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Abstract
The natural pathway of antioxidant production is mediated through Kelch-like erythroid cell-derived protein with Cap and col-
lar homology [ECH]-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) system. Keap1 maintains 
a low level of Nrf2 by holding it in its protein complex. Also, Keap1 facilitates the degradation of Nrf2 by ubiquitination. In 
other words, Keap1 is a down-regulator of Nrf2. To boost the production of biological antioxidants, Keap1 has to be inhibited 
and Nrf2 has to be released. Liberated Nrf2 is in an unbound state, so it travels to the nucleus to stimulate the antioxidant 
response element (ARE) present on the antioxidant genes. AREs activate biosynthesis of biological antioxidants through 
genes responsible for the production of antioxidants. In some cases of coronavirus disease 2019 (COVID-19), there is an 
enormous release of cytokines. The antioxidant defense mechanism in the body helps in counteracting symptoms induced by 
the cytokine storm in COVID-19. So, boosting the production of antioxidants is highly desirable in such a condition. In this 
review article, we have compiled the role of Keap1-Nrf2 system in antioxidant production. We further propose its potential 
therapeutic use in managing cytokine storm in COVID-19.
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Introduction

The oxidative stress inducers or pro-oxidants are reactive 
chemical entities like electrophiles (positively charged spe-
cies) (Trostchansky et al. 2020), nucleophiles (negatively 
charged species) (Afanas’ev 2014), free radicals (Chan et al. 
2020), metals (Yazdanian et al. 2020; Zhou et al. 2019; 
Haque et al. 2020), and non-specified oxidants (produced 
by the breakdown of xenobiotics) (Deng et al. 2008). The 
increase in pro-oxidants induces oxidative stress inside the 
cells and may be deleterious (Singh and Devasahayam 2020; 
Ersan et al. 2020). Oxidative stress is negated by antioxi-
dants by neutralizing the pro-oxidants. These antioxidants 
either intrinsic (produced in the cells) or extrinsic antioxi-
dants (obtained from a natural source or synthetic small mol-
ecules) protect the cells from oxidative stress.

The intrinsic mechanism of combating oxidative stress 
is carried out through the production of antioxidant mol-
ecules. Whenever the oxidative stress increases in the cell, 
the antioxidant genes are expressed entailing the produc-
tion of intrinsic biological antioxidants (Pulaski et al. 2019). 
These biological antioxidant molecules act as a shield to 
the detrimental effects of oxidants on the cellular environ-
ment. Some of the biological antioxidants are superoxide 
dismutase, aldehyde dehydrogenase, and glutathione peroxi-
dase. These bio-molecules help in neutralizing the stressor 
molecules/pro-oxidants produced during normal metabolism 
(Lu et al. 2016). This intrinsic balance between pro-oxidants 
and antioxidants gets deranged in several acute pathological 
conditions, particularly those that induce cytokine storm.

Cytokine storm is a pathological condition  that arise 
due to abnormally high production of inflammatory media-
tors (Hirawat et al. 2020). It was found that oxidative stress 
increases inflammation (Kudo et al. 2012; Wu et al. 2021) 
and antioxidants help in reducing cytokine production (Oje-
aburu and Oriakhi 2021; Toumpanakis et al. 2009). In this 
direction, it will be intriguing to delve into the possibilities 
of using Keap1 inhibitors to stimulate the production of anti-
oxidants for controlling COVID-19-induced cytokine storm.

Extrinsic and intrinsic antioxidants

Extrinsic antioxidants may be natural compounds (vitamin 
C, vitamin A, alpha-tocopherol etc.) or synthetic molecules 
(phenolic compounds) (Martins et al. 2016). The synthetic 
molecules exhibit antioxidant activity either through direct 
action like phenolic antioxidants or through indirect action 
like antioxidant gene activators.

There exists an intrinsic mechanism that produces anti-
oxidants to neutralize oxidative stress (Franco et al. 1999). 
With the increase in oxidative stress, the antioxidant genes 
are expressed initiating the production of intrinsic antioxi-
dants. The antioxidant molecules neutralize the pro-oxidants 
produced as a result of normal metabolism.

Intrinsic antioxidants prevent oxidative damages to cel-
lular organelles. They play a major role in cell survival, 
cellular rejuvenation, and prevention of various diseases 
(Pisoschi et al. 2021). The production of intrinsic antioxi-
dants is triggered by an increase in the levels of charged 
species and free radicals. These charged species and free 
radicals are produced during cellular metabolism (e.g. lipid 
peroxidation) and breakdown of xenobiotics, due to which 
Kelch-like [ECH] erythroid cell-derived protein with Cap 
and collar homology-associated protein 1 (Keap1)-Nuclear 
factor erythroid 2-related factor 2 (Nrf2) system gets acti-
vated. Nrf2 ventures into the nucleus and binds to antioxi-
dant response element (ARE) present on antioxidant genes. 
Antioxidant genes get activated by xenobiotic response ele-
ment (XRE) and ARE.

Keap1‑Nrf2 system

Keap1-Nrf2 pathway is an important part of cellular defense 
(Baird and Yamamoto 2020). The production of antioxidants 
is regulated by Keap1-Nrf2 system (Itoh et al. 1999). Keap1 
is a 627 amino acid-containing protein that has five domains. 
The structure exists as a dimer with N-terminals linked to 
Keap1 possesses four functional domains: BTB (Broad 
complex, Tramtrack, and Bric-a-Brac), IVR (intervening 
region), DGR (double-glycine repeat or Kelch repeat), and 
CTR (C-terminal region and the C-terminals of Keap1 hold 
Nrf2 from its Neh2 (Nrf2-ECH homology 2) domain (Lo 
et al. 2017). Neh2 domain has two linking points, namely 
DLG and ETGE (Katoh et al. 2005). DLG domain has been 
named so because it contains DLG (Aspartate–Leucine–Gly-
cine) amino acids. ETGE terminal corresponds to the region 
where ETGE (Glutamate–Threonine–Glycine–Glutamate) 
amino acids are present. The 3D structure of Keap1 reveals 
that it has hydrophobic cavities in three identical chains 
of amino acids which are twisted. Since each chain is in a 
dimeric form, the structure of Keap1 appears to be a hex-
amer. The cysteine-containing regions are electrophile-sensi-
tive spots and act as sensors for oxidative stress. These active 
sites readily interact with the charged species and cause a 
conformational change in Keap1. The changed conformer 
of Keap1 releases Nrf2 from its C-terminal (Tong et al. 
2006). The liberated Nrf2 traverses to the nucleus. There 



1349Management of COVID‑19‑induced cytokine storm by Keap1‑Nrf2 system: a review﻿	

1 3

it binds to the specific site on DNA to activate antioxidant 
response element (ARE). It leads to stimulation of ARE-
dependent gene expression of a series of antioxidative and 
cytoprotective proteins including heme oxygenase 1 (HO-1), 
NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione 
peroxidase (GPx), and several members of the glutathione 
S transferases (GST) family (Baird and Dinkova-Kostova 
2011; Eggler et al. 2008; Kobayashi and Yamamoto 2005). 
Figure 1 displays the structure of Keap1-Nrf2 Protein–Pro-
tein Interaction (PPI).

Keap1 holds Nrf2 from Neh2 domain. The Neh2 domains 
bind with C-terminals of Keap1 by several interactions. DLG 
has a lower affinity towards Kelch domain than ETGE. These 
protein–protein interaction points break apart when there is 
a conformational change in Keap1 either by pro-oxidants or 
by Keap1 inhibitors. Under non-oxidative conditions, Keap1 
acts as a down-regulator for Nrf2 by facilitating its degrada-
tion. When Nrf2 binds with Ubiquitin (a 20-amino-acid pro-
tein), it undergoes ubiquitination and degradation (Sekhar 
et al. 2002). Figure 2 depicts Keap1-Nrf2 system.

Production of intrinsic antioxidants 
through Keap1‑Nrf2 system: a natural 
response towards oxidative stress

In a normal and non-oxidative stress condition, the cellular 
concentration of Nrf2 remains low. It is negatively modu-
lated by the cytoplasmic repressor Keap1 which facilitates 
proteosomal degradation (Itoh et al. 2004; Dikic 2017). 
When oxidative stress increases in the cell, Nrf2 escapes 

ubiquitination (Keap1-mediated degradation). Alternatively, 
phosphorylation of Nrf2 triggers its release from the pro-
tein–protein interaction with Keap1. One such example is 
phosphorylation mediated by RNA-dependent protein kinase 
(PKR)—like Endoplasmic reticulum kinase (PERK) which 
dissociates Nrf2/Keap1 interaction (Cullinan et al. 2003).

The amino acid sequence present in the C-terminal of 
Neh3 domain is a determining factor for activation of ARE. 
Incomplete sequence or modified sequence at a particular 
region in Nrf2 fails to activate ARE-dependent antioxidant 
gene expression. Deletion of the last 16 amino acids of this 
region abolishes the gene activation without affecting the 
binding affinity of Nrf2 towards ARE (Nioi et al. 2005). 
Neh4 and Neh5 domains of Nrf2 independently interact 
with complimentary parts in ARE. Both of these domains 
synergistically contribute towards interaction with a protein 
that binds to CREB (cAMP-Responsive Element-Binding 
protein) (Katoh et al. 2001). The innate antioxidant bio-
molecules synthesis is initiated when antioxidant genes 
receive a stimulus from ARE and XRE (Ma et al. 2018; 
Raghunath et al. 2018). Sometimes the quantity of biological 
antioxidants is not enough to counterpoise oxidative stress. 
In such cases, antioxidant production activators improve 
the cellular defense against oxidative stress. Many studies 
show that stimulation in Nrf2 system by external molecules 
increases the production of antioxidants (Tran et al. 2019). 
Hence, Keap1-Nrf2 system is a promising target for small 
molecules.

Mutations in Keap1 cause variation in the production of 
antioxidants. Different mutants of Keap1 have been noticed 
in various cancers (lung cancer, breast cancer, liver and gall 
bladder cancer). It has been seen that somatic mutation of 
Keap1 in liver cells allows enhanced expression of Nrf2 
which is responsible for detoxification (Poorti et al. 2017).
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Production of antioxidants by Keap1 
inhibition and Nrf2 activation: extrinsic 
inhibitors of protein–protein interaction

Several Keap1 inhibitors and Nrf2 activator molecules have 
been reported in pre-clinical studies. Phytochemicals have 
also been screened for their activating effect on Nrf2 system 
(Wu et al. 2014). Some of them are sulforaphane (Kubo et al. 
2017), resveratrol (He et al. 2012), curcumin (Ashrafizadeh 
et al. 2020), spermidine (Liu et al. 2019). Many synthetic 
molecules have been reported to activate Keap1-Nrf2 system 
in in-vitro studies (Mou et al. 2020). A study on pentoxifyl-
line shows similar results (Ali et al. 2018).

the term cytokine storm for the pathological condition that 
ensues (Fajgenbaum and June 2020). The role of oxidative 
stress in the production of cytokines is well known. Oxida-
tive stressors like reactive oxygen species (ROS) can stim-
ulate the synthesis of NLRP3 and NF-κB which leads to 
cytokine storm (Bhaskar et al. 2020). The undesirably high 
levels of cytokines implicate harmful effects on several parts 
of the body. These include the effects on different organ 
systems along with constitutional symptoms of fever and 
systemic inflammation. A diagrammatic representation of 
the effects of cytokine storm is depicted in Fig. 3.

Role of Keap1 inhibitors in cytokine storm

Cytokine storm as reported in severe conditions of COVID-
19 (Lee et al. 2020; Coperchini et al. 2020), worsens the 
clinical condition of patients and increases the duration 
of hospitalization. If cytokine storm is treated at its ini-
tial stage, the clinical recovery is faster and better. Vari-
ous approaches for managing COVID-19 conditions have 
been tried all over the world. In the exploration of effective 
methods for the treatment of COVID-19, several combina-
tions of drugs and neutraceutical products have been tried. 
Present scientific literature encourages adjunct to therapy of 
antioxidants along with the standard treatment, which may 
include antiviral agents.

Nrf2 has been linked to the repression of stimulators 
of interferon genes (STING) in human cells. This was 
confirmed when primary human monocyte-derived mac-
rophages were Nrf2 silenced and the level of STING was 
observed to be high. This suppression is effective enough to 
decrease type 1 interferon production (Olagnier et al. 2018). 
The inflammatory response in osteoarthritis increases when 
Nrf2 pathway is downregulated (Chen et al. 2019). Keap1 
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Relevance of Keap1‑Nrf2 system in diseases

Keap1-Nrf2-ARE pathway is one of the most important 
regulators of cytoprotective responses to oxidative stresses. 
It is believed to play a critical role in the development of 
many diseases (Chunlin et al. 2014), such as cancer (Yu 
and Kensler 2005), chronic obstructive pulmonary disease 
(COPD) and other airway disorders (Marzec et al. 2007), 
Alzheimer’s disease, Parkinson’s diseases (DeVries et al. 
2008), atherosclerosis, heart diseases (Koenitzer and Free-
man 2010), chronic kidney diseases (CKD) (Gao and Mann 
2009), diabetes (Uruno et al. 2013), inflammatory bowel 
diseases (Theiss et al. 2009), rheumatoid arthritis and osteo-
arthritis (Xu et al. 2021).

Cytokine storm

A systemic inflammatory response either induced by infec-
tions or by drugs, is associated with an abnormal increase 
in activities of immune cells (Gupta et al. 2020). Hence, 
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inhibitors and Nrf2 activators have been reported to decrease 
inflammatory response in acute lung injury (Duran et al. 
2016) and cystic fibrosis (Chen et al. 2008). Keap1-Nrf2 
pathway has been linked to several genes expression. The 
up-regulation of Nrf2 has been reported to control inflamma-
tion in several studies (Ahmed et al. 2017; Staurengo-Ferrari 
et al. 2019).
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Fig. 3   Manifestations of cytokine storm on different physiological systems
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Vitamin C (Ascorbic acid), one of the well-substantiated 
antioxidant has been studied in COVID-19 and is found to 
be helpful as an adjunct treatment (Simonson 2020; Fey-
aerts and Luyten 2020). Furthermore, parenteral vitamin C 
is helpful in the recovery of COVID-19 patients as it coun-
ters cytokine storm (DeMelo and Homem-de-Mello 2020).

Quercetin, a well-known antioxidant was studied in 152 
outpatients suffering from COVID-19. The randomized con-
trolled and open-labeled study was carried out for 30 days 
to show that quercetin is helpful as an adjuvant to the stand-
ard treatment in COVID-19 patients. It was reported that 
during the initial stage of COVID-19 infection, quertcetin 
phytosome® reduced the duration of hospitalization, the 
need for oxygen supplementation and deaths (Darband et al. 
2020). Quercetin activates Keap1-Nrf2 system and has been 
reported to mediate anti-inflammatory response (Zhu et al. 
2019).

Pentoxifylline along with diosmin is shown to have anti-
inflammatory activity through Keap1-Nrf2 system and this 
is substantiated by a preclinical study (Ali et al. 2018). A 
clinical study was conducted on 110 patients with moder-
ate to severe pneumonia due to COVID-19. Four groups 
of 22 patients received pentoxifylline along with vitamin 
C, vitamin E, N-acetylcysteine, or melatonin and the fifth 
group received only pentoxifylline. The antioxidant therapy 
decreased oxidative stress by lowering lipid peroxidation, 
interleukin 6, C-reactive protein and pro-calcitonin levels. 
Antioxidant therapy showed clinical improvements in sev-
eral survival scores (Chavarria et al. 2021).

Pirfenidone is being studied clinically [ClinicalTrials.gov 
Identifier: NCT04282902] and has ameliorative effects in 
treating respiratory conditions (Liu et al. 2017). There are 
very few clinical studies for exploring the effectiveness of 
antioxidants for controlling COVID-19-induced cytokine 
storm and lesser are the clinical data available related to 
Keap1-Nrf2 system.

Conclusion

Keap1 inhibitors or Nrf2 activators may serve as adjunct 
therapy in strengthening the inherent defense mechanism 
against infectious conditions like COVID-19. Keap1 inhibi-
tors/Nrf2 activators may alleviate cytokine storm in COVID-
19 eventually reducing the complications and facilitating 
faster and better clinical recovery. Specific inhibitors of 
Keap1 should be developed for better pharmacological effi-
cacy. Further research on Keap1-Nrf2 system in the context 
of COVID-19 may potentially lead towards discovery and 
development of novel Keap1 inhibitors.
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