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Abstract
Neurological symptoms are prevalent in both the acute and post-acute phases of coronavirus disease 2019 (COVID-19), and 
they are becoming a major concern for the prognosis of COVID-19 patients. Accumulation evidence has suggested that metal 
ion disorders occur in the central nervous system (CNS) of COVID-19 patients. Metal ions participate in the development, 
metabolism, redox and neurotransmitter transmission in the CNS and are tightly regulated by metal ion channels. COVID-19 
infection causes neurological metal disorders and metal ion channels abnormal switching, subsequently resulting in neuro-
inflammation, oxidative stress, excitotoxicity, neuronal cell death, and eventually eliciting a series of COVID-19-induced 
neurological symptoms. Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic 
targets for mitigating COVID-19-induced neurological symptoms. This review provides a summary for the latest advances 
in research related to the physiological and pathophysiological functions of metal ions and metal ion channels, as well as 
their role in COVID-19-induced neurological symptoms. In addition, currently available modulators of metal ions and their 
channels are also discussed. Collectively, the current work offers a few recommendations according to published reports and 
in-depth reflections to ameliorate COVID-19-induced neurological symptoms. Further studies need to focus on the crosstalk 
and interactions between different metal ions and their channels. Simultaneous pharmacological intervention of two or more 
metal signaling pathway disorders may provide clinical advantages in treating COVID-19-induced neurological symptoms.

Keywords  Metal ions · Metal ion channels · SARS-CoV-2 · COVID-19-induced neurological symptoms · 
Neuroinflammation

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) was identified for the first time in December 2019, 
which was responsible for the devastating infection of 2019 
coronavirus disease (COVID-19) pandemic (Zhu et  al. 
2020). Early studies have focused on the respiratory system 
of COVID-19 patients, whose pulmonary symptoms have 
been well described (Guan and Zhong 2020; Huang et al. 
2020). However, emerging evidence suggests that patients 
with COVID-19 have neurological symptoms and complica-
tions as well (Ellul et al. 2020; Helms et al. 2020; Jaywant 
et al. 2021; Méndez et al. 2022). Thus, understanding the 
mechanisms underlying COVID-19 neuropathology is criti-
cal for preventing neurological complications for COVID-19 
patients.

Metal ions are widely distributed in the brain and play a 
pivotal role in the central nervous system (CNS) and neu-
ronal function. It is well known that two types of metal 
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ions are present in human: essential ions (such as sodium, 
potassium, calcium, iron and zinc) and nonessential ions 
(such as aluminum). Metal ions are involved in the devel-
opment, metabolism, redox, and neurotransmitter deliv-
ery of the CNS with a strictly regulated metal absorption, 
efflux, distribution and storage (Black 1998; D'Ambrosi and 
Rossi 2015; Kauer and Gibson 2009; Masaldan et al. 2019; 
McDaid et al. 2020; Scheiber et al. 2014; Thirupathi and 
Chang 2019). In these processes, metal ions perform as the 
structural, catalytic, or regulatory ingredients of proteins 
including transcription factors, enzymes, transporter proteins 
and receptors. Because of their important functions, metal 
ions are enormously valuable to the brain. Lack of metals 
is associated with various degrees of damage to the CNS.

Although metals have physiological functions to the 
body, excessive amount of them are particularly neurotoxic 
to healthy nerve cells and tissues, which impairs nerve cell 
physiological activities and even causes cell death (Kawa-
bata 2022; Sun et al. 2022). However, various pathologi-
cal factors, such as SARS-CoV-2 infection and ischemia/
hypoxia, may lead to excessive intake, uncontrolled release 
and metabolic disorders in metals, which are responsible for 
the pathogenesis of neurological symptoms due to COVID-
19 infection and ischemic stroke (Alim et al. 2019; Almutairi 
et al. 2019; Danta 2020a; Pulido Perez et al. 2022; Vinceti 
et al. 2022). Therefore, metal homeostasis is important to 
neuro-homeostasis, which demands a precise balance among 
metal absorption, circulation, and storage.

Metal transport relies on various metal ion channels, 
which control the influx and efflux of metal ions. To 
date, diverse types of neurologically associated metal ion 

channels have been identified including glutamate recep-
tors, transient receptor potential (TRP) channels, iron 
transporter-related proteins and zinc transporters. Under 
physiological conditions, these channels keep a dynamic 
homeostasis to guarantee the functions of the CNS. Under 
pathological conditions (such as ischemia and hypoxia), 
transporter proteins are increased or decreased and become 
aberrantly activated or inactivated, causing metal overload 
or deficiency and affecting many cellular signaling. Gener-
ally, oxidative stress, neuroinflammation and excitotoxicity 
are well-established factors contributing to neurological 
disorders, and various studies have shown that abnormali-
ties in transporter proteins usually cause and exacerbate 
neurological disorders (Denechaud et al. 2022; Wang et al. 
2023; Zhang et al. 2022a). Considering the key roles of the 
metal ions and metal ion channels in neurological symp-
toms associated with COVID-19, big efforts are devoted to 
understand the regulatory mechanisms for transporter pro-
teins and their correlation with intracellular metal homeo-
stasis, especially to the downstream signaling pathways 
causing COVID-19-induced neurological symptoms. In 
this review, we summarized the latest studies regarding 
the metal ions, metal ion channels, and relevant patho-
genesis in COVID-19-induced neurological symptoms. In 
addition, the strategies in targeting metal ions and their 
transport proteins are also discussed. Maintenance in metal 
homeostasis may illuminate potential novel therapeutic 
targets for COVID-19-induced neurological symptoms 
(Fig. 1).

Fig. 1   Overview of this review article. In the case of SARS-CoV-2 
infection, metal ion disorders and their channels aberrations induced 
neuroinflammation, oxidative stress, excitotoxicity and neuronal cell 
death, ultimately leading to a series of severe neurological symptoms. 

Administration of metal ion modulators or their channel modulators 
restores the metal ion homeostasis, thereby ameliorating COVID-
19-induced neurological symptoms
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Role of the major metal ions in the central 
nervous system

Sodium (Na) and potassium (K)

The membrane translocation of metal ions is account-
able for excitability and bioelectricity in nerves, muscles 
and other cells. Neurons are excitable cells whose physi-
ological foundation is the transition between resting and 
action membrane potentials (Wicher et al. 2006). This 
transition is determined by the selective permeability 
of the plasma membrane to Na+ and K+ under different 
conditions (Khaliq and Raman 2006). In the condition 
of resting membrane potential, the plasma membrane is 
much more permeable to K+ than to Na+ in the excitable 
neurons, resulting in a resting membrane potential closer 
to the equilibrium potential of K+ (− 90 mV) than that of 
Na+ (+ 65 mV) (Wang et al. 1994). Normally, the activ-
ity of the transporter Na+/K+-ATPase (also known as 
the Na+ pump) is critical for sustaining this asymmetric 
membrane translocation of Na+ and K+ (Scuri et al. 2007). 
Upon cells excitation, the plasma membrane at the axon 
hillock depolarizes with the assistance of opened voltage-
gated Na+ channels. Gradually, Na+ returns to the cell, 
further depolarizing the membrane and eliciting an action 
potential in a positive feedback manner (Donnelly 2013). 
Once neurons are depolarized, Na+ channels are closed, 
accompanied by the opening of voltage-gated K+ channels, 
inducing repolarization (Chow and Leung 2020). As K+ 
flows out of the cell, the membrane potential declines and 
reverts to near resting potential. To achieve appropriate 
ion homeostasis, Na+/K+-ATPase performs a fundamental 
role in facilitating the efflux of three Na+ and the entry of 
two K+ into the cell by sacrificing the energy generated 
by the hydrolysis of one ATP molecule to provide energy 
for ion exchange and substance transport (Pivovarov et al. 
2018). Thus, the Na+/K+ gradient generated by Na+/K+-
ATPase is the basis for trafficking of other ions, substrates 
and neurotransmitters between the intra- and extracellular 
compartments (Hernández 1992).

Calcium (Ca)

Ca2+ is an indispensable divalent cation that functions 
as a second messenger in modulating neurodevelopment, 
synaptic transmission, neuronal excitability, and neuronal 
morphology in the CNS (Chaudhuri et al. 2021; Lin et al. 
2019). For instance, Ca2+ exerts a pivotal role in trigger-
ing long-term potentiation (LTP) and depression (LTD), 
as well as in synaptic information storage patterns that 
underlie memory formation and maintenance (Hell 2016; 

Neveu and Zucker 1996). Ca2+ is also able to activate 
protein kinase including calpain and calcium/calmodulin-
dependent protein kinase type II (CAMK II), to initiate 
downstream pathways (Coultrap et al. 2011; Tao et al. 
2021). The wide variety of Ca2+ functions in the brain is 
only available when the gradient of Ca2+ concentrations 
tightly conserved in the cells (Dixon et al. 2022; Golovina 
et al. 1996). The concentration of Ca2+ in the cytoplasm is 
at least 10,000-fold lower compared to extracellular com-
partments and some intracellular compartments such as 
the endoplasmic reticulum (ER) and mitochondrion. This 
huge concentration gap is governed by mechanisms involv-
ing calcium channels, pumps, binding proteins, and other 
metal ions such as magnesium, which is considered to be 
a calcium antagonist (Yamanaka et al. 2019).

Iron (Fe)

Iron, the most abundant essential element in humans, is 
widely spread in nearly all tissues and organs, such as the 
heart, liver, lungs, kidneys, spleen and brain. The absorp-
tion, circulation, storage, and regulation of iron cooper-
ates intensively to uphold human iron homeostasis. Iron is 
present in several forms: functional iron that forms hemo-
globin, myoglobin, enzymes, as well as functional proteins, 
and reserve iron in ferritin and hemosiderin (Thirupathi and 
Chang 2019). Being utilized by various key enzymes with 
its oxidation states and forming coordination bonds, iron is 
involved in the sustainment of normal physiological func-
tions as an indispensable co-factor for proteins concerned 
with oxygen transport, cellular respiration, energy produc-
tion, DNA synthesis and repair, as well as mitochondrial and 
immunological maintenance (Halcrow et al. 2021). Several 
studies have collectively confirmed that iron plays an impor-
tant role in brain health due to iron-dependent enzymes and 
proteins, such as monoamine oxidase, tryptophan hydroxy-
lase, and aldehyde oxidase, which are required for synapse 
development, myelination, and neurotransmitter transport 
(Bar-Am et al. 2015; Li et al. 2017; Specker et al. 2022). 
In addition, brain is energetically reliant on iron-dependent 
proteins associated with cellular respiration, as it consumes 
large amount of oxygen. Iron also exhibits strong redox 
activity and is frequently converted between divalent and 
trivalent states through reduction and oxidation by ferric 
reductase or Fenton reaction, respectively, to accommodate 
its absorption, transport and storage (Kapralov et al. 2020). 
For this reason, the distribution of iron in the brain is hetero-
geneous in time and space. The rate of iron accumulation in 
the brain varies during different stages of brain development 
and neurological disorders, which is coupled with oxidative 
stress, neuroinflammation, and cell death in the meantime 
(Feng et al. 2021b).
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Zinc (Zn)

Zinc is the second most abundant trace element after Fe in 
the brain and is localized in the hippocampus, amygdala, 
cerebral cortex, thalamus, and olfactory cortex. Zinc per-
forms a major role in DNA synthesis, brain development and 
neurotransmission (Sun et al. 2022). Growing evidence sug-
gests that aberrant zinc levels are involved in many devastat-
ing diseases. For example, zinc deficiency can lead to mental 
health problems, growth retardation and immune disorders, 
while excess zinc distorts lymphocytes state and inhibit cop-
per uptake (Chen et al. 2021; Ogawa et al. 2018; Park et al. 
2020). There are three main forms of zinc in humans: free 
zinc, vesicular zinc, and protein-bound zinc. Most preva-
lent zinc in the brain is free zinc or chelatable zinc (Maret 
2015, 2019). The chelatable zinc is mainly conserved in the 
presynaptic vesicles of specific excitatory glutamatergic 
neurons and is excreted into synaptic clefts with glutamate 
during neuronal excitation (Carrillo et al. 2020; Lavoie 
et al. 2011). Upon reaching the postsynaptic membrane, the 
released Zn2+ pairs with diverse receptors, such as iono-
tropic glutamate receptors, γ-amino butyric acid (GABA) 
receptors, glycine receptors, and P2-type purinergic recep-
tors, functioning as a second messenger in signal transduc-
tion, neurotransduction, and neurogeneration (Chuang and 
Reddy 2019; Kovács et al. 2018). Increasing evidence dem-
onstrates that Zn2+ in synaptic clefts moderates dendritic 
function in an activity-dependent manner via N-methyl-
D-aspartate receptors (NMDARs) (Krall et al. 2020). In 
parallel, Zn2+ regulates α-amino-3-hydroxy-5-methyl-4-
isoxazole-propionate receptor (AMPARs) with a negative 
feedback (Kalappa et al. 2015). It has also been reported that 
liberated Zn2+ diffuses to heterologous synapses for trans-
mission spatio-temporal neural information and regulation 
of synaptic plasticity (Tlili et al. 2011; Vogler et al. 2020). 
These data suggest that strictly controlled levels of zinc are 
critical in neurodevelopment and neurometabolism.

Copper (Cu)

Copper is the third most abundant trace element in the 
brain and it can be found in the thalamus, substantia nigra, 
striatum, and hippocampus. Copper is present in various 
redox enzymes such as cytochrome C oxidase (COX), Cu/
Zn superoxide dismutase (Cu, Zn-SOD1), lysyl oxidase, 
uricase, dopamine hydroxylase and tyrosinase (Borisov and 
Forte 2021; Robinett et al. 2019). Possessing redox capabil-
ity, copper facilitates the mitochondrial electron transport 
chain, neurotransmitter synthesis, myelination and clearance 
of reactive oxygen species (ROS) (Pezacki et al. 2022). The 
redox ability of copper is dependent on its capacity to oper-
ate as both electron “donor” and “acceptor”. Cuprous (Cu 
I) can redox into Cu II and Cu 0 through the single electron 

transfer charge-disproportionation between the “donor” and 
“acceptor” (Hatori and Lutsenko 2016; Liang et al. 2022a). 
Upon combining with proteins to form ceruloplasmin, Cu 
also converts Fe2+ to Fe3+, acting as a ferroxidase that 
contributes to Fe homeostasis (Hellman and Gitlin 2002). 
Another important function of copper is to serve as neuro-
transmitters (D'Ambrosi and Rossi 2015). Cu is also stored 
in presynaptic vesicles and released into synaptic clefts 
when a neuron is stimulated and subsequently connects to 
glutamate receptors and GABA receptors to modulate the 
neuronal excitability (D'Ambrosi and Rossi 2015; Tanaka 
and Kawahara 2017).

Selenium (Se)

Selenium, an essential trace element, is the active center 
of several selenium-dependent enzymes such as glutathione 
peroxidase (1, 2 and 4), iodothyronine deiodinases, methio-
nine-R-sulfoxide reductase, thioredoxin reductase, and 
selenoproteins (Alshammari et al. 2022). Therefore, sele-
nium plays an important role in scavenging ROS, managing 
immunity, inhibiting inflammation, ferroptosis and endo-
plasmic reticulum (ER) stress (Genchi et al. 2023). Selenium 
and selenium-containing proteins contribute to the human 
defense system as potent antioxidants and serve an important 
biological role in human health.

In a word, metal homeostasis is a dynamic process that 
each metal ion in the body is inextricably relevant and 
impactful to each other. The roles of metal ions and their 
transport channels in the CNS are summarized in Table 1.

Metal ion‑related pathogenesis

Neuroinflammation

Inflammation in the CNS, also termed neuroinflammation, is 
a vital segment of neurological pathology intended to repair 
brain injuries and restore brain homeostasis (Candelario-Jalil 
et al. 2022). However, excessive neuroinflammation inflicts 
destructive damage to the CNS (Hou et al. 2021). Mount-
ing evidence highlights that COVID-19 causes a range of 
neurological symptoms by inducing neuroinflammation 
(Fig. 2), and the pathogenesis of stroke is also closely associ-
ated with neuroinflammation (Anthony et al. 2022; Beckman 
et al. 2022). In general, neuroinflammation is induced by the 
release of damage associated molecular patterns (DAMPs) 
from injured or dead cells. Later, free DAMPs in the form of 
adenosine, heat shock proteins (HSPs), high mobility group 
box 1 (HMGB1), and interleukin-1α (IL-1α) are enrolled 
by associated immune cells that can induce various down-
stream signaling pathways (Liu et al. 2021; Villadiego et al. 
2018; Zhang et al. 2022b). A number of immune cells, such 
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as microglia, astrocytes, macrophages, and T lymphocytes, 
are activated during the release of DAMPs (Garofalo et al. 
2022). In parallel, inflammation-related cytokines, interfer-
ons or chemokines including chemokine-chemokine ligand 
2 (CCL2) and monocyte chemoattractant protein-1 (MCP-1) 
are spurred to recruit immune cells, leading to infiltration of 
leukocytes (Gutiérrez et al. 2022; Zhang et al. 2018).

Metal ions are thought to be relevant to neuroinflam-
mation. Some pathways such as voltage and receptor gated 
Ca2+ influx promote a large increase in free cytosolic cal-
cium, which causes mitochondrial calcium overload and in 
turn compromises the ATP production, further promoting 
ROS release (Bertero et al. 2021). In addition, elevated lev-
els of intracellular Ca2+ activate various proteases, lipases, 
kinases, phosphatases, and endonucleases (Metwally et al. 
2021; Tone et al. 2022). These toxic elements thus induce 
a series of inflammatory cascades, leading to mobilization 
of microglia and astrocytes and increased production of 
cytokines and chemokines (Mehta et al. 2023). As a cal-
cium antagonist, Mg2+ can facilitate the alleviation of neu-
roinflammation by suppressing calcium influx via NMDARs 
(Zhu et al. 2018).

Iron accumulation is a major signature of activated micro-
glia and neuroinflammation, which has been observed in 
several neurological disorders (Lu et al. 2022). It has been 
proposed that excess iron activates microglia by promot-
ing NF-κB-mediated transcription of pro-inflammatory 
cytokines (Feng et al. 2021b). A recent study has further 
confirmed that excess irons provoke both morphological 
activation and transcriptomic changes of microglia using 
induced pluripotent stem cells (iPSCs) derived microglia, 
and this activation reduced both pro- and anti-inflammatory 
pathways (Kenkhuis et al. 2022). Additional studies have 
identified the interaction between inflammation and iron 
accumulation in neuronal cells. For example, Urrutia et al. 
have reported that the rise in inflammatory factors includ-
ing TNF-α and IL-6 causes the upregulation of DMT1 and 
downregulation of FPN, resulting in iron accumulation 
(Urrutia et al. 2013).

Zinc is indispensable for immune stability, and it is able 
to work as a transcriptional repressor, suppressing NF-κB 
and restricting the function of TNF-α (Foster and Samman 
2012; Voelkl et al. 2018). Therefore, intracellular zinc defi-
ciency may boost NF-κB expression and trigger deleteri-
ous neuroinflammation. Consistently, subsequent evidence 
has indicated that changes in immune markers, including 
a decrease in MCP-1 and an increase in naive CD4+ T cell 
markers, worsen during zinc deficiency (Lu et al. 2012). In 
addition, zinc contributes to the suppression of IFN-γ, IL-17 
and TNF-α in immune activated T cells (Guttek et al. 2018). 
These findings suggest that zinc deficiency is associated 
with immune dysfunction and neuroinflammation. How-
ever, Kauppinen et al. have reported that Zn2+ promotes the Ta
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activation of microglia at the late stage of cerebral ischemic 
injury, indicating the double-edged sword effect of zinc 
(Kauppinen et al. 2008). Therefore, the effect of zinc on 
neuroinflammation depends on its basal level and the dif-
ferent disease courses.

Both COVID-19 and stroke can cause varying degrees of 
BBB damage, while heavy metals such as lead and cadmium 
are able to shuttle through the BBB and eventually accumu-
late in the brain, inducing neuroinflammation. It has been 
shown that cadmium induces the dismission of IL-6 and 
IL-8 from astrocytes through activating MAPK and NF-κB 
pathways, leading to neuroinflammation and neuronal death 
(Phuagkhaopong et al. 2017). In a rat model, Liu et al. have 
reported that lead exposure contributes to increased micro-
glial activation and inferior long-term potentiation (LTP) 
(Liu et al. 2015). This might be one of the explanations that 
COVID-19 is able to trigger more severe neurological symp-
toms in patients with metal ion disorders.

Oxidative stress

Oxidative stress is provoked by overproduction of ROS, 
which leads to oxidative damage on lipids, biological mem-
branes, proteins, and DNA (Feng et al. 2021a). ROS are 
highly reactive molecules comprising superoxide anion 
radicals (O2

·−), hydroxyl radical (OH.), hydrogen peroxide 
(H2O2), and hypochlorous acid (HOCl) (Knaus 2021). They 

are products mainly from nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase, mitochondria electron 
transport chain, and the Fenton or Haber–Weiss reaction 
(Wu et al. 2022). Metal ions play an essential role in the 
production, distribution and metabolism of ROS. There is 
emerging evidence that ROS are generated in mitochondria 
via an electron transport chain consisting of complex I-IV 
and mobile carriers (coenzyme Q [CoQ] and cytochrome c 
[Cytc]) (Nolfi-Donegan et al. 2020). Under physiological 
conditions, the electrons derived from nicotinamide adenine 
diphosphate hydride (NADH) and flavin adenine dinucletide 
(FAD) in the complex I and II, are transferred to complex 
III, and ultimately converge on complex IV, where oxygen 
is reduced to water (Turrens 2003). Iron is involved in the 
electron transport chain as a component of complex I, trans-
ferring electrons. Then, redox-active metal ions encompass-
ing Cu+/2+ or Fe2+/3+ are able to convert H2O2 into the more 
harmful OH· following overproduction of O2

·− in the elec-
tron transport chain, which is known as the Fenton reaction 
(Husain et al. 2008; Thiriveedi et al. 2020).

In response to ischemic and hypoxic stimuli, the metabo-
lism of neuronal cells shifts from aerobic to anaerobic gly-
colysis with the production of hydrogen ions and lactic acid 
(Chen et al. 2018; Tan et al. 2021). Excessive production 
of these byproducts lowers intracellular pH, leading to a 
buildup of intracellular Na+ levels through the export of 
intracellular H+ and import of extracellular Na+ by the Na+/

Fig. 2   Schematic diagram of COVID-19-induced neuroinflamma-
tion. SARS-CoV-2 activates different immune cells in the brain via 
infecting other organs and inducing inflammatory storms on the one 
hand, and directly invading the brain through the BBB on the other 
hand. These activated immune cells then secrete cytokines to induce 
neuroinflammation. TNF tumor necrosis factor, IL interleukin, MMPs 
matrix metalloproteinases, CCL C–C motif chemokine, CXCL C-X-C 
motif chemokine, TGF protransforming growth factor, MCP-1 mono-

cyte chemoattractant protein-1, IFN interferon, GM-CSF granulo-
cyte–macrophage colony-stimulating factor, VEGF vascular endothe-
lial growth factor, G-CSF granulocyte colony-stimulating factor, FasL 
factor related apoptosis ligand, TRAIL tumor necrosis factor related 
apoptosis inducing ligand, BAFF B-cell activating factor of the TNF 
family, MIP-1β macrophage inflammatory protein 1 beta, RANTES 
regulated upon activation normal T cell expressed and secreted factor
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H+ exchangers (NHE) (Rotte et al. 2012). Subsequently, the 
plasma membrane Na+/Ca2+ exchanger is triggered to expel 
redundant Na+ and transport extracellular Ca2+ into the 
cytoplasm (Schnetkamp 1995). Ca2+ overload can provoke 
mitochondrial permeability transition pore (mPTP) open-
ing, which further triggers ROS generation (Seidlmayer et al. 
2015). Simultaneously, the opened mPTP is capable of dam-
aging mitochondrial membrane potential, liberating Cytc 
and metal ions such as Ca2+, Cu+/2+ or Fe2+/3+, Mg2+ and 
Zn2+, inhibiting ATP production, causing a cascade reac-
tion in neighboring mitochondria, and eventually inducing 
neuronal cell death.

Under physiological circumstances, antioxidants are in 
charge of scavenging ROS via enzymatic reactions that 
transform toxic free radicals into less-toxic or non-toxic spe-
cies, involving superoxide dismutase (SOD), catalase and 
glutathione peroxidase (GPx) (Bai et al. 2021; Wen et al. 
2021). In terms of mechanisms, SOD catabolizes O2

·− into 
O2 and H2O2, peroxidase breaks down not only H2O2 but 
also other organic hydroperoxides, and GPx converts H2O2 
into H2O and O2 with the assistance of glutathione (Chen 
et al. 2022; Rattanawong et al. 2021). It has been demon-
strated that a few metal ions play crucial roles in composing 
these antioxidants, including Zn-Cu-SOD and Ca-peroxidase 
(Mohandass et al. 2021; Weydert and Cullen 2010). In addi-
tion, the enzyme synthesizing SOD is Mn-dependent (Zelko 
et al. 2002). When metal ion homeostasis is disrupted in 
COVID-19 or stroke, the antioxidants fail to remove extra 
ROS, ultimately causing oxidative stress.

Excitotoxicity

Glutamate and aspartate are the dominant excitatory neu-
rotransmitters in the CNS and high concentrations of gluta-
mate or aspartate lead to the damage of brain cells, referring 
to as excitotoxicity (Lai et al. 2014). Emerging evidence 
has emphasized the ionic underpinnings of excitotoxicity. 
K+ overload and acidosis have been reported as prodromal 
events in the ischemic cascade resulting in ionic distur-
bances (Lipton 1999). Elevated K+ facilitates the release 
of glutamate, thereby catalyzing Na+/Ca2+ channels linked 
to NMDARs and further increasing intracellular Na+ and 
Cl− concentrations as well as the passive influx of H2O 
that causes cytotoxic edema (Dumuis et al. 1993). Further-
more, extracellular glutamate can also activate AMPARs 
and mGluRs, a critical step in the inflammatory cascade 
(Lu et al. 2017; Ribeiro et al. 2017). Thereafter, NMDARs 
work through a single ion channel, which in turn improves 
intracellular Ca2+ levels. In the physiological state, Mg2+ 
obstructs the channel pore of NMDARs. Whereas with the 
release of glutamate from presynaptic sites and AMPARs 
activation, Mg2+ is completely depleted from NMDARs as 
the postsynaptic membrane is partially depolarized, resulting 

in an influx of Na+ and Ca2+ into the cells and mitochondrial 
calcium overload, further impairing ATP production (Arva-
nian et al. 2004; Wollmuth et al. 1998). Calcium overload in 
neurons generates a cascade of downstream death signaling 
pathways, involving calpain activation, ROS production, and 
mitochondrial insults.

Interestingly, extracellular and intracellular zinc and 
copper signaling may play a neuroprotective role against 
glutamate-induced excitotoxicity. As we mentioned before, 
copper and zinc were coupled to glutamate for transmis-
sion during synaptic activity (Gasperini et al. 2015; Krall 
et al. 2020). In the synaptic cleft, the two metals modulate 
excitatory neurotransmission by suppressing the activity of 
NMDARs and AMPARs. Other metals such as Fe, Mn, Al, 
and Pb also seem to engage in excitotoxicity through regulat-
ing intracellular levels of Ca2+ or related receptor activity. 
Nevertheless, more work needs to be done to identify the 
roles of metals in excitotoxicity.

Neuronal cell death

As a consequence of oxidative stress, excitotoxicity and/or 
neuroinflammation, neuronal cells will ultimately die and the 
death is classified into three main different types: apoptosis, 
necrosis and autophagic cell death. For a long time, necro-
sis was considered passive and unregulated. However, in 
recent years, specific forms of necrosis have been identified 
as highly regulated and are referred to as regulated necrosis, 
including necroptosis, pyroptosis, ferroptosis, parthanatos, 
and cyclophilin D (CypD)-dependent necrosis.

There is no doubt that metal ions play an important role 
in regulating neuronal cell death. Novel evidence demon-
strates that exposure to excessive amounts of metals, such 
as Ca, Fe, Zn, Cu, Pb, and Cd, leads to neuronal cell death 
(Gleitze et al. 2021; Lu et al. 2022; Tsvetkov et al. 2022). It 
is well accepted that the occurrence of ferroptosis depends 
on iron. Actually, zinc is also critical for ferroptosis in breast 
and renal cancer cells (Chen et al. 2021). It has been shown 
that ferroptosis is inhibited when zinc chelators are admin-
istered. Conversely, additional zinc treatment boosted fer-
roptosis despite the presence of an iron chelator. Mechanis-
tically, by investigating the genes associated with zinc and 
ferroptosis, the authors identified SLC39A7, which encoded 
ZIP7 that regulated zinc transport from ER to cytosol, as a 
novel genetic determinant of ferroptosis (Chen et al. 2021). 
In addition to iron-dependent ferroptosis, a recent authorita-
tive study uncovered a copper-dependent programmed cell 
death that, unlike known death mechanisms, relied on mito-
chondrial respiration. In this study, the authors presented 
robust evidence confirming copper-dependent death through 
direct binding of copper to lipoylated components of the 
tricarboxylic acid (TCA) cycle, resulting in accumulation of 
lipid acylated proteins and proteotoxic stress and ultimately 
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cell death (Tsvetkov et al. 2022). It is still unknown whether 
there is a unique mechanism for neuronal cell death induced 
by zinc or copper. Nevertheless, there is substantial evidence 
that metal dysregulation disrupts the CNS in various ways, 
including releasing excessive ROS, triggering excitotoxic-
ity, inducing neuroinflammation, and ultimately leading to 
neuronal cell death (Fig. 3).

Metal dysregulation in COVID‑19‑induced 
neurological symptoms

COVID‑19‑induced neurological symptoms

There is evidence that SARS-CoV-2 invades host cells via 
utilizing prominent spike proteins that attach to cell mem-
brane receptors, including angiotensin-converting enzyme 
2 (ACE-2) and CD147 (basigin), in combination with the 
processing of primer/transmembrane serine proliferase 2 
(TMPRSS2) involving the viral spike protein (Scialo et al. 
2020; Wang et al. 2020; Wu et al. 2021). SARS-CoV-2 
is also able to access 293/hACE2 cells in a receptor non-
dependent manner via endocytosis, in which PIKfyve, 
TPC2, and cathepsin L are essential for this entry (Ou et al. 
2020).

A large number of reports have provided a full description 
of the pulmonary symptoms of COVID-19 (Guan and Zhong 
2020; Huang et al. 2020; Zhu et al. 2020). However, besides 

the typical respiratory and gastrointestinal symptoms, 
COVID-19 infection might be also accompanied by neuro-
logical manifestations that may persist for a long time (Ellul 
et al. 2020). In the period of COVID-19, patients with no 
previous neuropsychiatric history suffered attention difficul-
ties, insomnia, fatigue, hysteria and delusions, even changes 
in behavior such as suicide (Becker et al. 2020; Ceban et al. 
2022; Farooq et al. 2021; Fricchione et al. 2022; Pappa et al. 
2020). Patients admitted to the intensive care unit (ICU) 
have been revealed with agitation (69%) and corticospinal 
tract signs (67%), suggesting a definite association between 
COVID-19 and encephalopathy (Helms et al. 2020).

A number of recent studies have highlighted that adult 
patients with COVID-19 further developed a variety of 
neurological symptoms, such as stroke, dementia, halluci-
nations, seizures, and encephalopathy (Poloni et al. 2021; 
Stein et al. 2021; Uginet et al. 2021; Xu et al. 2022). In 
addition, Frontera et al. conducted a prospective study on the 
prevalence of new neurological disorders among COVID-
19 patients in the New York City metropolitan area, which 
showed that 13.5% of COVID-19 patients developed neuro-
logical disorders (Frontera et al. 2021). These reports indi-
cate a specific propensity of COVID-19 for the central and 
peripheral nervous system.

Radiographic evidence showed that a reduction in gray 
matter thickness and tissue contrast were observed in up 
to 80% of hospitalized patients (Chou et al. 2021; Douaud 
et al. 2022). From autopsies of COVID-19 decedents, many 

Fig. 3   Schematic diagram of the pathophysiology involved in 
COVID-19-induced neurological symptoms. A Neuroinflammation: 
excessive immune cells activation and chemokines and cytokines 
release promote inflammatory cell infiltration and BBB damage. B 
Oxidative stress: mitochondrial Ca2+ overload leads to excessive 
ROS production and mPTP opening causes excessive ROS and Cyt 
C release. C Excitotoxicity: excessive glutamate release activates 
NMDARs, which subsequently induces calcium overload and acti-
vates downstream death signaling pathways. D Neuronal cell death: 

involving apoptosis, necroptosis, pyroptosis, ferroptosis, parthana-
tos, CypD-mediated necrosis, and autophagy. NF-κB nuclear factor 
kappa-B, MAPK mitogen-activated protein kinase, NLRP3 NOD-like 
receptor thermal protein domain associated protein 3, MMPs matrix 
metalloproteinases, BBB blood–brain barrier, ETC electron transport 
chain, mPTP mitochondrial permeability transition pore, ROS reac-
tive oxygen and species, NMDARs N-methyl-d-aspartate receptors, 
CypD cyclophilin D
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investigators have reported postmortem neuropathological 
findings: hypoxia, microglia activation, astrocyte lesions, 
mild lymphocytic infiltration, as well as microhemorrhages 
and hemorrhages (Egbert et al. 2020; Mesci et al. 2022; 
Samudyata et  al. 2022; Thakur et  al. 2021). Moreover, 
Khan et al. have recently discovered that ciliary cells of the 
respiratory mucosa and parasitic cells (non-neurons) of the 
olfactory mucosa are the major target cells of COVID-19, 
which is supposed to be the main pathway affecting olfac-
tory sensory neurons, resulting in the sequelae of COVID-
19 olfactory dysfunction (Khan et  al. 2021). However, 
whether COVID-19 can directly infect the CNS remained 
controversial.

Some studies did not detect viral RNAs or proteins in the 
CNS tissue of COVID-19 decedents although their brains 
exhibited postmortem neuropathology, whereas some stud-
ies detected COVID-19 virus in autopsies of patients who 
died from COVID-19 (Mesci et al. 2022; Pellegrini et al. 
2020; Soung et al. 2022; Thakur et al. 2021). The reason 
for this discrepancy might be due to the differences in basic 
diseases and severity of infection. In support of this view, 
another report has demonstrated that the S1 spike protein 
of COVID-19 virus is able to cross the blood brain barrier 
(BBB) in mice and enter the CNS, initiating a neuroinflam-
matory process (Pellegrini et al. 2020; Zhang et al. 2021b). 
These data suggested that COVID-19 virus was capable of 
infecting the brain and triggering long-term neurological 
manifestations. Patients with neurodegenerative disorders 
suffer from increased BBB permeability, which potentially 
facilitates the neural invasion of SARS-CoV-2. Based on 
these reports, it is reasonable to speculate that SARS-CoV-
2-induced neuroinflammation may increase susceptibility 
to neurodegeneration in patients who do not yet develop 
these diseases. Despite the emerging evidence, a compre-
hensive overview of the cellular and molecular mechanisms 
of SARS-CoV-2 brain infection and the consequent impact 
on CNS is still not available.

Metal dysregulation in COVID‑19‑induced 
neurological symptoms

It is well accepted that virus is able to disrupt Ca2+ homeo-
stasis in host cells and in turn to modulate signal transduc-
tion (Danta 2020a). Although there is no sufficient labora-
tory data to support the direct relationship between Ca2+ 
and SARS-CoV-2, several recent studies on other sequen-
tially homologous coronaviruses, including severe acute 
respiratory syndrome CoV (SARS-CoV) and Middle East 
respiratory syndrome CoV (MERS-CoV), have revealed 
the enhanced fusion with host cells via Ca2+, thereby 
increasing the infection rate (Danta 2020b; Straus et al. 
2020). Furthermore, viruses can also seize calcium chan-
nels and pumps, such as voltage-gated calcium channels 

(VGCCs), receptor-operated calcium channels, store-oper-
ated calcium channels, TRP channels, and Ca2+-ATPase in 
host cells to release more intracellular Ca2+ for their life 
cycle (Qu et al. 2022). In agreement with these findings, 
Chen et al. have shown that interactions between viruses 
and VGCCs contribute to virus-host cell fusion entry 
(Chen et al. 2019). Therefore, it is very likely that SARS-
CoV-2 can also distort Ca2+ homeostasis when it attacks 
the body, which facilitates disease progression. Some 
highly lipophilic calcium channel blockers (CCBs), such 
as nimodipine and memantine, have been reported to be 
effective on AD dementia due to their ability to easily pass 
the BBB (López-Arrieta and Birks 2000; McShane et al. 
2019). In particular, some CCBs have also been found to 
inhibit various viral infections such as Japanese encepha-
litis virus (JEV), dengue virus (DENV), West Nile virus 
(WNV), Zika virus (ZIKV), and even Ebola virus (EBOV) 
(Chen et al. 2019). Ribeiro et al. have also proposed that 
P2X7 receptor may be over-activated via SARS-CoV-2-in-
duced extracellular ATP overload, leading to an increase in 
Ca2+ influx and glutamate release (Ribeiro et al. 2021). As 
a result, severe oxidative stress and cytokine storm occurs 
in the brain, eventually causing neuronal death. These 
reports shed some light on novel strategies for prevention 
of SARS-CoV-2 infection or the neurological diseases it 
causes via targeting calcium signaling pathways.

Zinc also exhibits a Yin-Yang role in COVID-19. Numerous 
reports have revealed that zinc deficiency facilitates the risk 
of viral infections and the development of severe forms of dis-
ease (Balboni et al. 2022; Dhawan et al. 2022). Observational 
clinical studies and animal experiments have demonstrated 
that appropriate zinc administration could counteract the dis-
ease progression (Ben Abdallah et al. 2022). For example, in 
a randomized clinical study, 470 newly diagnosed COVID-19 
patients were enrolled and the effect of high-dose zinc (50 mg 
per day divided into two doses) was examined on the two pri-
mary endpoints, admission to the ICU and death. The results 
showed that the risk ratio for ICU admission in the zinc sup-
plementation group was 0.43 and short-term mortality was 
0.68, with additional benefits for the length of stay and the 
duration of symptoms in outpatients (Vinceti et al. 2022). In 
addition, a recent survey revealed that taste impairment was 
associated with the reduced salivary zinc levels in COVID-19 
patients (Abdelmaksoud et al. 2021). These reports indicate 
that zinc should be considered as a preventive and adjuvant 
treatment for COVID-19 to reduce susceptibility and disease 
severity. Besides the transient protection of COVID-19 by zinc 
supplementation, its long-term effects on the CNS remain to 
be determined.

There is evidence that iron metabolism disturbances also 
occur in COVID-19 patients. COVID-19-induced inflamma-
tion promotes an accumulation of intracellular iron, result-
ing in low levels of circulating iron available for metabolism 
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(Habib et al. 2021; Mahroum et al. 2022). A clinical study 
from Muhammad et al. showed a significant decrease in 
serum iron, total iron binding capacity (TIBC) and transfer-
rin levels as well as a notable increase in ferritin and trans-
ferrin saturation in COVID-19 patients (Muhammad et al. 
2022). In another study, iron and transferrin were reported to 
be associated with mortality in COVID-19 patients (Suriawi-
nata and Mehta 2022). Even though not confirmed, it can be 
hypothesized that iron-related biomarkers play important roles 
in causing oxidative stress in various tissues of COVID-19 
patients, further triggering the activation of cytokine storm, 
and ultimately inducing ferroptosis.

The role of selenium in fighting against COVID-19 and 
relevant neurological symptoms should not be underestimated. 
On the one hand, selenoproteins and selenium-containing 
organisms can prevent SARS-CoV-2 infection via suppress-
ing the expression of ACE-2 receptors; on the other hand, they 
can exert anti-COVID-19 effects by inhibiting inflammation, 
oxidative stress, cytokine storm and 3CLPro, the main protease 
of SARS-CoV-2 (Alshammari et al. 2022). Clinical evidence 
showed that serum selenium concentrations were significantly 
higher in COVID-19 survivors than that in non-survivors 
(Moghaddam et al. 2020). Moreover, selenium concentrations 
in patient toenail samples were correlated with the COVID-19 
severity index (CSI) (Larvie et al. 2023). These results suggest 
that selenium plays a potential role as a neuroprotective agent 
in treating COVID-19. In summary, long-term inflammation, 
BBB breakdown, and microglia activation may contribute to 
neurotransmitter alterations, and neuronal impairment, thus 
interpreting the neuropsychiatric symptoms of COVID-19. 
Dysregulation of metal homeostasis is involved in a range 
of neurological complications and sequelae in COVID-
19 patients and targeting metal-related signaling pathways 
for treating COVID-19 infection should be performed with 
appropriate compatibility. Thus, appropriate drug combina-
tions may be a promising approach for improving neurologi-
cal injury caused by COVID-19. The roles of metal ions in 
COVID-19-induced neurological symptoms are summarized 
in Table 2.

Treating COVID‑19‑induced neurological 
symptoms via targeting metal dysregulation

Due to the pivotal roles of metal ions in COVID-19-in-
duced neurological symptoms, targeting the metal-related 
signaling pathways might be a potential strategy to miti-
gate the neurological symptoms. The initial thought was 
to directly remediate the neural metal content by giving 
appropriate metals or metal chelator. A recent study has 
shown that zinc administration may ameliorate disease 
progression in COVID-19 by reducing the inflammatory 
factor levels of patients (Dhawan et al. 2022). In another Ta
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report, patients with low selenium intake exhibited more 
severe COVID-19-related symptoms and selenium intake 
below 65 μg/day might increase the severity of COVID-19 
(Zhang et al. 2020). Growing evidence has also demon-
strated the role of iron chelators in COVID-19. Poonkuzhi 
Naseef et al. revealed that deferasirox, an iron chelator, 
was able to save COVID-19 critically ill patients, miti-
gated disease progression, and improved survival (Poonku-
zhi Naseef et al. 2022). In addition, deferiprone (L1) might 
adjunctively treat COVID-19 through binding transferrin, 
involving in immune response and mobilization of iron 
in highly inflamed cells (Poonkuzhi Naseef et al. 2022). 
Unfortunately, single administration of iron chelators 
could cause a variety of serious neuropathological con-
sequences, such as myelinopathy (McCarthy et al. 2022). 
These data indicated that it was extremely difficult to mas-
ter the proper timing and dosage of metals in vivo by sim-
ple supplementation or chelation, and that inadequate or 
excessive amounts of these drugs gave rise to insufficient 
efficacy or more serious side effects. Therefore, it is neces-
sary to monitor the dynamics of metal ions in vivo so as to 
adjust therapeutic strategies timely.

With the clarification of metal metabolic mechanisms, 
therapeutic protocols via targeting metal ions have become 
increasingly diverse. One possible strategy is to target the 
metal ion channels. Various antagonists or agonists targeting 
different metal ion channels have been developed (Table 3). 
Unfortunately, all of them are still only used as research 
tools so far. Therefore, selectively targeting the downstream 
pathways might be another feasible option. For instance, tar-
geting the pro-death signaling of NMDARs downstream has 
shown great promise in neuroprotection (Yan et al. 2020). 
Different downstream pathways of NMDARs have been 
identified, including the GluN2B-PSD95-nNOS pathway, 
the GluN2B-DAPK1 pathway, the NMDAR-PTEN com-
plex, and the NMDAR-Src-Panx1 complex (Sun et al. 2015; 
Tu et al. 2010; Weilinger et al. 2016; Zhou et al. 2010). 
Through developing small molecule inhibitors and interfer-
ing peptides, many experiments have shown that targeting 
these signaling pathways improved the neurological func-
tion after stroke and reduced the ischemia/hypoxia-induced 
neuronal death. Since many scholars assumes COVID-19 as 
a pathological model of human inflammation combined with 
hypoxia, analogous to the pathological features of ischemic 
stroke (Fig. 4), it is reasonable to speculate that targeting the 
downstream pathways of NMDARs also works for treating 
COVID-19-induced neurological symptoms.

Growing evidence indicates that iron deposition-induced 
ferroptosis causes neurological disorders (Ou et al. 2022). 
Thereby, targeting ferroptosis-relevant pathways represents 
a novel therapeutic approach for treating COVID-19-induced 
neurological symptoms. Currently available ferroptosis 
inhibitors mainly focus on preventing iron overload and 

inhibiting lipid peroxidation (Liang et al. 2022b). A recent 
study by Tuo et al. has shown that intranasal administration 
of ferritinase inhibitors, ferritinase-1 and lipoproteinase-1, 
immediately after cerebral ischemia in mice reduced neu-
ronal damage, and the protective effect continued until 6 h 
after reperfusion (Tuo et al. 2022). By intravenous injection, 
Feng et al. have revealed that tirazol mesylate, an inhibitor 
of iron-dependent lipid peroxidation, alleviated hypoxic-
ischemic brain injury in neonatal piglets (Feng et al. 2000). 
Furthermore, desferrioxamine (DFO), a powerful iron chela-
tor, has also been reported to improve neurological function 
in ischemic rats and stroke patients (Papazisis et al. 2008; 
Selim 2010). It is worth mentioning that different organic 
and inorganic selenium compounds including methylseleno-
cysteine, selenocystine, selenomethionine, selenocystamine, 
ebselen, sodium selenite, and sodium selenate are all effec-
tive in preventing erastin- and RSL3-induced iron toxicity 
and exerting antioxidant effects. Among them, methylsele-
nocysteine or selenocystamine could reduce brain injury in 
stroke mice (Tuo et al. 2021). Due to similarity between 
stroke-induced brain injury and COVID-19-induced neuro-
logical symptoms as we mentioned before, it is reasonable 
to posit that targeting the iron-relevant pathways and apply-
ing the relevant antioxidants might also benefit the COVID-
19-induced neurological symptoms.

Conclusion

In summary, maintenance of metal homeostasis is essential 
for neurological function. Metal metabolic dysregulation, 
aberrant activation or suppression of metal ion channels, 
and disruption of the ion-relevant signaling pathways may 
contribute to COVID-19-induced neurological symptoms 
(Balboni et al. 2022; Habib et al. 2021; Poonkuzhi Naseef 
et al. 2022; Suriawinata and Mehta 2022). So far, signifi-
cant advances have been achieved in understanding different 
metal-relevant signaling pathways, offering us new direc-
tions to combat COVID-19-induced neurological symptoms 
(Gleitze et al. 2021; Sun et al. 2022; Thirupathi and Chang 
2019). Thus, restoration of metal homeostasis is an effec-
tive strategy to prevent neurological damage. Despite the 
fact that preclinical studies have demonstrated the potential 
neuroprotective effects of a few metallo-modulators, they 
have obvious limitations, such as side effects and narrow 
therapeutic windows. This can be explained by the fact that 
multiple metal dysregulation can be triggered simultane-
ously in complex disease processes. The crosstalk between 
different metal dysregulation and the downstream signaling 
pathways merits further investigation, which implies that 
any single metal modulator may require combination with 
other drugs. However, the application of current discover-
ies based on animal or cellular experiments to the clinical 
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setting (such as COVID-19-induced neurological symptoms) 
requires considerable effort.
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