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Abstract

Cell-derived exosomes have opened new horizons in modern therapy for advanced drug delivery and therapeutic applications,
due to their key features such as low immunogenicity, high physicochemical stability, capacity to penetrate into tissues, and
the innate capacity to communicate with other cells over long distances. Exosome-based liquid biopsy has been potentially
used for the diagnosis and prognosis of a range of disorders. Exosomes deliver therapeutic agents, including immunological
modulators, therapeutic drugs, and antisense oligonucleotides to certain targets, and can be used as vaccines, though their
clinical application is still far from reality. Producing exosomes on a large-scale is restricted to their low circulation lifetime,
weak targeting capacity, and inappropriate controls, which need to be refined before being implemented in practice. Several
bioengineering methods have been used for refining therapeutic applications of exosomes and promoting their effectiveness,
on the one hand, and addressing the existing challenges, on the other. In the short run, new diagnostic platforms and emerging
therapeutic strategies will further develop exosome engineering and therapeutic potential. This requires a thorough analysis
of exosome engineering approaches along with their merits and drawbacks, as outlined in this paper. The present study is
a comprehensive review of novel techniques for exosome development in terms of circulation time in the body, targeting
capacity, and higher drug loading/delivery efficacies.
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Introduction been used to promote pharmaceutic's efficiency and thera-
peutic applicability in clinical settings (Elsharkasy et al.
Overview of Extracellular vesicles (EVs) 2020). Despite the significant advantages of liposomes,
as the oldest and most widely studied drug delivery vehi-
Synthetic drug delivery systems, including polymeric nan-  cle, their applications are restricted due to their limited

oparticles, dendrimers, micelles, and liposomes, have long  stability, long-term safety, and activation of an acute

< Fahimeh Ramezani Tehrani The University of Queensland Diamantina Institute, Faculty
ramezani @endocrine.ac.ir of Medicine, The University of Queensland, 37 Kent Street,
54 Abbas Shafiee Woolloongabba, Brisbane, QLD 4102, Australia

a.shafiee@uq.edu.au

P< Seyed Mahmoud Hashemi
smmhashemi@sbmu.ac.ir

Herston Biofabrication Institute, Metro North Hospital
and Health Service, Brisbane, QLD 4029, Australia

Department of Immunology, School of Medicine, Shahid
Beheshti University of Medical Sciences, Tehran, Iran
Reproductive Endocrinology Research Center, Research 7
Institute for Endocrine Sciences, Shahid Beheshti University

of Medical Sciences, Tehran, Iran

2 Advanced Therapy Medicinal Product (ATMP) Department,
Breast Cancer Research Center, Motamed Cancer Institute,
ACECR, Tehran, Iran

Medical Nanotechnology and tissue engineering Research
Center, Shahid Beheshti University of Medical Sciences,
Tehran, Iran

Student Research Committee, Department of Immunology,
School of Medicine, Shahid Beheshti University of Medical
Sciences, Tehran, Iran

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10787-022-01115-7&domain=pdf
http://orcid.org/0000-0003-1389-5803

146

S.Sadeghi et al.

hypersensitivity reaction (Sercombe et al. 2015). The
use of extracellular vehicles (EVs), as a natural carrier
system, could overcome the barriers related to liposomes
and other synthetic drug delivery systems (Butreddy et al.
2021). Depending on size, origins, morphology, and func-
tions, EVs are classified into EVs and various types of
plasma membrane-derived microvesicles. As a subset of
EVs, exosomes are now receiving much attention from
the scientific communities (Moloudizargari et al. 2022).
The exosome formation occurs in three phases (Fig. 1):
the budding, multivesicular body (MVB) formation, com-
bination of the plasma membrane with MVBs, and the
release of vesicular contents as exosomes (Ha et al. 2016).
Compared to the apoptotic bodies (1000-5000 nm) and
the microvesicles (50-1000 nm), which are respectively
generated by the apoptotic cells and outward budding of
the plasma membrane, exosomes biogenesis initiates with
inward budding of the plasma membrane, which tends to
start with the generation of intraluminal vesicles (ILVs)
at early endosomes (Fu et al. 2020). Endocytosis leads
to the creation of early endosomes that capture cellular
proteins and genetic materials, found in the cytoplasm,

and then turn into late endosomes, from which MVBs are
generated (Chen et al. 2021a). MVBs are then degraded
by lysosomes, or fused with the plasma membrane to free
ILVs in the form of exosomes (Fu et al. 2020).

The therapeutic application of exosomes is of interest to
many scholars. This includes their being used as (1) bio-
markers that help diagnose a disease and the follow-up pro-
cedures, (2) drug delivery vehicles or therapeutic agents,
and (3) immunomodulators that stimulate or suppress the
immune system (Liu and Su 2019). Exosomes represent
a mode of intercellular communication through various
active biomolecules, including lipids, cytokines, growth
factors, metabolites, proteins, and RNAs, during normal
and pathological processes (de Abreu et al. 2020; Zhang
et al. 2019). Exosomes' ability to modulate cellular com-
munications and intracellular pathways has advanced their
potential for controlling many diseases (Kalluri and LeBleu
2020). Exosomes are generated by different cell types and
can be isolated either from different extracellular fluids like
cerebrospinal fluid, blood, and urine or from cell culture
supernatants (Zhang et al. 2019). Due to their presence in
all biological fluids, exosomes can be considered a sensitive
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Fig. 1 Exosome biogenesis and its contents. Exosome formation is
a function of endocytic membrane invagination and ILV formation
inside cells. Early maturation of endosomes leads to the formation of
MVBs which are then delivered to lysosomes to be degraded, or cross
through microtubules to be combined with the plasma membrane and
release exosomes into the extracellular space. In the process of matu-
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and reliable biomarker for the diagnosis, progression, and
effective therapy for a range of diseases, such as tumors,
chronic inflammation, metabolic diseases, cardiovascular
and neurodegenerative diseases (Shafiee et al. 2021; Zhang
et al. 2019). Minimally invasive sample collection, stabil-
ity, and enrichment of specific exosomal biomarkers are the
advantages of using exosomes as diagnostic tools (Wei et al.
2021a, b). Exosomes are attractive drug delivery vehicles,
compared to other vehicles, due to their safety, stability, low
toxicity, inherent targeting capabilities, high modification
flexibility, and toleration by the immune system, even across
the biological barriers (Weng et al. 2021). The low immu-
nogenicity of exosomes facilitates their repeated adminis-
tration, which is currently a major barrier in mRNA, gene,
and cell therapies (Einabadi et al. 2020). The stability of
exosomes to the drug molecules allows various therapeutic
compounds to be transported over long distances under both
natural and pathological conditions (Modani et al. 2021).
Nevertheless, donor cells selection, exosome surface modifi-
cation, and drug loading capacity play key roles in exosomal
drug delivery (Modani et al. 2021).

Delivering various molecules to the adjacent cells or tis-
sues located in different anatomical sites has made exosomes
a unique candidate for vaccine development (Santos and
Almeida 2021; Weng et al. 2021). Since antigens appear on
exosomes and target cells, they could trigger the appropri-
ate immune responses or act as an adjuvant (Kucuk et al.
2021; Montaner-Tarbes et al. 2021). It is reported that
exosomes are involved in tissue regeneration and homeo-
stasis by affecting the fate decision of some immune cells
(Lee et al. 2021; Sadeghi et al. 2020a, b; Taghavi-Farahabadi
et al. 2021; Zhao et al. 2019). Also, the anti-inflammatory,
proangiogenic and immunoregulatory activities are other
unique features of exosomes in the design and development
of vaccines (Kucuk et al. 2021; Sadeghi et al. 2020a, b).

In addition, exosomes have been introduced to address
key limitations of cell therapy (Marban 2018). No risk of
immune rejection and malignancy, stability, long-term
maintenance, and ability to cross the biological barriers are
prominent features that differentiate exosomes from their
parent cells. Moreover, the standardization of the exosome
manufacturing process is easier than that of cells (Jiang et al.
2020). As lipid bilayer vesicles, exosomes are tough enough
to withstand a range of handling extremes and lyophiliza-
tion (Marban 2018). They can be used in combination with
newly-developed methods or compounds to design carriers
for specific particles. Exosomes can also be tailored to be
applied to certain tissues or cells as they can move autono-
mously and reach the damaged tissues (Wei et al. 2021a, b).
Furthermore, other determining factors on culture condi-
tions or cell origin must be carefully examined, including
biochemical composition, size, and related descriptive infor-
mation (Wei et al. 2021a, b).

In this review, we summarize an introduction to the basic
concepts of exosome, and provide a comprehensive discus-
sion in regard to currently available strategies for exoso-
mal cargo loading, and engineering techniques for targeted
delivery and outline the advantages and disadvantages of
these modification strategies. In addition, we highlight the
ongoing challenges and future directions of this novel field.

Limitations in the therapeutic use
of exosomes

The unique properties of exosomes and their ability to carry
cargo have made them an ideal candidate for new therapeutic
targets; however, some key factors restrict their therapeutic
applications, such as barriers related to exosome isolation,
characterization, quality check, and probability of functional
assays to be reproduced in in-vitro and in vivo conditions,
quick systemic circulation clearance, unsatisfactory targeting
capability, and indistinct loading effectiveness (Chen et al.
2021a). Thus, the engineered exosomes could be an effective
approach to overcome the existing limitations and expand
their loading capacity for the desired therapeutic agents
(Fu et al. 2020). Several examples of delivering therapeutic
cargo by exosomes are presented in Fig. 2. In addition to
cargo delivery, various strategies have been considered to
improve the targeting of exosomes to successfully reach the
recipient cells and facilitate cell uptake capacity (Syn et al.
2017). Some of these approaches are highlighted in the fol-
lowing sections.

Exosome modifications techniques to enhance
cargo loading efficiency

To achieve optimal therapeutic cargo delivery and design
favorable targeting elements, developing effective loading
strategies for exosomes is crucial. Several bioengineer-
ing strategies could address the limited loading efficiency
and impurity of exosomes (Weng et al. 2021). Diagnostic
or therapeutic cargos in exosomes are generally loaded
through two processes: exogenous and endogenous. In
the exogenous or direct loading process, molecules are
loaded onto the purified exosomes after isolation from
cells (Kuc€uk et al. 2021). This is further subdivided into
active and passive loading. Passive loading involves load-
ing the therapeutic cargo into exosomes through diffusion,
while active loading is characterized by the disruption of
exosome membranes through physically and chemically
techniques (Han et al. 2021). The passive loading refers to
exosome incubation with the therapeutic cargo. The load-
ing capacity depends on the hydrophobic nature of the
cargo molecules and incubation time (Balachandran and
Yuana 2019). To overcome the limited loading capacity,
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Fig.2 Summary of exosomal modifications to address their limita-
tion. Cell targeting specificity of exosomes with cell/tissue-specific
peptides, tumor-specific receptors/ligands, or antibodies/nanobodies
for tumor markers can be increased. For imaging or tracking pur-
poses, exosomes with fluorescent protein or those displaying chemi-
cals on the surface are applied. Moreover, exosome modification is
found to decrease their chance of being cleared by liver and increase

active cargo loading has been developed using various
techniques (Baek et al. 2019). However, these methods
are associated with several drawbacks, including exo-
some aggregation, membrane disruption, and excessive
purification steps (Baek et al. 2019). Endogenous loading
includes a system in which the therapeutic cargo is directly
deposited by a donor cell into the exosome before its shed-
ding. Modifying the parent cells is generally accomplished
by incubating specific material with the parent cells.
Another approach is gene editing, where parental cells
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its concentration in circulation and the target tissue. Exosome stabil-
ity is also promoted via exosome engineering by means of physical
or chemical treatment, as well as surface modification, the result of
which is enhanced delivery efficiency. A combined application of
these methods is likely to boost cell targeting specificity and delivery
efficacy

can overexpress desired cargo that will subsequently be
encapsulated into the exosomes (Kucuk et al. 2021). In
this section, we will discuss exosome engineering methods
applied throughout the literature.

Passive diffusion of exosome-secreting cells or exosomes
cargos

Incubation of desired cargos with exosomes or exosome-
secreting cells, as the simplest cargo loading technique,
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results from a concentration gradient in the diffusion of
cargos into the exosomes. Hydrophobic and lipid nature of
plasma membrane facilitate the spontaneous incorporation
of cargos, particularly hydrophobic ones, into exosomes or
exosome-secreting cells (Fu et al. 2020). The loading effi-
ciency depends on the cargoe's concentration gradient and
its hydrophobicity (Zhang et al. 2020). Simple operation,
non-destruction effect on exosome integrity, and maintaining
the activity of cargos and exosomes are the biggest strengths
of this strategy. However, loading is difficult to control, and
pH can also influence loading efficacy. Additionally, drug
toxicity is another problem that can impair exosome secre-
tion (Fu et al. 2020; Luan et al. 2017). The efficiency of
cargo loading for strategies that are based on incubation can
be improved by manipulating concentration, the temperature
of incubation, as well as modification volume and time. It
can also be promoted by employing some techniques such as
transfection and physical modifications (Chen et al. 2021a,
b; Fu et al. 2020).

Physical treatments

Table 1 and Fig. 3 compare different physical treatments,
including freeze—thaw, surfactant treatment, sonication,
extrusion, dialysis, and electroporation, for loading car-
gos into exosomes. Although physical treatments improve
the effectiveness of loading, they potentially damage and
contaminate exosomes. This necessitates further analysis
of experimental conditions to control micro-pores forma-
tion and membrane recombination process (Rayamajhi and
Aryal 2020). Physical approaches have found application in
exosomes labeling through imaging or the use of fluorescent
tags. They are also used with other biological or chemical
approaches to maintain exosome’s homogeneous population
size (Fu et al. 2020).

In situ synthesis and assembly

In situ synthesis and assembly is a non-invasive chemi-
cal reaction for loading the molecules into the exosome or
their surfaces. In this technique, the exosome is maintained.
However, it contains a complicated operation process that
is associated with several technological challenges that may
hinder its applications (Fu et al. 2020).

Surface engineering

Loading cargos into the exosomes requires bypassing the
exosome membrane barrier (Liang et al. 2021). Biodis-
tribution, targeting of specific cells, and the therapeutic
use of exosomes depend on their surface properties; thus,
the desired characteristics could be achieved using sur-
face engineering techniques (Kucuk et al. 2021). Surface

modifications of exosomes could be achieved using chemi-
cal modification, genetic engineering, or hybrid membrane
engineering (Weng et al. 2021). In genetic engineering, as
an appropriate technique for imparting exosomes with new
properties, the targeting or ligand molecules are fused with
the membrane proteins or lipids and subsequently overex-
pressed in the donor cells. The plasmid construction and
protein overexpression in the donor cells are required for this
technique (Liang et al. 2021). Unlike genetic engineering,
chemical modification techniques can induce a large number
of molecules using non-covalent or covalent interactions,
which do not disrupt the exosome membrane. However, the
complexity associated with membrane surfaces and issues
related to additional steps of purification are key challenges
that need to be addressed (Richardson and Ejima 2019).
The details of each strategy are discussed in the following
sections.

Chemical modification of the exosome membrane Chemi-
cal modification to modify exosome surfaces can be divided
into non-covalent or covalent interaction strategies (Chen
2021). Covalent interactions are arguably superior to those
using non-covalent interactions, as the probability that the
interaction is disrupted is lower (Chen 2021). Using the
covalent modification, functional groups form covalent
bonds with exosomes. For instance, since sulfhydryl is
widely presented on the exosomes surface, it is considered
as the binding site via the michael addition reaction between
maleimide and sulthydryl (Nan et al. 2022). Exosome sur-
face modification using covalent binding is done using a
crosslinking reaction, known as azide-alkyne cycloaddition
or click chemistry, and induces no alterations in exosome
size and function (Parada et al. 2021a). Using this method,
an azide or alkyl group is added to ethe xosome’s surface to
create active chemical sites to attach targeting moieties in a
variety of aqueous buffers such as water, dimethyl sulfoxide
(DMSO), and alcohols (Choi et al. 2021). This method is
ideal for the biological bonding of small molecules, mac-
romolecules, and polymers to the surface of exosomes via
covalent bonds to desired functionality skills (Hood 2016).
comparisonion to conventional chemical reactions, click
chemistry is more efficient with higher control over the
conjugation site (Parada et al. 2021a; Salunkhe et al. 2020),
and contributes to loading or encapsulating the therapeutic
agents and large plasmids such as CRISPR-Cas9 expression
vectors into exosomes (Parada et al. 2021a). In this regard,
different chemical strategies can be used to functionalize
exosomes surface with amine bearing or thiol bearing func-
tional moiety (Rayamajhi 2021).

However, toxic chemicals requirement is considered as
the drawback of using covalent bonds, that raising cau-
tion for applying this strategy in therapeutics (Choi et al.
2021). Multivalent electrostatic interactions, hydrophobic

@ Springer



S.Sadeghi et al.

150

(0Z0T 'Te 12 nY) S[BLIdIBWOUBN

(8107 ‘I8 10 SLIRISIWNUY)
uroiqnioxop ‘suriAydiod) Snip ‘asereie)

(610€ 'Te 12 1zeySrequey 810¢ e 10
SLIEISTWUY) UIOIGNIOXOP ‘dse[eie)

(610 "Te 10 1zeySrequey ‘810C
"Te 39 SLIBISTWNUY ) 3se[eled ‘surikydiod

(610C TB 30

1zeySrequey ‘80T ‘[¢ 10 SLBISIWNUY)

S9[NOS[OWOIdRW URIIXIP ‘(Joxeyrpoed
‘urorqnioxop ‘suriAydiod) Snip ‘YNYIS

proe o19[onu ‘s3nig

(810 'Te 10 SLIBISTWNUY) YNCSS

VNIIW “VNY!S 9se[e1ed ‘[oxelroed
(Z00z T8 3 L19y]) 0 urejord
K103B[NT2I TRUSTIS ‘SJUSTBAI IOOUBD-TIUR
sopndad ‘surajord ‘(YN ‘VNC ¢3°9)

sa[noafowr 33xe[ 10 sSnip orydoIpAH
(6107 "Te 10 1zeySrequey ‘810C

‘[€ 19 SLIBISIWNUY ) 9SB[BIRD ‘SYNY IS
(uroIqnIOXOp ‘[OxXE)

-1poed ‘suriAydiod ‘urunoind “§-9) Sniq

(ocoz
‘Ie 30 ) S[eLISJRWOURY I0J [qe)INS

(010t
‘Te 39 e[opod) A1anoe onkjoweH

(020€ 'Te 10 ng) Aouatorye Surpeo]

oy1oadsun ‘uoIsNIXo PUB UOIBIIUOS

uey) AOUSIOYJS IoMO] ‘uone3ordde
QUBIQUIAW AWOSOX? JO AIQISSO

(L10T 'Te 10 ven]
£GT10T e 3 uuewayny) saykoodeyd
Jea[onuououw se Yons S[[90 SUNuII

01 9[QISIA SAWOs0X2 Suryew <urejord

Queiquiew pue [enuajod €1z oy

ur sogueyo pue K)101X0J01A0 Ay}
OUBIqUIDW JO UOTJBUWLIOJOP 9[qISSOJ

(610 'Te 32 1zeySrequey 910C

‘Te 30 uasuyof) Kyroedes Jurpeo]

Mmo[ ‘Surdewrep armonns urjoid jo

Anqqrssod uone3ai3se YN jo
SYsLI oY ¢AII3our awosoxa sydnisiq

(010T

‘[e 10 Ye[opod) sawosoxa ur sopndad
pue surajoxd uo s3109f0 2AnONNS

(L10T
‘[e 10 Uen) uonerduas Jeay AJIAnoe
unwwr uo 309Jj9 ‘uonedaisde o3red
pue Ajugojur awosoxa jo Ajiqrssod
¢s3nap orqoydorpAy 10y JUSIOLJ2 JON
(0102 '8 192 eI0POd 0Z0T T8 10
nj) 2INONIS JUBIqUIAW SAISUBYD
{Aniqerjonuod Jood ‘uoneinuenb 0y
prey ‘uondwnsuod [BIOUBUY pUE JWIL],

(120T ‘T 32 nQny]) Aoeouyje uoner
-od1oour jonuod o3 9[qrssodwr (Aot
-X030340 3nip {Aouatoyye Surpeo] Mo

(0coz T8 1@
n,]) AII39)UI SWOSOXI JO IOUBUNUIRIA

(B1Z0T T8 10 UaYD) SUONIPUOD JYSLI
Iopun Kouaroyje uonensdeous y3rg
‘surajord jo uonerodioouy Ap3oaI(g

(0zozT B @
n,]) S0SIed SNOLIEA JOJ QAIIO9YS pue
orduurs st Ky1oedes Surpeoy Inap Y],

(910€ ‘1B 19 Uas

-uyof) SWOSOXa JO UONNGINSIP JZIS

ULIOJTUN ‘SI[OAD MBY)I—OZI9I] pue

uoneqnout 0) paredwod djer uone|
-nsdeous 10y31y ‘9A1309)J0 pue o[duwrg

(B120C T8 19 UdyD) [01U0d

UT 9S82 SYNYTW J0 YNTS A[Teroads

‘s3n1p snozownu urpeoy 10§ [nJ
-9sn {s9[nodrow A3Ie[ YPIm Jurpeo|

(L10T ‘Te 12 uenT) SQwWOsoxa ojur 3ut

-peo] VNYIS pue YNYIW Sasearour
UOT)EqNOUT URY) JUSIOLJO QIOJA

(L107 ‘T 12 uen) 2Injonys aueiq
-WAW 9Y) J09JJe J,UOP SYNY [[BWS
J10J 9[qeoridde ¢Kouaroyye Surpeo| yStg

(0T0T 18 10 ng)
sproe o1[onu pue ‘surajord ‘sopndad
10§ Kouaroyje Surpeoy Y31y ‘A[Iqeis

(81207 'Te 19 uayD) 1uswdinbs
eI1x9 axmboar jou op ‘uonerado orduwrg

UOI10BAI [BITWAYD)
(010T B W
Ye[OpOd) 298NS QUBIQUIAW A} UO
amonns sarod e wIog 0} (J019IS9[0Yd
*3°0) S9[NOS[OW SUBIQUIIW (IIM
saxo[dwod a9y} Surwioy A[oAn

-0910s e1A AyfIqesurtod QUBIQUISIA
(910T T8 1
o1eg) armjeroduid) wWool Je pamey)
pue uaSonru pmbiy ur 10 5, 08— 1®
A[prder uazoij pue arnjeroduwd) woox

J& SOWI0SOX? Y)IM STnIp pajeqnou]

(L10T "I 19 uen) a1}
-e10dwa) Pa[[O1UOD B 19pUN SIURIQ

-wow snojod wu )F—00T PIm
19pnnx? pidi] paseq-o3urLIfs & ojur
SSNIp pue SOWOSOXd PIAXTW Jo SuIpeo|

(L10T "Te 10 ueny) asind
a3e)[0A-y31Y 1I0YyS B Jopun dueiq
-WIOW dWOSOXd 2y} Ul $910d-0IdIAL

(ozot
"Te 30 n,]) SAWOSOXa Snip 9y} peoy 0}
3urums Aq oueIquiow ay) Jo JurzAeIg

(870 'Te 30 SHEBISIWUNUY) SUBIqUIOW
[ewosoxa jo AJgojur oY) Sutuoyeom
10} 9010J JeAYS [BOIURYIIUW BNXH

(0TOT 'Te 19 ng) UONIPd SUID)

(120T e W
nya£9gan) auwir) SWos Joj uoneqnoul
1199 yuared/sowosoxa pue s3Iniq

SISQUJUAS pue A[quIasse miIs uf

(uoiLn pue uru
-odes se) Juowyean jue)oryINg

POYIW MBU}/ZI]

uorsnnxg

uonerodonoog

SIsA[eIq

uonedruos

UonOJYSuel],

uoneqnouy

uoneorydde/popeo] Sniq

sagejueApesI(q

sagejueApy

WSTUBYIIIN

POy

SOWOSO0X3 0Jul S03Ied SUIPRO] J0J SAIFANeNSs JUAIYIP Jo uostredwod v | d|qel

pringer

Qs



Exosome engineering in cell therapy and drug delivery

151

Table 1 (continued)

Drug loaded/application

Disadvantages

Advantages

Mechanism

Method

Drugs (e.g., 5-fluorouracil, doxorubicin,

Possibility of membrane protein

Insertion, deletion, or modification of ~ Simple (Kucuk et al. 2021)

Genetic engineering

paclitaxel) miRNA, anti-miRNA-21,
siRNA, imatinib (Liang et al. 2021)

alteration (Kucuk et al. 2021)

target genes at specific sites in the

genome (Luan et al. 2017)

Radionuclide and fluorescent agents,

Possibility of membrane protein

Simple, rapid, and effective (Kucuk

et al. 2021)

Biological binding of small mol-

Covalent binding

drugs (e.g., doxorubicin, cisplatin and
5-fluorouracil (5-FU), peptides or spe-
cific nanobodies, curcumin-SPION,

siRNA, miRNA (Liang et al. 2021)
Drug (paclitaxel, gemcitabine HCI,

alteration (Kucuk et al. 2021)

ecules, macromolecules, and poly-

mers to the surface of exosomes via
covalent bonds (Luan et al. 2017)

Enhanced efficacy (Kucuk et al. 2021) Decreasing retention of exosome

Combining exosomes with fusogenic

Hybridization

doxorubicin), siRNA, mRNA, metho-

(Kucuk et al. 2021)

liposomes (Kucuk et al. 2021)

trexate, camptothecin (Ghitman et al.

2020)
Drug [e.g., doxorubicin, cisplatin and

Overexpress of specific genes in donor Stable loading of genetic-based cargos Concerns about safety risk, laborious

Viral transduction

5-fluorouracil (5-FU)], macrolide
antibiotics, nucleic acids (Ghitman

et al. 2020)

and time-consuming (Chen et al.

2021b)

into exosomes and possible enrich-
ment of the exosome functions

(Chen et al. 2021b)

cells (Chen et al. 2021b)

insertion, and magnetic strength are commonly non-cova-
lent strategies to provide stable modification of biological
membranes (Armstrong et al. 2017; N’Diaye et al. 2022). In
multivalent electrostatic interaction, exosome membranes
are coated by a positive charge that divulges moiety and
promotes the effectiveness of exosomes targeting towards
biological membranes with negative charges (Carreira et al.
2016). Furthermore, the use of newly-produced exosomes
with a positive surface charge has been shown to increase the
ability of exosomes to be bound into and uptaken by recipi-
ent cells (Nakase and Futaki 2015). Cytotoxicity caused by
certain cationic nanomaterials through hole formation and
membrane thinning is a possible drawback of this methods
(Nel et al. 2009). The major downside to this approach is
that cells commonly take up cationic nanomaterials through
endocytosis and this causes delivered payloads to be lysoso-
mally degraded (Armstrong et al. 2017).

Due to the lipid bilayer of exosomes, hydrophobic inter-
actions is considered as a direct insertion of targeting moie-
ties to the membrane of exosome (Smyth et al. 2014). The
transmembrane protein moiety or amine/carboxylic termi-
nated phospholipid of exosome surface can be functionalized
with different functional groups. In this regard, functional-
ized phospholipids can be incorporated into the membrane
of exosome by simple incubation following hydrophobic
insertion strategy (Rayamajhi 2021). With the help of hydro-
phobic sequestration, exosomes could be loaded with small
lipophilic drugs, such as anti-inflammatory, chemotherapeu-
tic, and photosensitizers agents (Armstrong et al. 2017). For
example, this approach is commercially used in exosome
membrane stains, such as commonly used dyes BODIPY
TR ceramide, Dil, and PKH-67. However, it needs a sim-
ple coincubation to be used under loading-efficient ambient
conditions that correlate positively with the hydrophobicity
of the exogenous species (Fuhrmann et al. 2015).

Targeting drug delivery can also be achieved by exosomes
manipulation through magnetic force (Qi et al. 2016), we
will discuss this method in section of exosome engineering
for targeted delivery to specific tissues or cells.

Hybrid membrane engineering The exosomal membrane
can spontaneously fuse with other plasma membranes
(Liang et al. 2021). Hybridization is a surface modification
method that exosomes combined with fusogenic liposomes,
which is facilitated by the lipid nature of the exosome’s
membrane (Choi et al. 2021). Exosome-liposome hybridi-
zation strategy have been applied to optimize the exoso-
mal surface characterization to modify immunogenicity,
improve colloidal stability, increasing their half-life in
blood, and target cell uptake (Choi et al. 2021). The using
an exosome-liposomes hybrid system called EXOPLEXs,
large molecules can be delivered efficiently without com-
promising the exosome membrane structure (Goh et al.
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Fig. 3 Physical treatment methods of exosomes for improving thera-
peutic efficacy. Cargo loading into exosomes is performed through
direct physical treatments. This is further facilitated through exoso-
mal membrane pores generated by surfactant treatment, sonication,

2018). A hybrid membrane strategy is possible to modify
the exosome surface by fusion with liposomes containing
multiple ligands or polyethylene glycol (PEG) or to deliver
the CRISPR-Cas9 system for targeted gene editing (Liang
et al. 2021). The researcher evaluated several methods to
encapsulate the CRISPR—Cas9 technology into extracellular
vesicles, and found that exosome-liposomes hybrid system
could become a unique technique to deliver the CRISPR-
Cas9 in in vivo and in-vitro models (Shafiei et al. 2021).
Since the lipid composition has a major role to target
cell uptake, exosomes hybridization can modify plasma
membranes and facilitate their transfer into the target
cell (Liang et al. 2021). For instance, it was shown that,
exosomes hybridized with neutral or anionic liposomes

@ Springer
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and electroporation. In the same vein, during membrane recombina-
tion processes, cargo loading is enhanced via extrusion, freeze—thaw
treatment, and dialysis

had a higher cell uptake capability by carcinoma cell (Choi
et al. 2021). Moreover, hybridization increases exosomes
size, that contribute to decreases the in vivo retention, on
the other hand it can improve the large cargos or drug
encapsulation efficiency which is not possible in native
exosome due to their small size (Choi et al. 2021). Addi-
tionally, the hybridization through PEG, can protect the
hybrid system from immune cells via forming a hydra-
tion layer. Therefore, the engineered exosomes have
higher stability and a longer turnaround time (Weng et al.
2021). Attenuation of exosome biological functions, due
to altering the integrity and direction of membrane pro-
teins, is considered as a drawback of this method (Choi
et al. 2021). In addition, after coincubation, exosomes
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separation from unbound lipid vesicles is fundamentally
impossible (Gorshkov et al. 2022).

Genetic engineering

Using the gene modification techniques, target genes have
been promoted to insertion, deletion, or modification at spe-
cific sites in the genome and have improved exosome func-
tionality (Damasceno et al. 2020). Generally, this approach
is achieved by loding cell with expression vectors (plasmid/
virus) with target genes which is fused with various pre-
sented proteins in the exosomal membrane (Jia et al. 2021).
Transfected cells were able to secrete exosomes with the
targeting peptides on their surface (Richardson and Ejima
2019).

The viral transduction-based strategy is considered for
delivery systems, due to stable and definite transfection
properties (Chen et al. 2021b). Retrovirus, lentivirus, ade-
novirus, and adeno-associated virus have been extensively
used as viral vectors for gene delivery. After virus infection,
infected cells overexpress specific genes or regulate tran-
scription, which could be loaded into exosomes. Following
encapsulation, exosomes transport biologically-active viral
components to distant non-infectious cells (Sancho-Albero
et al. 2020). Viruses can enter the exosome biogenesis path-
way and viral RNA genome, microRNAs, and proteins are
incorporated into exosomes (Sancho-Albero et al. 2020).
Therefore, by manipulating this process, exosomes can be
modified to target the delivery of the drugs or genes of inter-
est (Gilligan and Dwyer 2017). Viral transduction is suitable
for a loading of variety of cells, which is inefficient with
chemical transfection (Chen et al. 2021b). However, the viral
transduction-base strategy is laborious and time-consuming,
and its mechanism is unclear. In addition, the risk of patho-
genicity and teratogenicity of viruses in exosomes requires
further studies (Chen et al. 2021b). Thus, tissue specificity,
non-immunogenicity, and non-toxicity are key factors of
gene delivery vectors that determine their clinical applica-
tion (Chen et al. 2021b).

Therapeutic genome editing enhances the ability of
genome editing instruments to modify flawed genes corre-
lated with the pathology of diseases. One such technology
CRISPR/Cas9 is widely used for the treatment of infectious
diseases, genetic diseases, and tumors because it is highly
specific and efficient (Duan et al. 2021). CRISPR/Cas9 con-
tains two components including Cas9, which is an RNA-
guided endonuclease that can cleave double-stranded DNA,
and a 20-nucleotide-long synthetic guide RNA (sgRNA)
responsible for programming Cas9 sequence specificity
for DNA cleavage (White et al. 2017). Cell genome can be
modified at the location of interest by delivering the Cas9
nuclease complexed with a sgRNA into a cell, which allows
for removal or in vivo editing of existing genes. Choosing an

appropriate delivery vehicle to unlock the enormous trans-
lational potential of CRISPR/Cas9 for in vivo gene therapy
is the major drawback of this approach, though consider-
able developments have been made in this area (Duan et al.
2021). To deliver CRISPR/Cas9 payload, an ideal vector,
either viral or nonviral, can be used that is consistent, safe,
non-immunogenic, and effective yet minimizes off-target
activity and maintains targeting specificity. However,
restrictions arising from the application of viral and nonvi-
ral vectors in gene therapy are solved using exosomes as a
promising alternative delivery platform for CRISPR/Cas9
(McAndrews et al. 2021).

Exosome engineering for targeted delivery
to specific tissues or cells

While some research suggests exosomes are ineffective
at targeting cells, others show that they are excellent car-
riers for targeted delivery (Chen et al. 2021b). Exosomes
derived from different cells and under specific conditions
may be home to the specific sites. Exosome targeting as drug
delivery platforms, can be enhanced by selecting specific
exosome donors or bioengineering techniques (Chen et al.
2021b). In this regard, the exosome surface can be modified
with homing-molecules through ligands, magnetic materials,
charge affinity and pH-responsive motifs (Fu et al. 2020).
Finally, by packing the drug into the modified exosomes,
a targeted carriers to desired cell/organ can be achived that
have play a better effect in clinical treatment (He et al. 2021).
Due to drug accumulation in the target sites, the efficacy
of exosomes could be improved, and the off-target effects
reduced (Mosquera-Heredia et al. 2021). In the following
sections, the techniques for improving the targeted delivery
are discussed (see Table 2).

Ligand-receptor binding-based targeted delivery

Generally, various methods of cell-exosome interaction
have been proposed. Exosomes enter the target cells through
endocytic mechanisms such as micro- and macro-pinocyto-
sis or phagocytosis and clathrin-/caveolin-mediated endocy-
tosis. They, otherwise, release their content via extracellular
proteases-mediated cleavage. Exosomes are internalized into
the cells by fusing with the cellular membrane and activat-
ing specific signal pathways by ligand-receptor interaction
(Gomari et al. 2018). These specific mechanisms endow
their potential targeting capacity for delivering an extensive
range of molecules. Today, targeted delivery based on ligand
mediation is considered as a promising approach to drug
delivery (Fu et al. 2020). Exosomes displaying targeting
ligands are modified through various molecule conjugation
approaches such as transfection and chemical modification
(Liang et al. 2021).
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The genetic modification can be used through transfecting
genes encoding targeting moiety (e.g., peptides, receptors
and antibodies) that is fused with different membrane pro-
teins of exosome (Choi et al. 2021). As shown in Table 2,
generally two categories of transmembrane proteins are used
for surface modification. First, the non-specific proteins that
are presented on the different exosomes. Lysosome-asso-
ciated membrane protein 2b (Lamp2b) and the tetraspanin
superfamily proteins as the most important examples of
these proteins are often chosen for exosomal modification
(Armstrong et al. 2017). The N-terminus of Lamp2b, as an
extracellular surface protein, can be appended with targeting
sequences. Additionally, the tetraspanin protein family such
as CD63/CD9/CD81 with four transmembrane domains are
widly used for modification and protein fusion (Armstrong
et al. 2017).

As a second categories of transmembrane proteins for
exosome modification, can be referred to receptor membrane
proteins that are present on specific exosomes [e.g. the epi-
dermal growth factor receptor (EGFR), platelet-derived
growth factor receptor (PDGFR), human epidermal growth
factor receptor 2 (HER2), and Glycosylphosphatidylinositol
(GPI)] (Chen et al. 2021b).

A wide range of bioactive ligands have been embedded in
exosomes through modification strategies (Nan et al. 2022).
Using antibodies is the most direct strategy for improving
exosome targeting. Nevertheless, due to some limitation
of antibodies including large size, complex structure and
immune response induction, simpler fragments of antibod-
ies such as single domain antibodies (sdAbs) or single chain
variable fragments (scFvs) hav been widely used (Pham
et al. 2021). In comparison, targeting peptide due to small
size and lower immunogenicity have been utilized as car-
riers to target tumor-associated receptors (De et al. 2014).
Receptor-targeting peptides can be used for improving effec-
tive accumulation of drugs at the site of interest (Liu et al.
2021). For example, as a shown in Table 2, RGD (Arg-Gly-
Asp) peptide, a tripeptide motif, through specific binding to
target integrin receptors and mesenchymal-epithelial transi-
tion factor (c-Met) binding peptides via target c-Met bind-
ing have been shown interesting results in glioblastoma and
breast cancer targeted therapy (Tian et al. 2014; Zhou et al.
2019). Nucleic acid aptamers, as chemical antibodies, are
synthetic single stranded DNA or RNA molecules with high
affinity to their targets. Aptamers widely utilized in exoso-
mal surface modification for targeted delivery due to their
advantages including small size, low immunogenicity and
simple chemical modification (Table 2) (Nan et al. 2022).
Although, the specificity of this approach may offer some
interesting in vivo opportunities, but the major downside
is the synthetic challenge and cost of presenting functional
ligands on the exogenous material, that should be adderessed
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(Armstrong et al. 2017). The loss of in vivo targeting effi-
cacy due to immune response clearance, or enzymatic cleav-
age is considered as another limitations of aptamers in clini-
cal use (Dutta and Paul 2022).

Chemical strategy

Despite the little information available, some chemical
approaches can be used to display various natural and
synthetic ligands via lipid assembly or conjugation reac-
tions (He et al. 2021). Click chemistry which has described
in previose section are applied to conjugate the small or
macromolecules that would act as ligands on target cells
(Said Hassane et al. 2006). Many different kinds of tar-
geting moieties can be introduced by click chemistry for
delivery systems. The molecules most investigated for tar-
geting are folates, biotin, carbohydrates or polysaccharides
(e.g. hyaluronic acid), cell-binding peptides (e.g. integ-
rin ligands and cell-penetrating peptides), proteins (RGD
peptides, cell-penetrating peptide (CPP)), monoclonal-Abs
and oligonucleotides and aptamer (Taiariol et al. 2021).
The select of these molecules is related to the varied size
ranges, and composition of homing-molecules (Dutta and
Paul 2022).

The pH gradient/surface charge-driven targeted delivery
is another methods. As an instance, because of the acidic
microenvironment around the tumor cells, due to exces-
sive lactate formation and intracellular glycolysis, the pH
level in tumor microenvironment is lowered compared to
normal tissues, thereby conjugation of exosomes with pH-
responsive systems of drug delivery has been considered
as a controlled manner at a specific site and time (Table 2)
(Fu et al. 2020; Yu et al. 2014).

The surface charge or lipophilicity of exosomes is
involved in their cellular internalization, distribution, and
targeting to desired organ/cells (Fu et al. 2020). There-
for, by optimizing the surface charge, the targeting effi-
ciency of exosome could be controled toward the desired
organs (Blanco et al. 2015). It is shown that positively
charged exosomes mainly locate in the lungs, while ani-
onic exosomes predominately accumulate in liver or kid-
ney (Hwang et al. 2019). It has also been reported that, the
fate of exosomes can be controlled with inherent charges
of fluorescence probe. For instance, systemic administra-
tion of zwitterionic fluorophore-coated exosomes result
in renal clearance with minimum non-specific uptake in
major organs (Blanco et al. 2015). Additionally, surface
charge modification of nanoparticles can be affected in dif-
ferent immunological processes. It is documented that cati-
onic nanoparticles preferentially induce lung dendritic cell
mediated immune responses wherase anionic formulations
uptacked by alveolar macrophage exhibit less immunity
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induction (Hwang et al. 2019). In addition, since nanopar-
ticles with negative charge can evade from mononuclear
phagocyte system, therefore, the specific surface charge of
nanoparticles may affect their serum-protein interactions,
circulation time, and homing (Hwang et al. 2019).

Physical strategies

Using physical strategies, the targeted delivery is expected
to be realized using an external magnetic field. This way, to
achive targeting delivery of drugs, the equipped exosomes
with superparamagnetic nanoparticles are directed towards
desired locations through a external magnetic force (Hwang
et al. 2019). Equipped exosomes with magnetic particles
like superparamagnetic iron oxide nanoparticles (SPIONs),
is injected into the patient’s blood circulation system and
an external magnetic force is applied at the specific site
(Table 2) (Ahmad et al. 2013). Simplicity and widespread
use are the prominent features of this approach, but the short
lifetime of magnetic materials and the unintended side effect
of the magnetic nanoparticles on the exosomes’ function
require further research (Fu et al. 2020).

Exosome engineering for prolonging circulation

Exosome size allows them to diffuse passively into tumors
through the enhanced permeability and retention (EPR)
effect. However, several studies showed conflicting results
regarding biodistribution and the arrival of exosomes at the
target tissues (Aryani and Denecke 2016; Park 2013; Taka-
hashi et al. 2013). Although cell source has a pivotal role in
exosome biodistribution pattern, a significant proportion of
injected exosomes is distributed systemically in the lung,
liver, spleen, and gastrointestinal tract. Macrophage capture
has a major role in exosome clearance of circulation (Chen
et al. 2021b). These challenges might arise from a lack of
sufficient information related to distribution, half-life, blood
level, and urine clearance of exosomes (Yang et al. 2018).
Biodistribution analysis of exosomes is critical to evaluate
the effective dose and potential side effects associated with
exosome applications (Das et al. 2018). Several reports dem-
onstrated new strategies to modify exosome surface struc-
tures to effectively track exosomes in vivo and improve their
biodistribution (Hu et al. 2015; Zhang et al. 2021a, b).

The biodistribution of exosomes can be modulated by
engineering various factors such as bioactive ligands or
synthetic molecules. Targeting of exosomes, not only
increase the efficiency of exosome delivery, before being
taken by the phagocyte cells, but also reduce out-of-target
side effects through reducing the therapeutic dosage (Baek
et al. 2019). Other strategies are needed to enhance the
stability of exosomes (Meng et al. 2020). Further clinical
applications of exosomes can focus on their manipulation

to increase their lifetime in circulation while reducing their
immune clearance (Chen et al. 2021a, b). This approach can
be obtained through mimic the mechanisms used by cancer
cells to hide from the immune system, via the expression of
CD47, PD-L1, CD31, and CD24 molecules (Parada et al.
2021b). Phagocytosis inhibition through integration of some
molecules associated with the “don’t eat me” (such as CD47,
CD24, CD31, CD44, PD-L1, p2M, Appl and DHMQ),
would allow greater systemic bioavailability of the modi-
fied exosome due to their longer residence time in circulation
(Parada et al. 2021b). For example, exosomes containing
CD47 facilitate protection against phagocytosis by interact-
ing with the a-ligand signal-regulating protein (SIRPa), and
can be encouraging techniques to lengthen the biodistribu-
tion of exosomes. In addition, modified exosomes with some
synthetic materials such as polyethylene glycol (PEG), can
be used to coating the exosome to regulate their pharmacoki-
netics and biodistribution. PEGs, as a low toxicity chemical
polymer, have demonstrated membrane-protective effects in
a variety of cells or organs against various insults (Ferrero-
Andrés et al. 2020). Nevertheless, cellular binding might be
intervened because of PEG's shielding properties (H. Chen
et al. 2021b). In addition, anti-PEG IgM is another chal-
lenge that contributor to the accelerated blood clearance of
PEGylated nanoparticles (Mima et al. 2015).

Exosome engineering for large-scale production

One of the major drawbacks of using exosomes as delivery
agents is their low extraction yield efficiency and conse-
quently low encapsulation agents. Most exosome isolation
techniques are labor-intensive, complex, and inefficient
(Akuma et al. 2019). Scalable production and isolation of
exosomes with high yield and purity while maintaining their
structure is the main challenge associated with exosome-
based therapies. Additionally, the isolation method must
be cost-effective, and compatible with a high-throughput
production process (Maumus et al. 2020). Generally, two
major strategies have been used to increase exosome pro-
duction (Jafari et al. 2020). First, some strategies, including
genetic engineering to overexpress activator genes involved
in exosome biogenesis and downregulate the related genes in
exosome recycling pathways. Second, cell culture manipula-
tion, and treatment with specific drugs (Jafari et al. 2020).
In addition, the three-dimensional culture system can be
another effective strategy to increase exosome production
for the clinic (H. Chen et al. 2021b). In the following, we
will discuss different types of methods to highly pure exo-
some isolation.
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Genetic manipulation

As discussed earlier, exosome production can be improved
through the manipulation of key genes involved in exosome
biogenesis and recyclin. Some key genes that contribute
to plasma membrane binding, trafficking, packaging, and
secreting exosomes can be genetically modified through
downregulation or overexpression, and this leads to an
increase in the efficiency of exosome production (Jafari et al.
2020). For example, genetic manipulation via biogenesis
activation (e.g., overexpression of heat shock protein (HSP),
tetraspanin) and inhibition of exosome recycling [e.g., nega-
tive regulation of phosphoinositide kinase, FY VE-type zinc
finger (PIKfyve)] can significantly increase exosomes secre-
tion (Chen et al. 2021b).

It was reported that, overexpression of HSP 20, as a pro-
tective protein against different pathological conditions and
stress, resulted in increase exosome formation via interaction
with tumor susceptibility gene 101 (Tsgl101) (Jafari et al.
2020). The tetraspanins proteins are involved in cellular
signaling and ESCRT-independent exosome biogenesis. The
overexpression of TSPANG and tetraspanin CD9 can release
more exosomes, through interactions with multifunctional
cytosolic adaptor (Guix et al. 2017; Schiller et al. 2018).
Negative regulation of PIKfyve in the human prostate can-
cer epithelial cell line, have positively affect in the exosome
production (Hessvik et al. 2016).

Exosome production can be manipulated by modifying
the environment and cellular components involved at the
beginning, middle, and end of the endolysosomal pathway to
enhance ultimate function (Phan et al. 2018). For example,
activation of P2X7 receptors (P2X7R) is associated with
endosomal content sorting, fusion with the multivesicular
body, and exosome secretion (Qu and Dubyak 2009). NSF-
binding protein receptors (SNARES) and tumor suppressor
activated pathway-6 (TSAP6) are respectively involved in
the integration of the multinodular body into the plasma
membrane and exosome release regulation (Phan et al.
2018). As part of the exosome trafficking activity, these
proteins can mediate multivesicular body integration to
the plasma membrane and more exosome secretion. Over-
expression of regulatory lipids, such as the phospholipase
D2 (PLD2), gene secondary messengers involved in endo-
cytosis and exocytosis, improves cells' exosome secretion
(Laulagnier et al. 2004). It was shown that PLD2 activity
in cells was correlated to the amount of exosome released
(Laulagnier et al. 2004).

Exosomes mimics/mimetics
The small production of exosomes by parent cells and low

loading efficiency, as a major barrier to their translation to
the clinic, can be addressed by exosome-mimetic vesicles.
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Given that not all of the exosome's components are required
for their proper functioning, engineered exosome-mimics
could be a novel platform for the delivery of functional com-
ponents and drug molecules (Kooijmans et al. 2012). These
engineered exosomes can be generated via serial extru-
sion or cell membrane-cloaked nanoparticles or assembly
of liposomes harboring only crucial components of natu-
ral exosomes (Kooijmans et al. 2012; Modani et al. 2021).
The cells or plasma membrane are extruded through 100—
400 nm porous membranes to generate spherical nanovesi-
cles or membrane-enclosed polymer nanoparticles (Wang
et al. 2021). Exosome mimetics can be easily produced with
a 100-fold higher yield than naturally exosomes which rep-
resents them as advantageous in clinical-scale production
(Jang and Gho 2014). Exosome mimetics have stability, dis-
tribution, and immuno-compatibility similar to exosomes
but with less complexity than exosomes. These membrane-
bounded exosomes can also be modified to improve their
cellular uptake and targeting properties (Wang et al. 2021).
Besides, the inclusion of specific peptides onto the cell
membranes makes exosome-mimics as suitable vehicles
to deliver pharmaceutics in an effective and safe manner
(Kooijmans et al. 2012). It is also possible to easily modify
exosomes by fusing modified cells-derived exosomes with
liposomes embedded with antibodies, peptides, or PEG (Das
et al. 2018). The use of exosome mimetics would be more
controllable and scalable for clinical settings (Aryani and
Denecke 2016). However, exosomal components that are
likely to be required for the assembly of functional exosome
mimetics are not yet well defined (Kooijmans et al. 2012).

Biomaterial and modification in culture method

3D-culture method Cell-to-cell contact supports cell dif-
ferentiation and immunomodulation potential, which is not
appropriately reflected in the 2D culture methods (Brennan
et al. 2020). Therefore, better physiological in-vitro condi-
tions can be achieved either using 3D matrices or scaffold-
free (i.e., spheroids) (Egger et al. 2018). Using a 3D cul-
ture, the limited surface area can be maximized for exosome
yield, but the resulting value falls far apart from the large-
scale production value. The microcarriers and hollow-fiber
bioreactors are currently used to expand large-scale cells in
a 3D environment (Maumus et al. 2020; Vymetalova et al.
2020). A higher cell yield in a shorter time with less con-
tamination risk is the advantage of this method (Maumus
et al. 2020; Phan et al. 2018). Microcarriers are small beads
manufactured from various materials with different pore
sizes and surface characteristics that could support high-
scale yield within a shorter incubation time (Maumus et al.
2020). Since the cells are much more metabolically active in
this method, more nutrients are required to change the cul-
ture medium frequently (Maumus et al. 2020). It has been



Exosome engineering in cell therapy and drug delivery

163

reported that 3D spherical culture, in addition to improv-
ing exosome production, induces the therapeutic potential
of MSCs, including anti-inflammatory and proangiogenic
functions (Lee and Kang 2020; Zimmermann and McDevitt
2018).

Biomaterials Biomaterials affect the secretion of
exosomes and their biological function (Wu et al. 2021).
As a bioactive scaffold, they are involved in cell culture
and improve the engraftment and function of transplanted
cells by providing a desirable microenvironment (Zhang
et al. 2021a, b). Cell incorporation into the structured and
modified biomaterials provides a protective microenviron-
ment and mimics the natural extracellular matrix (ECM)
(Xu et al. 2019). Due to the important role of the bio-
materials on lineage specification, the mechanical, chemi-
cal, electrical, and morphological properties need to be
embedded in the design of new scaffolds (Xu et al. 2019).

Current challenges in exosome-based
therapies

The heterogeneity of exosomes

Because cells release large numbers of exosomes with
diverse biological effects, the biggest challenge at this
stage is addressing the heterogeneity of secreted exosomes.
Exosome-based therapy requires a better understand-
ing of the biogenesis, composition, and heterogeneity
of exosomes (Willms et al. 2018). Although exosomes
derived from similar cells were expected to be of identi-
cal composition, the results showed that these exosomes
could have different molecular compositions, as well as
targeting moiety. Exosome heterogeneity introduces an
extra level of complexity in their design and dose stand-
ardization and delivery in clinical approaches. Exosome
heterogeneity can be explained by ESCRT (endosomal
sorting complex required for transport)-dependent and
-independent pathways, as a key mediator of MVBs bio-
genesis (Yang et al. 2018). Therefore, deeper research of
the heterogeneity and cargo composition of the exosome
is critical not only to identify suitable subpopulations for
specific therapeutic purposes but also to prevent the side
effects associated with heterogeneity. So, improving the
sensitivities and characteristics of exosome heterogene-
ity detection methods is critical for a better understand-
ing of exosome characterization in both physiological and
pathophysiological processes, and finally, accelerates the
expansion of their therapeutic and diagnostic applications
(Willms et al. 2018).

In addition to the high-scale production of exosomes,
their purity and physicochemical properties are affected
by choice of isolation methods. The subpopulations of the
exosomes collected using different separation methods are
variable. This heterogeneity can be effective in the thera-
peutic potentials of isolated exosomes. Thus, optimizing
the isolation method is important not only to preserve the
properties of the exosomes but also to reduce the associ-
ated side effects (Yamashita et al. 2018).

Choice of cells

Cells with varying functions are reported to secret exosomes,
but the question of what the ideal cell is for our research is
yet to be answered (Wei et al. 2021a, b). Due to the impor-
tance of the composition and surface markers of exosomes
in their function, depending on the source cell, therapeu-
tic approaches can benefit significantly from the biologi-
cal characteristics of exosomes isolated from different cell
types (Luan et al. 2017). The in vivo behavior of exosomes
is subjected to the characteristics of parent cell. For exam-
ple evidence shown the different pattern distribution from
transplanted bone marrow dendritic cells, melanoma and
muscle cell-derived exosomes in the spleen, lung and liver,
respectively (Hwang et al. 2019). It was also reported that
neutrophil-derived exosomes have blood—brain barrier pen-
etration capability, and can be used for drug delivery enter
into brain and target to glioma (Nan et al. 2022).

In addition, the functional characteristics of exosomes
is depending on their origin (Lee et al. 2022). The use of
tumor-derived exosomes to deliver therapeutic agents such
as chemotherapeutic or anti-cancer agents or to develop
vaccines for immunotherapy can be interesting from differ-
ent aspects. Tumor exosomes can induce the immune sys-
tem against tumor cells by carrying tumor-associated anti-
gens as well as MHC class I molecules. The self-tolerance
in tumour microenvironment dampens the therapeutic effect
of T cell responses (Perocheau et al. 2021). Due to counter-
act tumour immunosuppressive microenvironment by acti-
vation of immune response, tumour-derived exosomes can
address limitation in current immunotherapies (Perocheau
et al. 2021). Additionally, due to tumor- specific target-
ing capabilitie and preferential tropism of tumour-derived
exosomes towards their parent cell type, choosing appropri-
ate sources could be important for further studies (Xu et al.
2020). Nevertheless, tumor exosomes are risky and may
potentially threaten patients' health. Hence, the application
of tumor exosomes can be avoided since different cell types
give rise to exosomes (Luan et al. 2017). Exosomes are
released from different cell lines, but the rate at which they
are released and the extent to which they are susceptible
to modifications vary significantly (Garcia-Manrique et al.
2018). The red blood cell (RBC)-derived exosomes were
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suggested as a delivery vehicle with several advantages
(Kim et al. 2021a, b). The blood units are easily avail-
able source from blood banks and patients. Since RBCs
are enucleated cell types, so reduced gene-related risks
including horizontal gene transfer are expected. In addi-
tion, the possibility of immunogenic responses risks can be
minimized through matching blood types between donors
and recipients (Kim et al. 2021a, b). Another economically
practical and scalable source of exosomes for alternative
therapeutic options is agricultural products such as fruits
and milk. Theses exosomes loaded with various drugs
are considered as a strategy for the mass production of
exosomes. These exosomes may be highly productive and
have safety profiles, but they fail to boosting host immune
system (Luan et al. 2017). Immune cell-derived exosomes
have received great attention for drug delivery and vaccina-
tion. Exosomes derived from monocytes and macrophages
have longer stability by escaping phagocytosis, which
increases their efficiency. Also, exosomes derived from DC
for vaccine delivery cells have been shown to facilitate
tumor rejection by transferring peptide-MHC complexes to
other DCs, not in contact with the same antigen (Luan et al.
2017). Among various cell types, mesenchymal stem cells
(MSCs) are also considered the most promising sources
of exosomes for clinical application in that they can be
isolated from many tissues and have a high ex vivo expan-
sion capacity (Lee et al. 2021; Sadeghi et al. 2020a, b). In
addition, their immunomodulatory effect is important in
autologous and allogenic therapeutic applications.

Choosing loading procedures

Specifically targeted designer exosomes that represent cer-
tain cargos through genetic engineering and some chemi-
cal/mechanical methods can prove very helpful in meeting
medical challenges in today’s world (Kalluri and LeBleu
2020; Liao et al. 2019; Zhang et al. 2019). Different load-
ing strategies of exosomes not only expand loading effi-
ciency but also can partially resolve the integrity and bio-
logical limitation of exosomes (Xu et al. 2020). Therefore,
the appropriate method or new development strategy must
be carefully evaluated, considering advantages and limita-
tions. For example, multiple loading methods and a com-
bination of several strategies are effective in increasing the
loading potential (Xu et al. 2020). However, despite great
progress, the specific exosome modification to enhance
the targeting ability is unclear and needs to be studied
(Xu et al. 2020). Also, the possible risk of changing exo-
some content or protein composition, impaired biological
responses, and promiscuous interactions during modifica-
tion should also be considered (136). Therefore, care must
be taken in choosing the transformation method to achive
better encapsulation or loading efficiency with the least
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influence on the exosome composition, integrity and mor-
phology (Liu and Su 2019).

Additionally, all these loading modifications can be
affected by exosome quality, purity, and their storage condi-
tions. Therefore, future studies shoulb be focused to control
these factors and estimate the therapeutic dose of exosomes
for drug delivery (Mosquera-Heredia et al. 2021).

Exosome administration routes

Given that the biological effect of exosomes is exerted by
their uptake by target cells, knowledge of the biological dis-
tribution of exosomes is required for therapeutic applica-
tion. Different administration routes are effective for rapid
clearance, biological distribution, and therapeutic effects of
exosomes (Zhang et al. 2020). Due to the lack of proper lym-
phatic and vascular drainage in solid tumors, the intravenous
injection can be effective in the extravasation and retention
of the exosomes on the tumor side. Also, the short half-life
index of circulating exosomes is one of the major limitations
of this route administration (Kucuk et al. 2021). Addition-
ally, the accumulation of intravenously injected exosomes
in the liver, spleen, and lung may be due to increased vas-
cular permeability resulting from injury and inflammation
(Yamashita et al. 2018). Although, the use of PEGylating
can address this limitation by preventing the rapid clear-
ance of exosomes from circulation (Kucuk et al. 2021).
Local injection and direct injection of loaded exosomes
with a therapeutic or targeting agent is a suitable adminis-
tration route for the specific delivery of therapeutic agents to
desired sites (Kucuk et al. 2021). The possibility of loading
larger doses of exosomes is approached by the intraperito-
neal route; however, due to the large area of the peritoneal
cavity, injected exosomes rapidly dilute and spread to more
distant sites (Kucuk et al. 2021). Although oral adminis-
tration is easy and convenient, enzymatic activity, severe
acid—base changes, intestinal barrier, and intestinal micro-
flora are problems regarding exosome delivery to the target
tissue (Kucuk et al. 2021). The intranasal administration is
a more effective route, particularly in overcoming the chal-
lenges associated with drug delivery across the blood—brain
barrier (BBB). This route avoids intestinal and hepatic
metabolism of the exosome, thereby preserving exosomal
vesicles in brain tissue (Kucuk et al. 2021). The non-inva-
sive administration by inhalation is one of the most effective
routes of therapeutic agents for various lung diseases. The
effectiveness of this administration route is closely related to
the properties and amount of drug uptake by receptor cells,
respiratory tract geometry, breathing pattern, and mucocili-
ary clearance (Sajnani et al. 2021). Particularly, in COVID-
19, inhalation of MSC-derived exosomes significantly pro-
moted lung repair (Sajnani et al. 2021).
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Conclusion

The ideal properties of exosomes make them unique car-
riers for drug delivery purposes. However, in the field of
exosome-based therapy, there are several challenges such
as short circulating half-life, low targeting, and poor effi-
ciency that limit their applications. Exosome engineering
and incorporation of cargo have proven to be successful in
engineering exosomes with desirable diagnostic and thera-
peutic attributes. The engineering technology with homing
peptides or specific ligands and component modifications
facilitates exosomes’ biodistribution and improves their
therapeutic efficacy. The bioengineering approaches can also
enhance targeted delivery outcomes and allow using reduced
doses of therapeutics, which is critical to their clinical appli-
cation. Nevertheless, there are still obstacles that need to
be removed. For example, various exosome functionalities
arising from different sources and the number of exosomes
to get a desired therapeutic effect have not been fully studied.
Also, the heterogeneity of diseases is a critical key that may
affect the therapeutic outcome, and knowledge about exo-
some modification to have a high degree of specificity for
a specific target is unclear (Von Schulze and Deng 2020).
Also, cell surface markers of particular interest need to be
identified to develop highly specific exosomes that can be
used as effective drug carriers. Despite some potential set-
backs and challenges, exosomes promise a potent application
in clinical setting and further studies are required to assess
the safety and efficacy of a new generations of exosome, and
to assess the differences between exosomes secreted by dif-
ferent cell types, the composition of these vesicles, and their
biological destiny after delivery into the body.
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