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Abstract
The causative agent of CoV disease 2019 is a new coronavirus CoV type 2, affecting the respiratory tract with severe 
manifestations (SARS-CoV-2). Covid-19 is mainly symptomless, with slight indications in about 85% of the affected cases. 
Many efforts were done to face this pandemic by testing different drugs and agents to make treatment protocols in different 
countries. However, the use of these proposed drugs is associated with the development of adverse events. Remarkably, the 
successive development of SARS-CoV-2 variants which could affect persons even they were vaccinated, prerequisite wide 
search to find efficient and safe agents to face SARS-CoV-2 infection. Obeticholic acid (OCA), which has anti-inflammatory 
effects, may efficiently treat Covid-19. Thus, the goal of this perspective study is to focus on the possible medicinal effec-
tiveness in managing Covid-19. OCA is a powerful farnesoid X receptor (FXR) agonist possessing marked antiviral and 
anti-inflammatory effects. FXR is dysregulated in Covid-19 resulting in hyper-inflammation with concurrent occurrence of 
hypercytokinemia. Interestingly, OCA inhibits the reaction between this virus and angiotensin-converting enzyme type 2 
(ACE2) receptors. FXR agonists control the expression of ACE2 and the inflammatory signaling pathways in this respiratory 
syndrome, which weakens the effects of Covid-19 disease and accompanied complications. Taken together, FXR agonists 
like OCA may reveal both direct and indirect impacts in the modulation of immune reaction in SARS-CoV-2 conditions. It 
is highly recommended to perform many investigations regarding different phases of the discovery of new drugs.
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Introduction

Wuhan, China, in December 2019 was the first place for detec-
tion of coronavirus disease with serious respiratory manifesta-
tions (Al-Kuraishy et al. 2021d). The World Health Organiza-
tion (WHO) at the beginning of 2020 named it CoV disease 

2019 (Al-Kuraishy et al. 2021c). SARS-CoV-2 utilizes spe-
cial receptors to enter human cells and ACE2 is one of the 
main receptors (Onohuean et al. 2021). The binding of this 
pandemic virus to ACE2 results in a series of inflammatory 
cellular incidents with pathological consequences resulting 
in cell deterioration and augmented inflammation response. 
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A few different cellular systems such as neurons, pulmonary 
alveolar cells, and cardiomyocytes have ACE2 in which it is 
widely expressed and distributed (Al-Kuraishy et al. 2020a; 
Elekhnawy and Negm 2022). It is notable that Covid-19 
first introduced clinically asymptomatically, with reasonable 
symptoms occurring in approximately 85% of affected people. 
Manifestation of symptoms may be moderate-to-severe due 
to the production of acute lung damage recognized in 15% 
of cases (ALI). Furthermore, because of the development of 
acute respiratory distress syndrome (ARDS), 5% of Covid-19 
affected persons may be serious cases and require help with 
ventilation (Al-Kuraishy et al. 2021a).

The genetic similarity of coronaviruses of Middle East 
(MERS-CoV) and the Covid-19 is 80 and 60%, respectively, 
so they are well matched with one another (Al-Kuraishy 
et al. 2021e). Besides, the close similarity of SARS-CoV-2 
to bat CoV by 96% was detected at at the genomic level 
(Al-Kuraishy et al. 2021b). However, SARS-CoV-2 has a 
20-fold more binding affinity for ACE2 than other CoVs, 
which gives rise to a reduction of efficient receptors (Al-
Kuraishy et al. 2021e). Angiotensin II (Ang II), a vasocon-
strictor, is transformed by the enzyme ACE2 to the vasodila-
tors Ang1-7 and Ang1-9. Consequently, the SARS-CoV-2 
infection causes vasoconstriction leading to the advance of 
oxidative stress, inflammatory diseases, and endothelial dys-
function (ED) (Al-Kuraishy et al. 2021g). These pathophysi-
ological changes produce hypoxemia, and immune system 
overreaction, and lead to systemic and cardiac outcomes 
(Al-Kuraishy et al. 2022a).

Different drugs and agents have been repurposed in 
managing Covid-19 since the emergence of this pandemic 
(Al-Kuraishy et al. 2020b). Nevertheless, using these repur-
posed drugs like hydroxychloroquine and azithromycin is 
accompanied by adverse effects (Lane et al. 2020). Sys-
tematic reviews also confirmed the ineffectiveness of most 
repurposed drugs in managing Covid-19 (Kamarullah et al. 
2021). Interestingly, the appearance of corona virus variants 
with recurrent infection, even in vaccinated persons, needs 
more searches to find harmless and efficient drugs or agents 
against this virus infection (Tay et al. 2022). The current 
study focusses on one of these agents, which is obeticholic 
acid (OCA), which was previously reported to possess anti-
inflammatory effects against various intestinal and liver 
diseases (Chen et al. 2016). Thus, this perspective aimed to 
focus on the possible therapeutic efficacy of obeticholic acid 
(OCA) in managing Covid-19 infection.

Pharmacology of obeticholic acid (OCA)

As illustrated in Fig. 1, OCA is a dihydroxy-5-β-cholanic 
acid, a synthetic derivative of bile acid that works as a natu-
ral legend for farnesoid X receptor (Markham and Keam 

2016). OCA lessens liver exposure to the impact of bile acids 
(Nevens et al. 2016). In addition, it binds and activates FXRs 
in the intestine and liver, leading to anti-inflammatory and 
anti-fibrotic impacts with modulation of metabolic profiles. 
It also inhibits the production of bile acids and increases 
their transport outside the hepatocytes (Chapman and Lynch 
2020). Activation of FXRs by OCA is 100 times higher than 
that exerted by chenodeoxycholic acid in attenuating intesti-
nal and hepatic inflammation and/or fibrosis (Fiorucci et al. 
2019). Through modulation of bile acid homeostasis, OCA 
effectively reduces cholestasis-induced liver inflammation/
injury. Thus, OCA is prescribed in managing primary biliary 
cholangitis, liver cirrhosis, portal hypertension, and non-
alcoholic liver inflammatory diseases (Hirschfield et al. 
2015; Neuschwander-Tetri et al. 2015).

OCA is highly absorbed from the small intestine when 
taken orally, and its maximum plasma level is reached within 
1.5 h with a biological half-life of about 24 h (Edwards et al. 
2017). OCA exerted a high volume of distribution expected 
at 618 L. It is mostly conjugated with taurine and glycin, 
processed by the liver, and excreted by the bile (Valluri et al. 
2021). Conjugated OCA in the intestines is reabsorbed by 
enterohepatic circulation, where the bacterial flora of intes-
tine participates in deconjugation. The reabsorption or 
elimination is done through feces of the deconjugated form 
(Edwards et al. 2016).

Moreover, OCA activitites FXR to induce the release of 
fibroblast growth factor 19 (FGF19) from the ileum, and 
downregulating the expression of hepatic CYP7A1 in the 
synthesis of bile acid (Edwards et al. 2017; Valluri et al. 
2021). In addition, OCA enlarges the expression of bile salt 
exporter protein (BSEP) and multidrug resistance 3 (MDR3) 
and permits bile acid efflux from the hepatocytes (Valluri 
et al. 2021). It also exerted an oppressive effect on trans-
forming growth factor beta (TGF-β) expression and hepatic 
stellate cell activation (Edwards et al. 2017; Valluri et al. 
2021), where OCA‘s net mode of action is illuminated in 
Fig. 2.

Fig. 1  Chemical structure of obeticholic acid (OCA)
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Anti‑inflammatory effects of OCA

OCA displayed a strong anti-inflammatory impact through 
the decrease of inflammatory signaling pathways in 
lipopolysaccharide (LPS)-induced ALI in mice (Fei et al. 
2019). Through stimulation of FXRs, OCA suppresses 
the expression of nuclear factor kappa B (NF-κB), p38 
mitogen-activated protein kinase (p38MAPK), and Akt 
phosphorylation (Fei et al. 2019). It motivates the dis-
charge of the anti-inflammatory cytokine, downregulating 
the expression of pro-inflammatory cytokines (Verbeke 
et al. 2016). It is worth stressing that FXR notably weak-
ens hepatic inflammation by supressing the expression of 
NF-κB (Verbeke et al. 2016). An experimental study pre-
viously conducted on OCA explored that it lessened liver 
damage triggered by thioacetamide and disallowed the 
progression of portal hypertension in rats (Verbeke et al. 
2016). Meanwhile, FXR knockout mice had a serious risk 
of evolving liver inflammation and fibrosis (Yang et al. 
2007). Besides, OCA exerted a suppression effect against 
oxidative stress and inflammation that, in turn, weakens 
acute kidney damage by sepsis (AKI) in mice (Zhu et al. 
2018). Acute kidney injuries caused by lipopolysaccha-
rides in mice experiment showed that OCA administra-
tion counteracts the progression of renal inflammation 
and dysfunction by decreasing the levels of chemokines 
and pro-inflammatory cytokines associated by supressing 
lipid peroxidation and NADPH oxidase activity (Zhu et al. 
2018).

In clinical settings, OCA efficiently lessens the inflam-
matory alterations noticed in diabetic patients through the 
modulation of lipid and glucose metabolisms (Mudaliar 

et al. 2013). Moreover, by stimulating nuclear hormone 
receptors, OCA could control insulin sensitivity and lipid 
metabolism in affected persons with hepatic steatosis 
(Mudaliar et al. 2013). A placebo-controlled trial includ-
ing patient with non-alcoholic fatty liver disease (NAFLD) 
displayed that treatment with variable doses of OCA led to 
the dose-dependent effect of OCA in the downregulating 
of liver fibrosis and inflammation (Mudaliar et al. 2013). 
Therefore, OCA could be a suggested drug for treating 
diabetic patients with NAFLD. Additionally, a placebo-
controlled trial phase 3 included 217 humans suffering 
from primary biliary cholangitis and disclosed that treat-
ment with OCA 10 mg/day with ursodiol or as a mono-
therapy for 1 month showed a significant decrease of liver 
inflammation (Nevens et al. 2016). It was found that OCA 
modulated the inflammation and immune response in per-
sons suffering from biliary cholangitis because it displayed 
anti-inflammatory and anti-fibrotic effects (Liver 2009).

The role of OCA against the process of inflammation is 
mainly arbitrated through the activation of FXRs, which 
are massively expressed in the intestine and liver (Fei et al. 
2019). Activated FXRs are translocated to the nucleus and 
bind DNA hormone response elements leading to reduc-
tion of cholesterol 7 alpha-hydroxylase and stimulation of 
small heterodimer partner (SHP), an intracellular transcrip-
tion factor of the nuclear receptor family (Yuk et al. 2016). 
SHP controls innate immune reaction and inflammation 
through supression of the production of toll-like receptor 
4 (TLR4) and nod-like receptor pyrin 3 (NLRP3) inflam-
masome (Yuk et al. 2016). In addition, SHP stops the trans-
location of NF-κB p65 from the cytoplasm and suppresses 
the release of cytokines that promotes inflammation. (Yuk 
et al. 2011). Activating FXRs may block cisplatin-induced 

Fig. 2  Mechanism of action of 
OCA in attenuating intestinal 
and hepatic inflammation and/
or fibrosis
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AKI via stimulation of SHP in mice (Bae et al. 2014). It has 
been detected that fenofibrate provokes the expression of 
SHP in the macrophages and hepatocytes via activation of 
adenosine monophosphate protein kinase (AMPK) (Chanda 
et al. 2009). Fenofibrate inhibits OS and inflammation by 
activating peroxisome proliferator activator receptor alpha 
(PPARα) (Enright et al. 2020). Notably, FXRs activate the 
expression of anti-inflammatory PPARα, and thus supress 
pro-inflammatory cytokines (Heitel et al. 2020). Further-
more, FXRs provoke the expression of cystic fibrosis trans-
membrane conductance regulator (CFTR), which controls 
intestinal homeostasis (Mroz et al. 2014). Harwood et al. 
(Harwood et al. 2021) formerly displayed that the activation 
of CFTR reduced lung inflammation in patients with cystic 
fibrosis. Meanwhile, mutation of CFTR provokes the expres-
sion and discharge of cytokines that promote inflammation 
(Mueller et al. 2011). Besides, OCA inhibits the discharge 
of pro-inflammatory cytokines from immune cells. It lessens 
the expression of TGF-β, tissue inhibitor of metalloprotein-
ase 1 (TIMP-1), and alpha-smooth muscle actin (α-SMA) 
via activation of FXR (Khanna and Jones 2017) (Fig. 3). 
Thus, OCA could probably induce anti-inflammatory effects 
with modulation of immune response via stimulation of 
SHP, PPARα, and CFTR.

Antiviral effects of OCA

The role of OCA to antagonize inflammation and the reac-
tive oxygen species may reveal marked antiviral effects. 
Notably, OCA suppresses the proliferation of human immu-
nodeficiency virus 1 (HIV-1) and its associated liver fibrotic 
alterations (New-Aaron et al. 2020). Therefore, OCA can 

invert HIV-1-induced pro-fibrotic alterations in the liver. In 
addition, OCA stops HIV-1 particle accumulation within 
the liver cells (Zhou et al. 2019). A recent study displayed 
that FXR agonists potentially affect the proliferation of the 
hepatitis B virus (HBV) (Erken et al. 2021). A double-blind 
placebo-controlled trial of 73 cases with HBV infection 
treated with FXR agonists for 35 days demonstrated that 
these agents efficiently lessened the hepatitis B surface anti-
gen (HBsAg) level relative to the placebo impact (Erken 
et al. 2021). FXR agonists interact with HBV viral proteins 
preventing their transcription and triggering off the reduc-
tion of HBV viral protein (Erken et al. 2021). These findings 
may explain the role of FXR agonists against viral infec-
tions, including OCA, to antagonize HBV infection.

Likewise, Kim et al. (Kim and Chang 2011) realized that 
FXR agonists supress the proliferation of rotavirus through 
modulation of intracellular lipid homeostasis. Notably, FXR 
agonists inhibit the entry of HCV by modulating scavenger 
receptor class B type 1(SR1B) expression with concurrent 
disturbance of the HCV life cycle (Wu et al. 2019b). OCA 
as a FXR agonist effectively inhibited the expression of 
SR1B in mice with hypercholesterolemia (Dong et al. 2019). 
Moreover, FXR agonists may indirectly interfere with viral 
replication by increasing SHP expression (Bae et al. 2014). 
SHP reduces the expression and interaction of HCV NS5A 
protein with the hepatocytes (Conti et al. 2016). However, 
an experimental study showed that SHP is implicated in the 
occurrence of abnormal lipid and glucose homeostasis dur-
ing HCV infection (Chen et al. 2019). Therefore, induced 
SHP by FXR agonists may have beneficial and detrimental 
effects depending on the stages and types of viral infections. 
Besides, epigallocatechin inhibits the proliferation of HBV 
through stimulation of FXR (Xu et al. 2016).

Fig. 3  The anti-inflammatory 
effects of obeticholic acid 
(OCA), where OCA inhibits 
the release of cytokines that 
promote inflammation from 
immune cells. It reduces the 
expression of TGF-β, tissue 
inhibitor of metalloproteinase 
1 (TIMP-1) and alpha-smooth 
muscle actin (α-SMA) through 
activation of FXR
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On the other side, FXRs agonists provoke the generation 
of anti-inflammatory PPARα (Heitel et al. 2020), which dis-
plays antiviral effects against HCV and HBV (Jiang et al. 2019; 
Negro 2009). Read et al. found that PPARα agonists improve 
interferon response during HCV infection (Read et al. 2015). 
Similarly, OCA can regulate the immune response during 
viral infection with an enhancement of viral clearance via the 
enhancement of SHP expression (Kim et al. 2019; Yuk et al. 
2016). Through the enhancement of AMPK, SHP could reduce 
viral load (Chanda et al. 2009) and prevent the development of 
different types of viral infections, including flavivirus (Jiménez 
de Oya et al. 2018) and Zika virus (Singh et al. 2020) infec-
tions. Consequently, these verdicts suggest that FXR agonists 
comprising OCA may have potential antiviral properties.

OCA and SARS‑CoV‑2 infection

The direct action with viral proteins and binding with ACE2 
or indirectly via modulation of immune response and inflam-
matory reactions could be the mode of action of OCA to 
manage the course of Covid-19 (Carino et al. 2020). Primary 
and secondary bile acids and their derivatives and semisyn-
thetic bile acid-like OCA block the interaction between 
SARS-CoV-2 and ACE2 in vitro; thereby supressing the 
entrance of SARS-CoV-2 and the progression of Covid-19 
(Carino et al. 2020). An additional ex vivo study by Choi 
et al. discovered that OCA in a concentration of 0.98 nM 
supressed the reaction between SARS-CoV-2 and ACE2/
TMPRSS2 axis (Choi et al. 2020). Additionally, in silico 
study disclosed that OCA reduced the reaction of SARS-
CoV-2 with ACE2 and further consolidated the possible 
antiviral impact of OCA (Sibilio et al. 2021). Rigamonti 
et al. disclosed five cases of autoimmune liver diseases with 
Covid-19 and confirmed that OCA management with other 
supportive treatments ameliorates patients' clinical out-
comes (Rigamonti et al. 2020). However, long-term treat-
ment of OCA in ill persons with autoimmune liver diseases 
may weaken adverse events of SARS-CoV-2 (Al-Kuraishy 
et al. 2021d). The progression of autoimmune liver diseases 
could be provoked via the SARS-CoV-2 vaccine (Gómez-
Domínguez et al. 2022). OCA utilization in liver fibrosis 
induced by Covid-19 was not supported (Wu et al., 2020). 
Nevertheless, the SARS-CoV-2 infection risk and its accom-
panied inflammatory reactions could be weakened by OCA 
treatment in patients suffering from autoimmune liver dis-
eases (Hamid et al. 2021; Sibilio et al. 2021).

The possible mechanisms of OCA in Covid‑19

The serious manifestations of Covid-19 could be controlled 
by the anti-inflammatory, antioxidant, and antiviral effects 
of OCA. These impacts are chiefly triggered through the 

activation of FXRs, which are greatly expressed in different 
cells (Fei et al. 2019). OCA suppresses the expression of 
NF-κB, p38MAPK, and Akt phosphorylation through pro-
voking FXRs (Fei et al. 2019). Additionally, it facilitates 
the discharge of anti-inflammatory cytokines accompanied 
by inhibition of pro-inflammatory cytokines expression 
(Verbeke et al. 2016). It is worth stressing on severe SARS-
CoV-2 infection, some small proteins with significant role 
for the growth and activity of immune cells like IL-4 and 
IL-10 are decreased while pro-inflammatory cytokines like 
IL-1β, IL-6, and 1L-17 are upregulated with concomitant 
progression of hypercytokinemia (Al-Kuraishy and Al-
Gareeb 2021; Al-Kuraishy et al. 2022a, 2021f). Moreo-
ver, NF-κB, p38MAPK, and high mobility group box-1 
(HMGB1) are strongly stimulated in serious SARS-CoV-2 
and accompanied with the progression of ALI/ARDS and 
thrombotic events (Al-Kuraishy et al. 2022b, 2022c).

In addition, FXR agonists inhibit the triggering of nod-
like receptor pyrin 3 (NLRP3) inflammasome, which is 
included in the overstated immune response and propaga-
tion of hypercytokinemia in severe SARS-CoV-2 infection 
(Batiha et al. 2021; Lu et al. 2022). In this sense, OCA via 
provoking of FXRs may lessen the risk of hyperinflamma-
tion and production of hypercytokinemia, in patients with 
severe Covid-19. It was disclosed that SARS-CoV-2 infec-
tion is also associated with the emergence of OS, because 
of the production of reactive oxygen species (ROS) and 
the decreased endogenous antioxidant capacity (Mostafa-
Hedeab et al. 2022). Indeed, NADPH oxidase is directly 
provoked in SARS-CoV-2 infection, resulting in OS devel-
opment (DiNicolantonio and McCarty 2020). Basically, OS 
in Covid-19 triggers the discharge of cytokines that trigger 
inflammation with subsequent production of hypercytokine-
mia (Derouiche 2020). In turn, hypercytokinemia and hyper-
inflammation trigger the propagation of OS (Meftahi et al. 
2021), whereas both OS and hyperinflammation in SARS-
CoV-2 infection are greatly implicated and correlated with 
the advancement of thrombotic events in Covid-19 patients 
(Fodor et al. 2021). Notably, OCA suppresses the discharge 
of chemokines and pro-inflammatory cytokines with the 
inhibition of lipid peroxidation and NADPH oxidase (Zhu 
et al. 2018).

Furthermore, OCA has a potent antagonistic effect against 
inflammation by inhibiting the discharge of cytokines that 
promote inflammation in persons suffering from primary bil-
iary cholangitis (Chapman and Lynch 2020). Likewise, OCA 
weakens the progression of OS by suppressing NADPH 
oxidase, ROS generation, lipid peroxidation, and stimulat-
ing antioxidant enzymes in LPS-induced ALI in mice (Gai 
et al. 2020; Zhu et al. 2018). Wu et al. found that OCA pro-
tects against the development of diabetic cardiomyopathy 
through the stimulation of antioxidant nuclear factor eryth-
roid-derived 2 (Nrf2) in mice (Wu et al. 2019a). Thus, OCA 
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could serve as an effective agent in blocking SARS-CoV-2 
infection-mediated OS and hyperinflammation and its asso-
ciated complications.

FXR and Covid‑19

In general, FXR participates with a likely role in different 
forms of viral infections, including SARS-CoV-2. It was 
discovered that FXR upregulated the expression of ACE2 
in the affected tissues, including gastrointestinal and res-
piratory systems, and probably permitted SARS-CoV-2 cell 
entry (Brevini et al. 2021a). Ursodeoxycholic acid (UDCA), 
which modulates FXR expression, lessens circulating ACE2 
levels in vivo, thereby it decreases the severity of hospi-
talized Covid-19 patients (Brevini et al. 2021a). However, 
UDCA reduces airway inflammation through the modula-
tion of FXR expression and the development of eosinophilic 
inflammation (Thuy et al. 2022). Brevini and colleagues 
revealed that FXR antagonist O07 could effectively man-
age Covid-19 (Brevini et al. 2021b). Ex vivo and in vitro 
data demonstrated that FXR antagonist O07 could be ben-
eficial chemoprophylaxis against developing SARS-CoV-2 
infection via inhibition expression of ACE2 (Brevini et al. 
2021b).

Meanwhile, guggulsterone, a FXR antagonist, displayed 
immunomodulatory effects and can lessen the risk of hyper-
cytokinemia, in obese ill persons suffering from Covid-19 
(Preethi et al. 2021). Despite in vitro and in vivo findings 
approving the beneficial effects of FXR antagonists in ame-
liorating the harshness of SARS-CoV-2 infection, this effect 
might be regulated by drug-specific effects rather than block-
ing the FXR effect. Meanwhile, FXRs have anti-inflamma-
tory and antioxidant effects, whereas FXR-induced expres-
sion of ACE2 is beneficial rather than harmful (Verbeke 
et al. 2016; Yang et al. 2007).

Interestingly, angiotensin receptor blockers (ARBs) and 
angiotensin-converting enzyme inhibitors (ACEIs), which 
increase ACE2 expression, were initially involved in the 
pathogenesis of SARS-CoV-2 infection, and seem nowa-
days to be defensive against Covid-19 severity (Thomas 
et al. 2022). Similarly, ibuprofen which upregulates ACE2 
expression displayed a defensive effect against Covid-19 
infection (Poutoglidou et al. 2021). Furthermore, soluble 
recombinant ACE2 could be efficient to antagonize the 
severity of SARS-CoV-2 infection by downregulating the 
pro-inflammatory angiotensin II (AngII) with concomitant 
elevation of anti-inflammatory angiotensin (1–7) (Ang1-7) 
(Zhang et al. 2021). Therefore, linking ACE2 expression 
with SARS-CoV-2 infection should be reconsidered, and this 
pathway might not regulate the efficacy of FXR antagonists 
in Covid-19.

On the other hand, FXR agonists like cafestol, chenode-
oxycholic acid, fexaramine, ivermectin, and tropifexor, in 
addition to OCA, may play a critical role in SARS-CoV-2 
infection (Carotti et al. 2014). It has been demonstrated that 
increasing bile acid production under high body tempera-
ture promotes the generation of chenodeoxycholic acid from 
gut microbiota. In addition, chenodeoxycholic acid limits 
SARS-CoV-2 proliferation and associated tissue injury in 
mice through activation of FXR (Babalghith et al. 2022). 
Notably, through modulation of bile acid metabolism, gut 
microbiota provokes the stimulation of anti-inflammatory 
FXR (Hollman et al. 2012; Zhang et al. 2013) with follow-
ing supression of the proliferation of the virus of Covid-19 
(Spagnolello et al. 2021). Furthermore, ivermectin displayed 
strong antiviral and anti-inflammatory effects through the 
stimulation of FXR (Low et al. 2022). Interestingly, FXRs 
are greatly deregulated in Covid-19 patients due to OS and 
immune system overreaction (Alaiya et al. 2021). Therefore, 
the supressing effects against immune system overreaction 
and ROS of FXR agonists may lessen the harmful effects of 
Covid-19 and accompanied complications.

FXR and signaling pathways in Covid‑19

The anti-inflammatory effect of FXR agonists is regulated 
via provoking of SHP, PPARα, and CFTR, decreasing the 
expression of cytokines that provokes immune system 
reaction (Heitel et al. 2020; Mueller et al. 2011; Yuk et al. 
2016). The innate immune reaction and inflammation could 
be regulated by SHP through supressing the expression of 
TLR4, NLRP3 inflammasome, and NF-κB (Yuk et al. 2016, 
2011). Notably, TLR4, NLRP3 inflammasome, and NF-κB 
are highly stimulated in SARS-CoV-2 infection result-
ing in hyper-inflammation and hypercytokinemia, (Batiha 
et al. 2021; Lu et al. 2022). SHP affords a negative regu-
latory effect on various signaling pathways. For example, 
it decreases virus-mediated interferon signaling and innate 
immune response through interaction with CREB-binding 
protein (CBP) (Kim et al. 2019). The immunosuppressive 
effect of SHP may enhance the viral infection, but at the 
same time it weakens the augmentation of immune response 
(Kim et al. 2019) as well as the progression of hypercy-
tokinemia, a hallmark of Covid-19 severity (Jiang et al. 
2022). Supression of CBP by glycogen synthase kinase 3 
(Gsk-3) promotes the progression of systemic inflammation 
and OS in severe SARS-CoV-2 infection (Rana et al. 2021). 
In this state, activating CBP or inhibiting Gsk-3 could be 
beneficial in preventing Covid-19 severity. Thus, triggering 
of SHP pathway by FXR agonists like OCA may reduce 
immunoinflammatory disorders in Covid-19 patients.

Furthermore, FXR agonists can provoke the expression 
of PPARα, which possesses potent immunomodulatory 
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effects in SARS-CoV-2 infection (Fantacuzzi et al. 2022). 
PPARα agonists can lessen pulmonary inflammation, lipo-
toxicity, and metabolic derangement induced by SARS-
CoV-2 infection (Fantacuzzi et al. 2022). Besides, in vitro 
study displayed that fenofibrate inhibits SARS-CoV-2-me-
diated cytopathic in Vero E6 cell lines at a concentration of 
20 µM (Rodon et al. 2021). Yasmin et al. (2022) suggested 
that fenofibrate attenuates the interaction between SARS-
CoV-2 and ACE2. PPARα agonists supress the activation 
of inflammatory signaling pathways and the discharge 
of pro-inflammatory cytokines (Fantacuzzi et al. 2022). 
Therefore, direct PPARα agonists and indirect stimulation 
of these receptors by FXR agonists may represent promis-
ing treatments when included in the Covid-19 therapeutic 
protocols (Fantacuzzi et al. 2022).

Moreover, FXR agonists, upregulating the expression 
of cystic fibrosis transmembrane conductance regulator 
(CFTR), may modulate the pathogenic course and immu-
nological response during SARS-CoV-2 infection. It has 
been disclosed that CFTR is greatly downregulated in 
SARS-CoV-2 infection with the development of acquired 
cystic fibrosis in Covid-19 (Lidington and Bolz 2020). 
CFTR is expressed in many critical organs, including the 
intestines, lungs, brains, pancreas, kidneys, blood ves-
sels, and immune cells (Lara-Reyna et al. 2020). High 
pro-inflammatory cytokines, mainly TNF-α, are chiefly 
imposed in the downregulation of CFTR in the brain and 
lung (Yagi et al. 2015). Thus, exaggerated TNF-α levels in 
Covid-19 could be the causative factor behind the dereg-
ulation of CFTR. In this state, deregulated CFTR could 
engage in respiratory and other systemic complications in 
Covid-19 patients (Lidington and Bolz 2020).

Notably, CFTR has a critical role in regulating immune 
response, as different immune cells, like macrophages, 
monocytes, and neutrophils, express these receptors 
(Zhang et al. 2018). Loss or dysfunction of CFTR pro-
motes macrophage activation and release of pro-inflam-
matory cytokines (Zhang et al. 2018). Activation of CFTR 
could be beneficial in damping exaggerated immune 
responses by inhibiting the release of pro-inflammatory 
cytokines (Zhang et al. 2018). Interestingly, CFTR ago-
nists like Trikafta are expensive and cannot be used widely 
(Lidington and Bolz 2020). Therefore, indirect activation 
of CFTR by FXR agonists like OCA could be beneficial. 
FXR agonists via increasing the expression of CFTR may 
reduce immunoinflammatory and pulmonary disorders in 
Covid-19 patients. In addition, FXR agonists like OCA 
may reveal direct effects in the modulation of immune 
response in SARS-CoV-2 infection or indirect effect 
through activation of SHP, PPARα, and CFTR which 
prohibit the expression of pro-inflammatory cytokines. 
Herein, experimental, preclinical, and clinical studies are 
needed in this regard.

In 2016, obeticholic acid (Ocaliva™) was awarded 
approval to utilize OCA in patients with primary biliary 
cirrhosis (PBC) who are UDCA intolerant or their health 
does not get better by treatment with UDCA after a year. 
In the dose-dependent clinical studies of two phases, using 
dosages of OCA up to 50 mg per day, pruritus was the fre-
quently observed adverse effect of OCA. Clinical studies of 
217 UDCA nonresponders or UDCA intolerant participants 
in the pivotal phase 3 trial were randomly subjected to 1 
of 3 treatments: placebo, OCA 5 mg/day with dose titra-
tion to 10 mg if necessary, or OCA 10 mg/day. Intercept 
Pharmaceuticals nowadays develops Ocaliva™, a FXR 
agonist, to manage different liver diseases (Chapman and 
Lynch 2020). Ocaliva™ received accelerated approval in 
the USA for managing primary biliary cholangitis which is 
combined with ursodeoxycholic acid in adults who have a 
weak response to ursodeoxycholic acid or as monotherapy 
in adults who cannot tolerate ursodeoxycholic acid.

To this point, FXR agonists supress the entrance of 
HCV by modulating the scavenger receptor class B type 
1(SR1B) expression by disturbing the HCV life cycle (Wu 
et al. 2019b). FXR agonist OCA suppresses the expression 
of SR1B in mice with hypercholesterolemia (Dong et al. 
2019). SR1B facilitates the entry of SARS-CoV-2 through 
ACE2. Thus, a monoclonal antibody against SR1B reduces 
the severity of SARS-CoV-2 (Wei et al. 2020). In addition, 
SR1B expressed in the immune cells provokes the discharge 
of pro-inflammatory cytokine and the development of auto-
immune diseases (Wei et al. 2020). Therefore, inhibition 
of SR1B may attenuate SARS-CoV-2 entry and release of 
pro-inflammatory cytokine.

Conclusion

In serious SARS-CoV-2 infection, some cytokines that pro-
voke inflammation like IL-4 and IL-10 are lessened, and at 
the same time, pro-inflammatory cytokines such as IL-1β, 
IL-6, and 1L-17 are upregulated with concurrent develop-
ment of hypercytokinemia. Furthermore, SARS-CoV-2 
infection is related to the development of OS due to ROS 
generation and reduction of endogenous antioxidant agents. 
Indeed, NADPH oxidase is directly stimulated in SARS-
CoV-2 infection, causing OS progression. OS in SARS-
CoV-2 infection triggers the discharge of pro-inflammatory 
cytokine and the development of hypercytokinemia. In turn, 
hypercytokinemia and hyperinflammation provoke the pro-
liferation of OS. Both OS and hyperinflammation in SARS-
CoV-2 infection are interrelated in advancing thrombotic 
events in ill persons suffering from Covid-19. Therefore, 
supressing the augmented immune system reaction and reac-
tive oxygen species by agents like OCA may weaken OS 
and inflammatory disorders in Covid-19 patients. OCA is a 
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FXR agonist that controls immunoinflammatory alterations 
and is induced by SARS-CoV-2 infection. FXR agonists 
regulate the expression of ACE2 and inflammatory signal-
ing pathways in Covid-19, which weakens the severity of 
SARS-CoV-2 infection and related complications. Taken 
together, FXR agonists like OCA may reveal both direct 
and indirect effects in the modulation of immune response 
in SARS-CoV-2 infection. Thus, experimental, preclinical, 
and clinical studies are necessary and highly recommended.
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