-
tory progressive scarring disease caused by chewing areca 
nut, betel quid, and gutka, resulting in the accumulation of 
connective tissue in lamina propria (Ray et al. 2019; Aksh-
ayak and Senthil Murugan 2021). Although this condi-
tion was observed earlier in South Asian countries, it has 
slowly crept into Europe and North America (Devarajan and 
Somasundaram 2019). It also results in serious morbidity 
among affected individuals. Multiple factors contribute to 
the disease progressions, such as defective collagen homeo-
stasis, genetic susceptibility and immunity (Sharma et al. 
2017). Arecoline is the main etiological factor responsible 
for OSF progression by activation of transforming growth 
factor-beta (TGF-β) signalling pathway. In turn, TGF-β 
activates other proteins, such as small mothers, against the 
decapentaplegic (Smad) protein, lysyl oxidase (LOX), and 
reactive oxygen species (ROS). These are responsible for 
collagen overproduction and reduction in collagen degra-
dation by stimulating tissue inhibitors of the matrix met-
alloproteinase (TIMP) and plasminogen activator inhibitor 
(PAI) (Kondaiah  et al. 2019). Out of these proteins, TGF-β1 
and LOX are the validated drug targets for inhibiting TGF-β 
signalling pathway (Sharma et al. 2018).

Currently, a blend of strategies have been adopted for 
the treatment of OSF namely habit control, drugs, surgi-
cal, physiotherapy, laser treatment and nutritional interven-
tions. The drugs include corticosteroids (dexamethasone/ 
betamethasone/ hydrocortisone/ triamcinolone) alone or in 
combination with hyaluronidase and lycopene (LYP). The 
intralesional injection of corticosteroids suppresses TGF-β1 
and forms the mainstay in the treatment of OSF (Shih et al. 
2019). Nonetheless, none of the therapies have resulted in 
the successful treatment of OSF apart from rendering symp-
tomatic relief to patients (Gopinath et al. 2022). The stand-
ard treatment, corticosteroid injection reported side effects 
with higher chances of infection at the site of injection and 
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dynamic (MD) simulation were performed to analyse the 
molecular stability of ligands such as EGCG, CUR, RSV, 
QUR, LYP and MAT towards the target proteins of OSF 
such as TGF-β1 and LOX. The efficacy of the best polyphe-
nols was examined using in vitro cell line studies in primary 
buccal mucosal fibroblasts cells and areca nut extract (ANE) 
induced rat OSF model.

Materials and methods

Materials

Epigallocatechin 3-gallate and quercetin were purchased 
from TCI chemical, India. Arecoline hydrobromide, 
ferric chloride (FeCl3), 2,4,6-tris(2-pyridyl)-s-triazine 
(TPTZ), naphthyl ethylenediamine dihydrochloride, 
2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 
Biebrich scarlet and Ponceau BS were purchased from 
Sigma-Aldrich-Merck, India. (3-(4,5-dimethylthiazol-
2-Yl)-2,5-diphenyltetrazolium bromide),  DTNB 
(5,5-dithio-bis-(2-nitrobenzoic acid)) also known 
as Elman’s Reagent, dimethyl sulfoxide (DMSO), 
2-thiobarbituric acid, adrenaline bitartrate, and sodium 
deoxycholate were purchased from the HiMedia, India. 
Betamethasone injection I.P. (Betamsole, manufactured 
by Laborate Pharmaceuticals India Ltd) was procured 
from the Kasturba Hospital Pharmacy, Manipal, 
India. Penicillin–streptomycin (PenStrep, 5000  U/
mL), GlutaMAX Supplement, Dulbecco's Modified 
Eagle Medium low-glucose (DMEM-Lg), Dulbecco’s 
phosphate-buffered saline (DPBS), and fetal bovine 
serum (FBS) was purchased from Gibco, Thermo Fisher 
Scientific, India. Weigert’s haematoxylin solution, 
acid fuchsine, phosphotungstic acid hydrate extrapure, 
phosphomolybdic acid extrapure, aniline blue (water 
soluble, methyl blue), sulphanilamide, molecular 
biology grade of ethanol, chloroform and isopropanol 
were purchased from the Sisco Research Laboratories 
Pvt. Ltd., India. Glacial acetic acid and ethanol were 
purchased from Merck Life Sciences Pvt. Ltd., India. 
RNAiso Plus, Prime Script RT reagent K (Perfect) 
and SYBR Premix Ex Taq (Tli RNaseH Plus) were 
purchased from DSS Takara Bio India Pvt. Ltd. Areca 
nuts extract was purchased from Vital Herbs, India. Rat 
transforming growth factor-beta 1 (rat TGF-β1) and rat 
collagen types 1 alpha 1 (rat COL1a1) enzyme-linked 
immunosorbent assay (ELISA) kits were purchased from 
Maxome Labsciences, India, and Elabscience, India, 
respectively. Sodium dihydrogen phosphate (NaH2PO4), 
disodium hydrogen phosphate, sodium carbonate 
(Na2CO3), potassium dihydrogen orthophosphate, 
disodium hydrogen orthophosphate, potassium chloride, 

ortho-phosphoric acid, trichloroacetic acid (TCA), 
butylated hydroxytoluene (BHT), hydrochloric acid 
(HCl), potassium dihydrogen orthophosphate (KH2PO4), 
disodium phosphate (Na2HPO4), hydrogen peroxide 
(H2O2), and sodium chloride were purchased from the 
S D Fine Chemicals, India. All analytical grade reagents 
were used.

Methods

Molecular modelling

The molecular modelling platform Maestro (Schrödinger, 
LLC, NY, 2019) was used for performing molecular dock-
ing, followed by MD simulation studies using a worksta-
tion with Intel® Xeon® Gold 6130 Processor with 2.1 
Ghz 16C/32 T 22 M cache having Nvidia Quadro P5000 
graphical processing unit cards and Ubuntu 18.04.3 LTS 
operating system.

Preparation of ligands

The ligands, namely EGCG, QUR, CUR, LYP, MAT, and 
RSV, were taken from PubChem and drawn using a 2D 
sketcher in Maestro Module and converted to the 3D struc-
ture. The structures of all polyphenols were optimized using 
the ‘LigPrep’ tool of Schrödinger, to obtain the geometry 
optimized with the lowest energy at neutral pH 7.0 ± 0.0.

Protein preparation

The crystal structures of proteins were selected after care-
ful screening based on their resolution. The proteins LOX 
(PDB ID: 5ZE3, Resolution: 2.40 Å), and TGF-β1 (PDB 
ID: 4X2G, Resolution: 1.51 Å) were downloaded from 
the ‘Protein Data Bank’ (PDB) (https://​www.​rcsb.​org/). 
The structures were processed with ‘Protein Preparation 
Wizard’ (PPW) (Madhavi Sastry et al. 2013), wherein the 
missing hydrogen atoms, amino acid residues, and miss-
ing side chains were added. The proper ionization state for 
protein residues was generated, the water molecules beyond 
5 Å were removed, and H-bond (HB) network was gener-
ated. Finally, the protein structure was minimized using 
the OPLS3 force field (Harder et al. 2016). A homology 
model was generated using 'Prime' module for the proteins 
for which the crystal structure was not reported (Jacobson 
et al. 2004). Using the BLAST tool, the protein structure 
with the highest homology to the query protein was selected 
as the template protein. Using the ClustalW, the amino acid 
of the query protein was aligned with the template protein. 
The structural model was built using the default settings in 
Prime. The ‘SiteMap’ tool (Halgren 2007, 2009) was used 
to identify the druggable, ligand-binding site for the protein.

https://www.rcsb.org/
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Molecular docking studies

Molecular docking was performed using the ‘Glide’ module 
in Schrödinger to examine the molecular affinity of ligands 
towards the selected proteins (Friesner et al. 2004, 2006; 
Halgren et al. 2004). Using the Glide grid, the binding site 
was defined, and the ligands were docked with standard 
precision (SP) mode (Friesner et al. 2004, 2006).

MD simulations studies

The MD simulation study was performed to assess the sta-
bility between the protein and ligand using the ‘Desmond’ 
module in Schrödinger (Bowers et al. 2006). Initially, a 
solvated complex system was prepared using TIP3P water 
model, the system was neutralized by adding counter ions, 
and the iso-osmotic condition was maintained during simu-
lation by adding 0.15 M NaCl using the ‘System Builder’ 
module. The solvated system was minimized using the 2000 
maximum iterations and 1.0 (kcal/mol/Å) convergence 
threshold. The minimized system was used for running the 
MD simulation. The MD simulation was performed via NPT 
ensemble for 100 ns at 1.01 bar pressure and 300 K tem-
perature using Nose–Hoover chain thermostat (1 ns) and 
Martyna–Tobias–Klein barostat (2 ns). During the simula-
tion, 1000 structures were saved to the trajectory. The MD 
simulation trajectory was analyzed using the simulation 
interaction diagram in Desmond, and the polyphenols are 
graded for their best binding, and stable root mean square 
deviation (RMSDs).

In vitro cytotoxicity and efficacy study

The in vitro cytotoxicity, the efficacy of EGCG and QUR 
were analysed using primary buccal mucosal fibroblasts 
cells.

Buccal mucosal fibroblast culture

Human buccal mucosal samples were collected after hav-
ing informed consent from healthy volunteers according 
to the approved protocol by the Institutional Ethical Com-
mittee (IEC), Kasturba Medical College, MAHE, Manipal 
(#285/2021). Briefly, 4 mm biopsy specimen from third 
molar extraction site was taken from healthy volunteers 
(normal subjects with no habits of smoking and betel quid 
chewing of age between 18 and 32 years) using a biopsy 
punch and transported into a sterile medium containing 1% 

penicillin–streptomycin (Pen–Strep) solution (10,000 units/
mL of penicillin and 10,000 µg/mL of streptomycin).

Primary tissue culture

The collected human buccal mucosal samples were washed 
three times with DPBS containing 1% PenStrep. Further, 
tissue samples were minced into small pieces using a sterile 
blade and placed on the tissue culture plate in a medium 
containing DMEM-Lg, 10% FBS, 1% glutaMAX and 0.5% 
PenStrep. Tissue culture plates were then incubated at 37 °C 
under 95% O2 and 5% CO2 air atmosphere (ESCO CelCul-
ture CO2 Bioincubator, USA). The tissue culture plates 
were screened under an inverted microscope (Thermo Inv-
itrogen EVOS M5000 Fluorescence inverted microscope, 
USA), and a culture medium was added every alternative 
day until explant monolayer cultures were 70 to 80% con-
fluent. The fibroblasts were passaged using trypsin–EDTA 
and expanded in T75 flasks. Fibroblasts cryopreserved at 
passage 2 were used for all experiments (Adtani et al. 2018; 
Banerjee et al. 2021).

In vitro cytotoxicity studies

The effect of EGCG and QUR on viability and proliferation 
of primary buccal mucosal fibroblasts cells were examined 
using the 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyltetra-
zolium bromide (MTT) colorimetric assay. Primary buc-
cal mucosal fibroblast cells (10,000 cells per well) were 
seeded into each well of 96-well plate (TPP® Zellkultur 
and Labortechnologie, Switzerland) followed by incubation 
at 37 °C for 24 h in 5% CO2 atmosphere to allow cells to 
attach or adhere to the bottom of the well plate. The variable 
concentrations of EGCG and QUR (10, 20, 40, 80, 160 and 
320 µM) were prepared in 100 µL of culture medium, added 
to their respective wells as per the groups, and incubated at 
37 °C for 48 h in 5% CO2 atmosphere. After incubation, the 
medium was aspirated, and the cells were washed with PBS. 
Each well in the plate was incubated with 100 µL of MTT 
solution (5 mg/mL concentration) for 4 h at 37 °C in 5% CO2 
atmosphere. After 4 h, the medium containing MTT solution 
was aspirated, and DMSO was added to each well to dissolve 
formazan crystals. The cell viability was analyzed by exam-
ining the absorbance at 570 nm and 630 nm using an ELISA 
plate reader (BioTek Epoch 2 Microplate Spectrophotom-
eter, Agilent, India). All the experiments were performed in 
triplicates (Kamiloglu et al. 2020). The % cell viability was 
calculated using the following formula.

% Cell viability = (Mean OD value of test sample

∕Mean OD value of control sample) ∗ 100.
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In vitro efficacy study

The in vitro efficacy of EGCG and QUR was analysed using 
primary buccal mucosal fibroblast cells. The pure EGCG 
and QUR were evaluated for mRNA expression of TGF-β1, 
COL1A2 and COL3A1 which are overexpressed in the OSF. 
The fibroblasts were seeded in the 12 well plates and 48 well 
plates and incubated at 37 °C for 24 h in 5% CO2 atmos-
phere. The arecoline hydrobromide solution (25 µg/mL) was 
supplemented in a culture medium for 48 h to induce fibro-
sis (Adtani et al. 2017, 2018). After confirmation of OSF 
induction, cells were treated with pure EGCG (10 µM) and 
QUR (10 µM) for 24 h and evaluated for mRNA expression 
of TGF-β1, COL1A2 and COL3A1 and stained for collagen 
deposition (Hsieh et al. 2017, 2018).

RNA isolation using RNAiso Plus

The media was removed from the plate, and cells were 
washed with ice-cold PBS. The RNAiso Plus reagent was 
used for cells homogenization, and cells were collected into 
centrifuge tubes by scrapping the plate using cell scrapper. 
Chloroform (molecular biology grade) was added to the 
above microcentrifuge tube containing cell suspension and 
properly mixed by vortexing vigorously. The samples were 
kept for 5 min at room temperature and then centrifuged 
at 12,000 g and 4℃ for 15 min. After centrifugation, the 
upper layer was separated and collected in another labelled 
microcentrifuge tube, followed by addition of isopropanol 
and mixed properly by vortexing vigorously. The vortexed 
samples were kept at room temperature for 10 min. and cen-
trifuged at 12,000 g for 10 min at 4℃. The obtained RNA 
pellet was washed with 75% v/v ethanol by centrifugation 
(Sigma cooling centrifuge) at 4℃, and 7500 g for 5 min 
and the same procedure was repeated three times to wash 
the RNA pellet. The pellet was air-dried and dissolved in 
20 µL of DEPC-treated water. The concentration of RNA 
isolated was measured using Biospectrometer (Eppendorf 
AG, Germany).

Complimentary DNA (cDNA) synthesis

The RNA was converted to cDNA by using Prime Script 
RT reagent K Perfect (DSS Takara Bio India Pvt. Ltd., New 
Delhi.) as per the manufacturer’s recommended protocol. 
The master mix was prepared by mixing 5 × PrimeScript 
buffer, PrimeScript RT enzyme mix I, oligo dT Primer 
(50 µM), random hexamer (100 µM), RNAase-free dH2O 
and total RNA (equivalent to 200 ng of RNA) to get total 
20 µL reaction mixture. All the steps followed in dark and 
under cold conditions. While adding aliquots of the above-
prepared mixture into a microcentrifuge tube, followed by 

the addition of RNA samples. The reaction mixture was 
incubated for three different duration and temperature con-
ditions, first at 37 °C for 60 min for reverse transcription, 
second at 85 °C for 5 s for inactivation of reverse tran-
scriptase with heat treatment, and last at 4 °C using Veriti 96 
wells Thermal Cycler (Applied Biosystems, Thermo Fisher 
Scientific).

Real‑time polymerase chain reaction (RT‑PCR)

For performing the RT-PCR, the mixture was prepared 
using TB Green Premix Ex Taq II (2X), PCR forward primer 
(10 µM), PCR reverse primer (10 µM), cDNA solution and 
sterile purified water to get the 20 µL of the reaction mix-
ture. The prepared samples were mixed homogeneously, 
and RT-PCR was performed in three steps. The first step 
includes initial denaturation for 30 s at 95 °C, followed by 
the second step, which includes conditioning of samples for 
5 s and 34 s at 95 °C and 60 °C, respectively. The final 
steps involve dissociation by conditioning samples at three 
different conditions, 95 °C, 60 °C and 95 °C for 15 s, 60 s, 
and 15 s, respectively (QuantStudio™, Applied Biosystems, 
Thermo Fisher Scientific) (Adtani et al. 2018). The details of 
nucleotide sequences used in the study are given in Table 1.

Masson trichrome staining

After treatment duration, the Masson trichrome staining 
was performed on the cells using standardized protocol 
by Lillehei Heart Institute, University of Minnesota, USA 
(Adtani et al. 2018). Briefly, the media was aspirated from 
each well, and the cells were washed with DPBS. The cells 
were fixed in 4% paraformaldehyde at room temperature for 
20 min. The fixed cells were washed with distilled water 
for 1 min. The Weigert’s hematoxylin working solution 
(0.2 mL) was added to each well and kept the plate at room 

Table 1   Details of nucleotide sequences used in the study

TGF-β1 Transforming growth factor beta 1, COL1A2 Collagen type 
1A2, COL3A1 Collagen type 3A1, 18S house-keeping gene

Gene Primer Sequence (5′ → 3’)

TGF-β1 Forward ACA​GCA​GGG​ATA​ACA​CAC​
Reverse GCA​ATA​GTT​GGT​GTC​CAG​

COL1A2 Forward GGA​ACT​CCA​GGT​CAA​ACA​
Reverse ACC​CAC​ACT​TCC​ATC​ACT​

COL3A1 Forward ACT​TAG​AGG​TGG​AGC​TGG​T
Reverse TCC​AAG​ACC​TCC​TCC​TTT​C

18S Forward GTA​ACC​CGT​TGA​ACC​CCA​TT
Reverse CCA​TCC​AAT​CGG​TAG​TAG​CG
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temperature for 10 min. Further, the solution was aspirated, 
and the cells were rinsed with distilled water for 10 min. 
Biebrich scarlet-acid fuchsin solution (0.2 mL) was added 
to the cells and after 1 min, plate was washed quickly with 
distilled water. Further, a phosphomolybdic acid–phospho-
tungstic acid solution was added and incubated the plates at 
room temperature for 30 min. After aspiration of the solu-
tion, aniline blue solution (0.2 mL) was added to the plate 
and incubated at room temperature for 10 min. The plate 
was washed quickly with distilled water after aspirating the 
solution. The cells were treated with 1% v/v acetic acid solu-
tion for 4 min. Cells were then washed with 95% v/v alcohol 
followed by 100% v/v alcohol for 1 min, twice. The stained 
cells were observed under CKX53 microscope (OLYMPUS 
Medical Systems India Pvt. Ltd.).

In vivo efficacy studies

Animals

The experimental protocol for in vivo efficacy and safety 
studies was approved by the Institutional Animal Ethical 
Committee (IAEC), Kasturba Medical College, MAHE, 
Manipal (#IAEC/KMC/112/2018). The studies were 
conducted as per the Committee for the Purpose of Control 
and Supervision of Experiments on Animals (CPCSEA) 
guidelines. The studies were performed in two months 
old male Sprague–Dawley rats weighing 200–250 g. The 
rats were obtained from the Central Animal Research 
Facilities, MAHE, Manipal. Three rats were housed per 
cage made up of propylene with free access to water and 
food. The temperature and relative humidity conditions were 
maintained at 25 ± 1ºC and 45–55% relative humidity with 
a 12 h light/dark cycle.

OSF induction and treatment

Sub-buccal administration of areca nut extract (ANE, 
100 µL, 20 mg/mL) was given at the left buccal mucosa of 
rats on an alternate day for 60 days (Chiang et al. 2020). The 
control group of rats (n = 6) did not received ANE, instead 
water for injection was applied topically thrice a day. The 
disease control group (n = 6) received sub-buccal ANE 
(100 µL, 20 mg/mL) along with the buccal application of 
water for injection thrice a day. The third set of rats (n = 6) 
received sub-buccal ANE (100 µL, 20 mg/mL) along with 
once-a-week standard treatment betamethasone injection 
(BTM inj.). The fourth set of rats (n = 6) received sub-buccal 
ANE (100 µL, 20 mg/mL) along with thrice a day topical 
application of EGCG-loaded hydrogel (81.81 mg/kg). Half 
an hour after the application of formulation or BTM inj, rats 
were restricted from eating food and drinking water to avoid 

swallowing the formulation and to get the local mucoad-
hesive action of formulations on the buccal mucosa. The 
treatment procedure was followed for 90 days to assess the 
efficacy of the EGCG-loaded hydrogel (El-feky and Zayed 
2019), and mucosal samples were collected from different 
groups of rats at the end of 90 days of treatment. During the 
treatment period, the rats were analysed for body weight 
(using a digital weighing balance) and mouth opening (using 
a digital Vernier caliper) once a week. After 90 days of treat-
ment, the rats were killed, and buccal mucosa was harvested, 
which was used for histopathological studies by hematoxylin 
and eosin (H and E) and Masson trichrome method (Shekat-
kar et al. 2022). The concentration of collagen type-1, and 
TGF-β1, in the collected tissue samples, was estimated by 
ELISA kit (Maxome Labsciences, India, and Elabscience, 
India). The oxidative stress markers such as nitric oxide 
(NO), superoxide dismutase (SOD), catalase (CAT), thio-
barbituric acid reactive substance (TBARS), 2,2-diphenyl-
1-picryl-hydrazyl-hydrate (DPPH), glutathione activity and 
ferric reducing antioxidant power (FRAP) were analysed in 
tissue samples by standard methods.

Statistical analysis

All experimental studies were performed in triplicates, 
and the results were represented as mean and standard 
deviation. GraphPad Prism 8.0.2 was used for performing 
the statistical analysis. The results were analyzed accord-
ing to the one-way ANOVA and considered significant if 
p < 0.05.

Results

Protein preparation and binding site identification

The SiteMap identified the ligand-binding pockets on the 
selected target protein, and based on the pocket environ-
ment analysis, the site-score and D-score were calculated 
for each pocket. The site-score is a measure of a particu-
lar site being the ligand-binding site, and the D-score 
indicates the druggability of a particular pocket (Halgren 
2007, 2009). The site-score value of more than 1.0, implies 
a high probability that it could be a ligand-binding site. 
If the score is between 0.7 and 1.0, it is a partial ligand-
binding site; if the score is less than 0.7, it is a non-ligand-
binding site. A D-score of more than 1.0 indicates that the 
pocket is a druggable binding site; if it is between 0.7 and 
1.0, it is a partially druggable site, and if the score is less 
than 0.7, it is a non-druggable site. The LOX protein was 
found to have three binding pockets with a site-score of 
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0.981, 0.975 and 1.040, while the D score for the same was 
1.004, 0.945 and 1.060, respectively.

Molecular docking studies

The ligand-binding site was unknown for LOX (PDB ID: 
5ZE3) protein (Zhang et al. 2018). The SiteMap analy-
sis identified three druggable ligand sites, site-1, site-2 
and site-3. The polyphenols were docked on all three sites 
identified. The ligands were analyzed for intermolecular 
interaction with the protein individually at all the binding 
sites of LOX and TGF-β1. Among all polyphenols, the 
EGCG exhibited the highest number of combinations of 
polar and non-polar type of intermolecular interactions 
at all the binding sites of LOX and TGF-β1. The interac-
tion pattern of all the polyphenols with LOX and TGF-β1 

proteins is listed in Tables 2 and 3, respectively. Based on 
the interaction pattern observed across all the binding sites 
during molecular docking, the order of binding affinity for 
polyphenols towards the LOX and TGF-β1 protein is EGC
G > QUR > RSV > CUR > MAT > LYP. EGCG and QUR 
ranked first and second for all the protein targets exhibit-
ing higher binding interactions, whereas MAT and LYP 
ranked last. To further confirm the binding stability with 
the protein at a particular binding site, the four top-ranked 
polyphenols, EGCG, QUR, RSV and CUR, were subjected 
to the MD simulation for 100 ns.

MD simulations

In the case of LOX, there were three binding sites identi-
fied in LOX, and all the polyphenols, namely, EGCG, QUR, 
RSV and CUR complexes with LOX at site-1, site-2, and 

Table 2   Intermolecular interaction pattern of selected polyphenols on LOX protein

EGCG​ epigallocatechin 3-gallate, QUR quercetin, CUR​ curcumin, RSV resveratrol, MAT matrine, LYP lycopene, LOX lysyl oxidase, HB 
H-bonds, HP hydrophobic interaction, LYS lysine, ASP aspartic acid, ASN asparagine, ILE isoleucine, VAL valine, SER serine, HIS histidine, 
GLY glycine, TYR​ tyrosine, ALA alanine, LEU leucine, CYS cysteine, MET methionine, TRP tryptophan, THR threonine, ASN asparagine, ARG​ 
arginine, GLU glutamic acid

Proteins LOX site-1 LOX site-2 LOX site-3

Ligands HB HP π–π stacking HB HP π–π stacking HB HP π–π stacking

EGCG​ GLY330
GLY331 

ALA332
GLY483
SER512
SER723
SER726

ILE334
MET474
PHE484
TYR725

ARG478 ILE334 
GLU336 
ARG423

CYS424
THR426
GLY483

TYR333 
MET429

LYS373 GLU346 
ILE388

SER411
GLU555
ILE748
SER751

– HIP747

QUR GLY330 
GLY331

ARG478
SER512
ASP724

ARG329
VAL471
MET474 

TYR725

– GLU336 
CYS424 
LEU431

GLN479

TYR333
ILE334 

LYS373

– ARG329 
ARG338 
GLU340 
ILE748

ILE385
VAL551 

ILE748

–

CUR​ GLY330 
ARG478 
SER512

PRO716

TYR72 
MET474 
VAL713

PHE718

– ILE334 
ARG478 
GLN479

TYR333 – ARG338 
ARG339 
GLU340 
ILE748

ILE385 –

RSV GLY330 
TYR333 
GLY335

GLU336 
ASP724 
TYR725

ARG329
ARG478

– GLN479 ILE334 
ALA428

MET429

– GLU340 
GLU346

ALA554
GLU555

ILE385 
PRO387

–

MAT ARG478 
SER723

LEU328 
GLY331

ALA332 
MET474 
PHE484

– THR426
ARG478 

GLN479

PRO427 
ALA428 
MET429

– GLU555 
SER751

TRP347
PRO387 

ALA554
ILE748

–

LYP ARG329
SER723

GLY331 
MET474 
TYR725

– ARG478 
GLN479

PRO427
MET429
ILE334

– ARG329 
GLU340 
ASN727

TRP347 
PRO387 
ALA554

ILE748

–
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site-3, were subjected to 100 ns MD simulation. The initial 
20 ns were omitted by considering equilibration simulation 
for all the MD simulation runs. Except for EGCG and CUR, 
the RMSD fluctuations observed for the polyphenols were 
higher than 2 Å at the binding site-1. At binding site-2, the 
RMSD fluctuations were above 2 Å for all the polyphenols. 
EGCG exhibited higher RMSD fluctuations at the last phase 
of 70–100 ns simulation, whereas QUR exhibited higher 
fluctuations between 20 and 35 ns and the last phase of 
80–100 ns simulation. At binding site-3, all the polyphe-
nols exhibited a stable binding where the RMSD fluctuations 
remained at 2 Å. Figure 1 depicts the RMSD plot for the 
protein backbone and all the polyphenols and Fig. 2 illus-
trates the protein–ligand contacts between LOX protein and 
different ligands. The intermolecular interactions observed 
between the ligands and the different binding sites of LOX 
protein are listed in Table 4.

EGCG, QUR, RSV, CUR complexes with TGF-β1 pro-
tein binding site were subjected to 100 ns MD simulation. 
The initial 20 ns simulation was omitted by considering the 
equilibration simulation for all the MD simulation runs. 
At TGF-β1 binding site, all the polyphenols under study 
exhibited a stable binding whereas the RMSD fluctuations 
remained within 2 Å. Figure 3 depicts the RMSD plot for 
the protein backbone and all the polyphenols, and Fig. 4 
depicts the protein–ligand contacts between TGF-β1 protein 
and different ligands. Overall, considering TGF-β1 binding 
site, EGCG and RSV exhibited a stable binding compared 

to the polyphenols under study. The interactions observed in 
the trajectory frames generated during MD simulation were 
similar to those observed during molecular docking. The 
simulation interaction diagram analysis for TGF-β1 protein 
is shown in Table 5.

The polyphenols were scored based on binding interac-
tions and binding stability with the target proteins based 
on the MD simulation studies. From the results, it was 
observed that all the polyphenols showed stable interac-
tions over TGF-β1. In the case of LOX protein, EGCG 
interacted to a greater extent with all sites, while QUR, 
CUR and RSV exhibited stable interactions or binding 
with only site-3 as compared to site-1 and site-2. Based 
on these interactions, the overall scoring of the poly-
phenols was carried out by considering the binding of a 
polyphenol at the individual binding sites of each target 
protein. EGCG showed a higher number of interactions 
(4 times, 4A) as compared to the rest of the polyphenols, 
and therefore it was given the first rank, QUR, CUR, and 
RSV showed an equal number of excellent interactions (2 
times, 2A), but QUR showed good interactions (2 times, 
2B) as compared to CUR and RSV, thus QUR was ranked 
second and at last RSV and CUR showed equal better and 
bad interactions (1 times each, 1C and 1D) therefore they 
were ranked third and fourth in the list. The scoring of 
the selected polyphenols towards the binding site of each 
of the proteins is given in Table 6. The following order 
for the stability of polyphenols (ligands) on the selected 

Table 3   Intermolecular 
interaction pattern of selected 
polyphenols on TGF-β1 protein

EGCG​ epigallocatechin 3-gallate, QUR quercetin, CUR​ curcumin, RSV resveratrol, MAT matrine, LYP 
lycopene, LOX lysyl oxidase, HB H-bonds, HP hydrophobic interaction, LYS lysine, ASP aspartic acid, ASN 
asparagine, ILE isoleucine, VAL valine, SER serine, HIS histidine, GLY glycine, TYR​ tyrosine, ALA alanine, 
LEU leucine, CYS cysteine, MET methionine, TRP tryptophan, THR threonine, ASN asparagine, ARG​ argi-
nine, GLU glutamic acid

Ligands HB HP π–π stacking

EGCG​ LYS232
SER280
ASP281
HIS283 ASP290
LYS335 ASN338 ASP351

ILE211
VAL219 LEU260 LEU340

_

QUR GLU245 TYR249
ASP281
HIS283
ASP290
ASP351

ILE211 ALA230
LEU260 LEU340

_

CUR​ SER80
GLU245 HIS283
ASP290

ILE211
VAL219 LEU260 TYR282

_

RSV GLU245 TYR249 SER280 HIS283
ASP290 ASP351

ILE211 VAL219 LEU260 LEU340 _

MAT SER287
ASP290 LYS337

ILE211 VAL219
ALA230
GLY286 LEU340

_

LYP TYR282
GLU284 ASP290 ARG294 LYS337

ILE211 ALA230 LEU278
PHE289

_
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proteins was observed: EGCG > QUR > RSV > CUR. The 
order of interactions indicates that EGCG demonstrated 
higher structural stability of the complex and the binding 
mode stability with all the selected proteins.

In vitro cell line studies

In vitro cytotoxicity studies

The primary buccal mucosal fibroblasts cells were success-
fully extracted from the buccal tissue and used for analy-
sis of EGCG and QUR efficacy on the cells. The effect of 
EGCG and QUR on cell viability of primary buccal mucosal 

fibroblast cells was evaluated using MTT colorimetric assay 
which suggested that EGCG and QUR at 10 µM concen-
tration did not induce cytotoxicity in the cells whereas at 
320 µM decreased cell viability (57.25 and 1.55% cell viabil-
ity, respectively for EGCG and QUR). The IC50 values for 
EGCG and QUR was calculated to 342.3 and 109.1 µM, 
respectively. Overall, EGCG was found to be safer as com-
pared to QUR. Based on this data, the safer concentration 
10 µM was considered for further studies, including in vitro 
efficacy and Masson's trichrome staining studies. There was 
no statistically significant difference observed when different 
concentration groups were compared. The results of in vitro 
cytotoxicity at different concentrations of EGCG and QUR 
is shown in Fig. 5.

Fig. 1   RMSD observed for the ligand (red) and the LOX protein backbone (green) during the 100 ns MD simulation. *EGCG​—epigallocatechin 
3-gallate, QUR—quercetin, CUR​—curcumin, RSV—resveratrol, MAT—matrine, LYP—lycopene, LOX—lysyl oxidase
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Fig. 2   Protein–ligand contacts between LOX protein and ligands. EGCG—epigallocatechin 3-gallate, QUR—quercetin, CUR—curcumin, 
RSV—resveratrol, MAT—matrine, LYP—lycopene, LOX—lysyl oxidase
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Masson’s trichrome staining

Masson's trichrome staining was performed to analyze the 
qualitative effect of EGCG and QUR treatment on the col-
lagen deposition using primary buccal mucosal fibroblast 
cells. The qualitative effect of post-treatment with EGCG 
and QUR (10 µM) was evaluated on the pre-treated fibro-
blast cells with arecoline hydrobromide (25 µg/mL). The 
control group (G1) stained faintly for collagen deposition, 
while arecoline-treated group (G2) showed stronger stain-
ing due to higher collagen deposition. In comparison to 
the arecoline-treated group (G2), EGCG (G3)- and QUR 
(G4)-treated groups showed better improvement in col-
lagen reduction by showing faint staining for collagen. 
The Masson's trichrome staining for comparing collagen 

production qualitatively between different groups is shown 
in Fig. 6.

In vitro efficacy studies

The effect of EGCG and QUR on the arecoline-induced 
OSF in vitro model was evaluated by the mRNA expres-
sion of TGF-β1, COL1A2 and COL3A1 in primary buc-
cal mucosal fibroblast. Based on the literature, areco-
line hydrobromide at 25 µg/mL was used (Adtani et al. 
2018). After confirmation of fibrosis induction by 48 h, 
the cells were treated with 10 µM of EGCG and QUR 
for 24 h and after required duration, the mRNA expres-
sion of TGF-β1, COL1A2 and COL3A1 was evaluated. 
The mRNA expression levels of TGF-β1, COL1A2 and 
COL3A1 between different groups is shown in Fig. 7. The 

Table 4   Simulation interaction diagram analysis for LOX protein

EGCG​ epigallocatechin 3-gallate, QUR quercetin, CUR​ curcumin, RSV resveratrol, Mat matrine, LYP  Lycopene, LOX lysyl oxidase, HB 
H-bonds, HP hydrophobic interaction, P–L protein–ligand, RMSD root mean square deviation, LYS lysine, ASP aspartic acid, ASN asparagine, 
ILE isoleucine, VAL valine, SER  serine, HIS histidine, GLY glycine, TYR​ tyrosine, ALA alanine, LEU leucine, CYS cysteine, MET methionine, 
TRP tryptophan, THR threonine, ASN asparagine, ARG​ arginine, GLU glutamic acid

Ligand protein complex P–L RMSD P–L Contacts (%) Ranking

HB HP WB

EGCG LOX site-1 Stable 80.9 (ALA332)
50 (ARG478)
40 (GLY483)

30 (ILE334)
68.9 (PHE484)
80.8 (TYR725)

40 (GLY330)
30 (GLY331)
40 (SER512)
30 (SER723)
30 (SER726)

A

EGCG LOX site-2 Stable 94.6 (ILE334) 198.2 (GLU336)
40 (ARG423)
90 (CYS424)
68.9 (GLY483)

125.3 (TYR333)
84.2 (LYS373)
30 (MET429)

40 (ILE334)
50 (THR426)

A

EGCG LOX site-3 Stable 196.2 (GLU346)
40 (GLU555)
40 (SER751)
40 (ILE748)

50 (HIS747) 40 (ILE388) 40 (SER411) A

QUR LOX site-1 Stable 45 (GLY330)
96 (ASP724)

30 (TYR725) 55 (GLY330) B

QUR LOX site-2 Stable 68.8 (CYS424) 68 (LEU431) 68 (TYR333)
30 (ILE334)

30 (GLN479) B

QUR LOX site-3 Stable 68.1 (GLU340) 94.7 (ILE748) 67.5 (ILE385) 65.4 (ARG329)
45 (ARG338)

A

CUR LOX site-1 Stable 55 (PRO716) 66.6 (PHE718)
40 (VAL713)

40 (SER512) C

CUR LOX site-2 Unstable 30 (ILE334)
35 (GLN479)

50 (TYR333) - D

CUR LOX site-3 Stable 68.1 (GLU340) 94.7 (ILE748) 67.5 (ILE385) 65.4 (ARG329)
35 (ARG338)

A

RSV LOX site-1 Stable 35 (ASP 724) 30 (TYR725) 50 (ARG329) 50 (GLY330)
50 (TYR333)
40 (GLU336)

C

RSV LOX site-2 Unstable – 30 (ILE334) - D
RSV LOX site-3 Stable 73.9 (GLU340) 95.9 (GLU346) 

92.3 (GLU555)
40 (ILE385)
50 (PRO387)

50 (ALA554) A
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Fig. 3   RMSD deviations 
observed for the ligand (red) 
and the TGF-β1 proteins back-
bone (green) during the 100 ns 
MD simulation; EGCG—epi-
gallocatechin 3-gallate, QUR—
quercetin, CUR—curcumin, 
RSV—resveratrol, TGF-β1—
transforming growth factor-β1

Fig. 4   Protein–ligand contacts 
between TGF-β1 protein and 
ligands; EGCG—Epigallocate-
chin 3-gallate, QUR—quercetin, 
CUR—curcumin, RSV—res-
veratrol, TGF-β1—transforming 
growth factor- β1
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Table 5   Simulation interaction 
diagram analysis for TGF-β1 
protein

EGCG​ epigallocatechin 3-gallate, QUR quercetin, CUR​ curcumin, RSV resveratrol, MAT matrine, LYP 
lycopene, TIMP tissue inhibitor of the matrix metalloproteinase, HB H-bonds, HP hydrophobic interac-
tion, P–L protein–Ligand, RMSD root mean square deviation. LYS lysine, ASP aspartic acid, ASN aspara-
gine, ILE isoleucine, VAL valine, SER serine, HIS histidine, GLY glycine, TYR tyrosine, ALA alanine, LEU 
leucine, CYS cysteine, MET methionine, TRP tryptophan, THR threonine, ASN asparagine, ARG​ arginine, 
GLU  glutamic acid

Ligand protein complex P–L RMSD P-L Contacts (%) Ranking

HB HP WB

EGCG TGF-β1 Stable 86.3 (LYS232)
198.3 (ASP290)
40 (LYS335)
94.7 (ASN338)

50 (ILE211)
30 (VAL219)

87.5 (SER280)
91.3 (ASP281)
50 (HIS283)
40 (ASP351)

A

QUR TGF-β1 Stable 170.7 (GLU245)
40 (TYR249)
99.8 (ASP281)
101.8 (HIS283)
71.2 (ASP351)

40 (ILE211)
60.6 (ALA230) 

67.2 (LEU260)
50 (LEU340)

90.7 (ASP290) A

CUR TGF-β1 Stable 99.3 (GLU245)
65.3 (SER280)
100.4 (HIS283)

30 (ILE211)
30 (VAL219)
55 (LEU260)
66.1 (TYR282)

40 (ASP290) A

RSV TGF-β1 Stable 95.1 (GLU245)
82.2 (TYR249)
88.4 (SER280)
2.8 (ASP351)

30 (ILE211)
55 (LEU260)
40 (LEU340)

69.3 (HIS283) 
82.9 
(ASP290)

A

mRNA expression of TGF-β1, COL1A2 and COL3A1 
significantly (p < 0.05) increased in the arecoline-treated 
group (G2) compared to the control (G1), confirming the 
induction of fibrosis. Treatment with 10 µM of EGCG 
(G3) significantly (p < 0.05) reduced mRNA expression of 
TGF-β1, COL1A2 and COL3A1 compared to disease con-
trol (arecoline treated group, G2). There was significant 
(p < 0.05) decrease in mRNA expression of COL1A2 and 
COL3A1 in QUR treated group (G4) compared to the dis-
ease control group (arecoline treated, G2). EGCG showed 
better improvement in disease conditions by significantly 
reducing the mRNA expression of TGF-β1, COL1A2 and 
COL3A1. The earlier research work performed by Hsieh 
and their group suggested that EGCG exhibited a promis-
ing role in inhibiting TGF-β1-induced collagen synthesis 
by suppressing early growth response-1 (EGR-1) when 
evaluated on human buccal mucosal fibroblasts.

In vivo efficacy studies

The efficacy of EGCG was studied in ANE induced rat 
OSF model. The mortality was not observed in rats dur-
ing the OSF induction as well as throughout the treatment 
period. The changes observed in rat weight (g) and mouth 
opening (cm), which were evaluated every week during 
treatment, are shown graphically in Fig. 8. EGCG hydrogel 
treatment did not produce a major difference in the weight 

of rats, and mouth opening compared to the control rats. 
EGCG hydrogel treatment showed better improvement 
in the mouth opening compared to BTM inj. It was also 
notices that there were local infections in the oral cavi-
ties of BTM inj. treated rats. Induction of OSF in the rats 
required two months which was confirmed by a decrease 
in mouth opening and increase in TGF-β1 and collagen 
type-1 in the disease control rats. Figure 9 represents the 
TGF-β1 and collagen-1 concentrations in oral submucosal 
tissue upon treatment with BTM inj. and EGCG hydrogel. 
There was significant increase in TGF-β1, and collagen 
type-1 in the disease control group compared to the normal 
control group. The TGF-β1 and collagen type-1 in OSF-
induced rats were significantly lower in EGCG hydrogel 
and BTM inj., compared to the OSF induced rats. Both 
EGCG hydrogel and BTM inj. showed an almost equal 
reduction in overexpression of TGF- β1 and collagen 
type-1.

Figure 10 represents the antioxidant parameters in the 
oral submucosal tissues of rats. NO, TBARS, FRAP and 
glutathione were found to be higher in the disease control 
rats compared to the normal rats, while EGCG hydrogel and 
BTM inj. prevented this and did not produce any signifi-
cant changes compared to normal rats. The SOD, catalase. 
and %DPPH scavenging was found significantly decreased 
in the disease control rats compared with the normal con-
trol rats. There was a significant improvement in SOD and 
%DPPH upon treatment with EGCG hydrogel, while there 
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was no much difference observed in BTM inj. compared 
to disease control rats. There was significant protection in 
catalase upon BTM inj.; however, the protection was not 
significant by treatment with EGCG hydrogel compared to 
disease control group.

Figure 11 represents the histopathological evaluation 
by using hematoxylin and eosin (H and E) staining and 
Masson trichrome staining. The histology of control group 
showed 10–16 layers of thickness (183.83 ± 29.29 µm) 
stratified squamous keratinized epithelium with rete 
ridges. The connective tissue beneath the epithelium 
showed few blood vessels and muscle fibers. Whereas 
the disease control group showed 3–6-layered thick 
(44.66 ± 36.48 µm) ulcerative epithelium with the pres-
ence of scab which showed fibrin and cell debris, the large 
necrosed area in the dermis, granulomatous inflammation 
with giant cells, an abundance of chronic inflammatory 
cells like lymphocytes, congested blood vessels. The histo-
pathology from rats treated with BTM inj. showed atrophic 
epithelium with 3–6 layers thickness (67.51 ± 11.28 µm), 
the connective tissue beneath the epithelium showed dense 
infiltration of lymphocytes, muscle fibers, and mild fibro-
sis areas were seen. In the histology obtained from rats 
treated with EGCG has stratified squamous epithelium 
consisting of 3–6 cell layers thickness (76.02 ± 34.76 µm) 
with an atrophic region. The rete ridges in the epithelium 
was absent and, lymphocytic infiltrates, congested blood 
vessels, and many macrophages were seen in the dermis. 
Fibrosed areas were seen in the dermis. The histology of 

Table 6   Scoring of different polyphenols (ligands) based on simula-
tion interaction diagram

A = excellent, B = good, C = better and D = bad or no interactions

Proteins Ligands (Scoring)

EGCG​ QUR CUR​ RSV

LOX site-1 A B C C
LOX site-2 A B D D
LOX site-3 A A A A
TGF-β1 A A A A
Total scoring 4A 2A and 2B 2A, 1C and 1D 2A, 1C and 1D

Fig. 5   Cytotoxicity of EGCG and QUR on primary buccal mucosal 
fibroblasts. Values are Mean ± SD; Control: cells without treatment; 
EGCG: epigallocatechin 3-gallate treated; QUR: quercetin treated

Fig. 6   Masson's trichrome stain-
ing of primary buccal mucosal 
fibroblast. Comparison of col-
lagen production qualitatively 
between control (G1), disease 
control (arecoline treated, G2) 
and treatment with EGCG (G3) 
and QUR(G4); EGCG: epigal-
locatechin 3-gallate; QUR: 
Quercetin. All the images were 
captured at a magnification of 
100 μ (10X)
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rats in the disease control group showed the tight arrange-
ment of collagen fibres in buccal mucosal region while 
normal control group showed loosely arranged collagen 

fibres. The BTM inj. and EGCG hydrogel treated rats 
showed a tight arrangement of collagen fibres in buccal 
mucosa.

Fig. 7   mRNA expression of TGF-β1, COL1A2 and COL3A1 in pri-
mary buccal mucosal fibroblasts. Comparison between control (G1), 
disease control (arecoline treated, G2), treatment groups (EGCG 

treated group (G3) and QUR treated group (G4); *p < 0.05 compared 
to G1, #p < 0.05 compared to G2

Fig. 8   Evaluation of rat’s weight (g) and mouth opening (cm) at different time intervals (weekly), BTM Inj.—betamethasone injection

Fig. 9   TGF-β1 and collagen-1 
concentration in various animal 
groups. *p < 0.0001 compared 
to control group, #p < 0.0001 
compared to disease control 
group
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Discussion

The combination of in silico, in vitro and in vivo studies 
were performed for the selection of potential molecule and 
examination of its efficacy using primary buccal mucosal 
fibroblasts cells and ANE induces OSF rat model, respec-
tively. To explore the nature of polypharmacology by poly-
phenols, in silico tools were used, and the study revealed 
that these polyphenols could be able to tightly bind to mul-
tiple drug targets such as TGF-β1 and LOX. The docking 
scores and MD simulation studies revealed, EGCG, QUR, 
CUR, and RSV as the top polyphenols. Further, based on 
the amino acid interactions, binding nature and the visual 
observation of ligand–protein interactions, EGCG and QUR 
were shortlisted for in vitro studies.

The main objective of the testing the cytotoxicity of 
the EGCG and QUR was to know the safer concertation 
of the compounds used. In the preliminary in vitro studies, 
EGCG showed cytotoxicity at lower concentration and QUR 
required higher concentration to induce the cytotoxicity on 
cultured human primary buccal fibroblasts. The primary 
buccal mucosal fibroblasts were used to see the arecoline 
induced cytosolic changes such as collagen deposition as 
detected by Masson's trichrome stain. It is the principle 

marker for antifibrotic activity (Adtani et al. 2019). The 
photomicrograms taken clearly differentiated the normal 
and arecoline induced fibroblastic changes. Both EGCG 
and QUR have prevented these changes which is evident 
from the microscopic analysis. Further, EGCG significantly 
lowered TGF-β1, but, QUR could not lower it significantly. 
Hence, EGCG was selected for the in vivo studies. How-
ever, both EGCG and QUR had significantly lowered mRNA 
expression for COL1A2 and COL3A1.

The results were in according to the reported literature. 
Hsieh and group suggested that EGCG exhibited promis-
ing role in inhibiting TGF-β1 induced collagen synthesis 
by suppressing early growth response-1 (EGR-1) when 
evaluated on human buccal mucosal fibroblasts. They also 
investigated the pathways of TGF-β-induced EGR-1 expres-
sion in normal human fibroblasts and the effect of EGR-1 
inhibition on the expression of TGF-β1. The results showed 
that at a concentration of 10 µM, EGCG was capable of 
completely attenuating the production of collagen stimulated 
by TGF-β1-induced EGR-1 activation in fibroblasts (Hsieh 
et al. 2017). They concluded that Egr-1 may be one of the 
key mediators of TGF-β1 stimulated fibrosis in OSF which 
could be a novel target for the treatment of OSF. Hence, 
based on this evidence, EGCG could be used as a possible 

Fig. 10   Antioxidant assays for different animal groups. *p < 0.0001 compared to control group, #p < 0.0001 compared to disease control group
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agent for the prevention and treatment of OSF. Further, the 
same group revealed that EGCG was capable of inhibiting 
the activation of TGF-β1 and connective tissue growth factor 
(CTGF/CCN2) induced by thrombin in a dose-dependent 
manner (Liao et al. 2018). However, we have proved that 
the binding to TGF-β1 and LOX in in silico models and 
in vivo proof of concept in rat model of OSF been proved. 
EGCG was reported for its protect human gingival fibro-
blasts by its anti-inflammatory properties mainly inhibiting 
tumour necrosis factor (TNF-α) which is the main media-
tor of inflammation (Karami et al. 2021). Hence, our study 
creates new platform for showing the efficacy of developed 
EGCG formulation.

The EGCG hydrogel was screened in ANE induced rat 
model of OSF. The areca nut chewing is the cause for oxida-
tive stress and the low antioxidants stimulate the fibroblast 
to release pro-fibrotic factors to propagate in to OSF. The 
alkaloid arecoline present in areca nut enhances the collagen 

production and reduces its degradation as it activates the 
fibroblasts and leads to juxtaepithelial inflammatory reac-
tion and disturbs the antioxidant levels followed by OSF 
generation. The ANE-induced OSF in rats is mimicking 
the human pathogenesis, where most of the disease mark-
ers and oxidative stress were elevated. The main markers 
such as mouth opening test and body weight changes were 
almost similar to human OSF (Maria et al. 2016; Shekat-
kar et al. 2022). EGCG hydrogel showed an improvement 
in the antioxidant level compared to the OSF-induced rats, 
which was due to the ability of the EGCG hydrogel to sup-
press the oxidants or free radicals present and improve the 
antioxidant activity. It also showed improvement in disease 
condition by significant reduction in the concentration of 
TGF-β1 and collagen concentration. In addition, the prepa-
ration of mucoadhesive formulation helped in the retention 
of EGCG at the buccal mucosal membrane and provided 
longer duration of action (Tran and Tran 2021; Kumar et al. 

Fig. 11   Histopathology of 
buccal mucosa in ANE induced 
OSF rats. H&E and Masson 
trichrome staining; The OSF 
was induced in rats by sub-
buccal administration of ANE 
(100 µL, 20 mg/mL) at the left 
buccal mucosa of rats on an 
alternate day for 60 days. OSF: 
oral submucosa fibrosis; ANE: 
Areca nut extract
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2022). Even though both EGCG hydrogel and BTM inj. 
showed an equal improvement in disease condition, EGCG 
hydrogel can be considered as more potential strategy for 
the treatment of OSF condition as the topical formulation 
can be sufficient for treatment without any side effects as the 
formulation contain non-toxic and plant-based active moiety. 
The Ayurvedic formulations such as Erandabhrishta Hari-
taki and Pippalyadi Choorna are reported for traditional use 
in oral malignancies (Chakravarthy et al. 2020). Curcumin 
was recently tried in patient with favorable outputs (Rajbhoj 
et al. 2021). The standard treatment, BTM inj. reported side 
effects with higher chances of infection at the site of injec-
tion, which decreases the treatment efficiency (Srikanth et al. 
2017). Thus, EGCG hydrogel can be considered as safer 
and more effective in OSF rat model which can be further 
tested in human volunteers. The current study also assists 
in developing the novel treatment strategy for OSF therapy 
which can be tried clinically and fastens the recovery process 
of patient with reduced treatment duration.

Conclusion

In the present study, various polyphenols were screened 
for the potential use in OSF therapy. The combination of 
in silico, in vitro and in vivo studies can be the best plat-
form for selection of suitable polyphenol and examination 
of its efficacy and safety. EGCG and QUR showed higher 
affinity and stability towards the selected proteins such as 
TGF-β1 and LOX in in silico studies. Additionally, EGCG 
was effective and safer at higher concentration and helped 
in significant reduction mRNA expression level of TGF-β1, 
COL1A2 and COL3A1 in buccal fibroblast cells. Further the 
EGCG hydrogel had an ability and potential for reduction 
of TGF-β1 and collagen type-1 and mitigated the oxidative 
stress in OSF induced rat model. Based on these results, the 
polyphenol EGCG is a promising phytomolecule for OSF 
therapy which may improve the patient compliance.
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