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Abstract
The study focuses on assessing the proficiency levels of higher education students, 
specifically the physics achievement test (PHY 101) at the National Open University 
of Nigeria (NOUN). This test, like others, evaluates various aspects of knowledge 
and skills simultaneously. However, relying on traditional models for such tests can 
result in inaccurate interpretations of students’ abilities. The research highlights the 
importance of exploring the multidimensional nature of the PHY 101 test to improve 
its accuracy in measuring student proficiency and enhance education and assess-
ment quality at NOUN. Using an ex-post facto research design, the study analyzed 
978 responses from NOUN’s Directorate of Examination and Assessment. Through 
confirmatory and exploratory DETECT techniques, the study found strong evidence 
supporting the test’s multidimensionality. Three distinct dimensions emerged: cog-
nitive processing, reading ability, and problem-solving skills. A parsimonious mul-
tidimensional three-parameter logistic model was used to calibrate the test items, 
providing valuable insights into item difficulty, discrimination, and resistance to 
chance influences. While the study primarily focuses on the psychometric aspects of 
the PHY 101 test, it is important to consider its broader impact on the educational 
community. The research contributes to educational assessment by emphasizing the 
significance of recognizing and addressing the multidimensional nature of higher 
education tests. This approach can result in more accurate assessments of students’ 
abilities, ultimately improving education quality and fairness. The findings confirm 
the multidimensional nature of the PHY 101 test and identify three distinct dimen-
sions, aligning with the study’s objective. These insights are relevant to educators 
and test developers, highlighting the need for a multidimensional approach to effec-
tively assess and enhance student proficiency. For researchers interested in similar 
studies, it is recommended to explore the broader influence of multidimensional 
models in educational assessment. Investigating their impact on teaching methods, 
curriculum development, and student learning experiences can provide valuable 
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insights. Longitudinal studies assessing the long-term effects of multidimensional 
assessment on student outcomes and success are also recommended.

Keywords  Multidimensional item response theory · Multidimensional three 
parameters logistic · Dimensionality physics achievement test · mirt Package · R 
Language

Introduction

The use of exams in higher education institutions (HEIs) to gather reliable and 
meaningful information has become increasingly important. Multiple-choice ques-
tions are commonly used to assess students’ performance, including in undergradu-
ate exams at Nigeria’s National Open University (NOUN), especially in subjects like 
PHY 101, a course in physical science. This assessment method is widely favored in 
the educational community due to its efficiency, reliability, and ease of scoring. The 
quality of these multiple-choice questions is crucial as they directly impact students’ 
assessment outcomes, reflecting their overall competency level (Amusa et al., 2022; 
Ayanwale et al., 2020; Ayanwale & Adeleke, 2020). In terms of Bloom’s taxonomy, 
high-quality multiple-choice questions can assess advanced cognitive skills such as 
interpretation, critical thinking, application, and synthesis (Akinboboye & Ayan-
wale, 2021; Owolabi et  al., 2023). However, crafting such questions can be chal-
lenging and requires careful construction to ensure their meaningfulness. Develop-
ing a comprehensive question bank through meticulous item analysis is considered a 
valuable resource for universities to conduct assessments. Undoubtedly, a test’s psy-
chometric properties provide valuable insights into its appropriateness, utility, and 
validity, ultimately determining its legitimacy (Ajeigbe & Afolabi, 2014; Ojerinde 
et al., 2012, as cited in Adekunle et al., 2021; Ayanwale et al., 2019). The complexi-
ties associated with obtaining valid and reliable psychometric properties for these 
test items highlight the importance of employing sophisticated and precise analytical 
methods. At the beginning of test development, item response theory (IRT) is used 
to explore test dimensionality and establish the validity foundations that support the 
test’s purpose, usage, and inferences about test-takers (Ayanwale, 2021; Ayanwale 
& Ndlovu, 2021; Amusa et al., 2022). Essentially, test dimensions correspond to the 
latent traits that developers aim to measure. Items are carefully created and organ-
ized to align with these intended traits or dimensions. This rationale supports the 
adoption of multidimensional item response theory (MIRT) to calibrate the NOUN 
physics test. Using IRT, a test-taker’s response to a specific question depends on an 
unobservable trait or ability within their mind. It is assumed that various latent traits 
or abilities exist along a continuous dimension, ranging from the lowest to the high-
est (referred to as θ). The test-taker’s position on this dimension, represented as θi, 
is commonly known as their ability or proficiency. According to IRT, as the number 
of items increases, one can expect a monotonous increase in the probability of cor-
rectly answering a question. IRT models are particularly applicable to binary-scored 
items where responses are categorized as either correct or incorrect. These models 
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are generally known as unidimensional models and are suitable when all test items 
aim to measure the same underlying capability dimension. Unidimensional IRT 
(UIRT) is based on the assumption that each test item measures a latent trait, also 
known as a common underlying ability. When using overall test scores as an assess-
ment criterion for different ability levels, it is important that a test designed to meas-
ure one trait is not influenced by other traits. According to Hattie (1985) cited in 
Ackerman et al. (2003) and Ayanwale et al. (2022), no technique can provide satis-
factory results for unidimensionality under different conditions. Monte Carlo studies 
have also cautioned against interpreting results from dimensionality indexes in other 
contexts (test length, sample size, etc.; De Champlain & Gessaroli, 1998; Gessaroli 
& De Champlain, 1996; Hattie et al., 1996 cited in Sheng & Wikle, 2007). Research 
has shown that parameter estimation becomes biased when a multidimensional test 
is modeled using a unidimensional model (Immekus et  al., 2019; Wiberg, 2012). 
Additionally, measurement errors can increase, making it difficult to accurately infer 
a student’s proficiency in a given subject (Walker & Beretvas, 2000 cited in Sheng 
& Wikle, 2007). Consequently, interpretations of test scores become questionable as 
they are not considered useful, meaningful, or appropriate.

Multidimensional item response theory (MIRT) models are used when a manifest 
response for an item is influenced by multiple abilities (more than one Ɵ). Tests in 
fields such as statistics, physics, education, or psychology may have multiple dimen-
sions or constructs. A construct is a theoretical representation of a dimension and is 
commonly modeled using MIRT (Zhang & Stone, 2008). MIRT models are appro-
priate because they predict an examinee’s likelihood of answering a specific question 
by considering latent (unobserved) variables. According to Reckase (1997, 2009), 
MIRT models are popular tools for assessing test content, item calibrations, and 
computerized adaptive tests. Similar to unidimensional models, MIRT models have 
certain assumptions, including monotonicity and local independence. Monotonicity 
implies that the probability of answering an item correctly increases as the student’s 
ability level increases (Smith, 2009 cited in Kose & Demirtasli, 2012; Ul Hassan 
& Miller, 2022). Under the local independence assumption, the probability of an 
item’s response is independent of other item responses, regardless of item and per-
son parameters. In the field of Multidimensional Item Response Theory (MIRT), 
models can be classified as compensatory or non-compensatory. This classification 
depends on whether a high level of proficiency in one trait can make up for a lower 
level in another (Sijtsma & Junker, 2006; Kose & Demirtasli, 2012). Compensatory 
MIRT models are a sophisticated approach used in educational and psychological 
assessments. They are designed to address situations where test items are influenced 
by multiple underlying abilities or traits (Sheng & Wikle, 2007). These models are 
called “compensatory” because they take into account the idea that a deficiency in 
one ability can be balanced or compensated for by a higher level of proficiency in 
another. In practical terms, this means that compensatory MIRT models recognize 
that many test questions may require a combination of skills or knowledge areas to 
provide correct answers. For example, consider a physics test question that requires 
both mathematical reasoning and knowledge of physics. In such cases, a student can 
compensate for a lack of strong physics knowledge by possessing exceptional math 
skills. Within compensatory MIRT models, each test item has two fundamental 
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parameters: difficulty and discrimination. The difficulty parameter represents the 
proficiency level at which an individual has a 50% probability of answering the 
item correctly. Conversely, the discrimination parameter evaluates how effectively 
the item distinguishes between individuals with different levels of the latent trait or 
ability. These models estimate these parameters for each underlying ability. Scor-
ing in compensatory MIRT typically involves combining scores from various latent 
traits. The final score provides an overall assessment of an individual’s performance, 
taking into account the compensatory nature of the model. This holistic approach 
enables a more comprehensive evaluation of a test-taker’s abilities. Compensatory 
MIRT models are widely used in educational assessments, especially when it is evi-
dent that answering a single test item correctly depends on a combination of abili-
ties (Bolt & Lall, 2003; Immekus et al., 2019). They excel in capturing the intricate 
interplay between diverse skills and knowledge domains. However, it is important to 
acknowledge that these models can be computationally demanding, especially when 
dealing with a large number of latent traits or complex item response data. Addi-
tionally, interpreting outcomes from compensatory models may be less straightfor-
ward compared to non-compensatory models, due to their inclusion of interactions 
between latent traits. In summary, compensatory MIRT models serve as invaluable 
tools for evaluating individuals in situations where abilities interact and compensate 
for each other. They offer a more authentic and precise portrayal of a test-taker’s 
abilities (Reckase, 2009). This makes them a valuable asset in the field of educa-
tional and psychological measurement.

Conversely, non-compensatory Multidimensional Item Response Theory (MIRT) 
models are a significant aspect of educational and psychological assessments. These 
models are designed to address situations where test items do not allow one ability 
to make up for a deficiency in another. In other words, in non-compensatory MIRT 
models, proficiency in one ability cannot fully compensate for a deficit in another 
(Embretson & Reise, 2000). Consider a test item that requires strong reading com-
prehension and physics knowledge. In non-compensatory MIRT models, excelling in 
one area cannot compensate for a lack of competence in the other. Therefore, achiev-
ing a high score on such an item requires proficiency in both reading and physics. 
Within non-compensatory MIRT models, test items are characterized by their dif-
ficulty and discrimination parameters for each underlying ability. The difficulty 
parameter indicates the proficiency level at which there is a 50% chance of correctly 
answering the item. The discrimination parameter reflects the item’s ability to differ-
entiate between individuals with varying levels of the latent trait or ability. Scoring 
in non-compensatory MIRT typically involves assessing each latent trait separately. 
Instead of combining scores from different abilities, the focus is on evaluating each 
ability independently. This approach can provide a more detailed view of a test-tak-
er’s strengths and weaknesses in each dimension. Non-compensatory MIRT mod-
els are suitable when it is crucial to maintain a clear distinction between distinct 
abilities. For instance, if a test aims to assess both reading and physics knowledge 
separately without allowing one skill to compensate for the other, non-compensatory 
models are preferred. Such models are often used when the relationships between 
abilities are well-defined and should not be blurred. However, it’s important to rec-
ognize that implementing non-compensatory MIRT models can be challenging due 
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to the absence of efficient algorithms for estimating item parameters when abilities 
are interrelated. Additionally, the interpretation of results from non-compensatory 
models is more straightforward but may provide a less holistic view of a test-tak-
er’s abilities compared to compensatory models. Importantly, compensatory mod-
els are more prevalent in educational research, even though both compensation and 
non-compensation models are used (Drasgow & Parsons, 1983; Kose & Demirtasli, 
2012; Ozdemir & Gelbal, 2022; Robitzsch, 2020). This preference might be because 
non-compensatory models lack efficient algorithms for estimating item parameters. 
In the context of Multidimensional IRT, the Item Characteristic Surface (ICS) illus-
trates the probability that a test-taker will correctly answer an item based on their 
composite ability. Recent applications of MIRT often use fewer dimensions, typi-
cally two, due to limitations in estimation programs. When item responses depend 
on more than two latent traits, they are referred to as “item response hyper-surfaces.” 
Visualizing ICS in multidimensional latent space becomes challenging when dealing 
with more than three dimensions. Despite the prevalence of MIRT, unidimensional 
Item Response Theory (UIRT) has been extensively used in education and psychol-
ogy for decades. Many achievements tests struggle to meet the assumption of uni-
dimensionality, leading to the continued use of UIRT (Ackerman, 2010; Algina & 
Swaminathan, 2015; Hambleton & Swaminathan, 1985; Kose & Demirtasli, 2012; 
Ul Hassan & Miller, 2022; Yang, 2007).

The comparison of unidimensional and multidimensional models has been con-
ducted by many researchers (Spencer, 2004; De La Torre & Patz, 2005; Yang, 2007; 
Kose & Demirtasli, 2012; Reckase, 1985; Sympson, 1978; Mulaik, 1972; Hamsy, 
2014; Ha, 2017; Zulaeha et al., 2020; Zhang, 2004; Liu et al., 2013). As a result of 
the increased number of latent traits that influence item performance, item parame-
ters have provided more accurate measurements under MIRT. Moreover, a compari-
son between MIRT and data-driven models shows that model-data fit indexes favor 
MIRT models. An examination of the UIRT models based on multidimensional 
college admission test data was undertaken by Wiberg (2012). A simulation study 
showed that MIRT gives better results than UIRT in modeling fit. However, UIRT 
is similar to MIRT when conducted consecutively. According to her, if there were 
multidimensionality between items in the test, consecutive UIRT models instead of 
MIRT models might be better suited and easier to interpret. A paradox arising with 
MIRT compared to UIRT has been highlighted by Hooker et al. (2009): if an exami-
nee changes his or her answer to an item from correct to incorrect, it could result in 
a decrease in the estimated parameter (Finkelman et al., 2010; Hooker, 2010; Jordan 
& Spiess, 2012, 2018). Additionally, Kose and Demirtasli (2012) found that MIRT 
is more accurate than UIRT at estimating these latent traits since the standard error 
of MIRT is smaller than that of UIRT. A test’s standard error of model parameters 
decreases the more items it has, which is an important consideration for educators 
when designing tests, according to Kose and Demirtasli. Li et al. (2012) used the 
Multidimensional 2-Parameter Logistic (M2PL) approach for dimensionality valida-
tion of a K-12 science assessment. In addition to the unidimensional IRT and test-
let models, practitioners preferred multiple-dimensional estimates. Another exam-
ple illustrates the preference for a multidimensional model over a unidimensional 
one. It is impossible to know in advance how the ability dimensions will work in 
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many test situations. As a result, choosing a model can be difficult. Consider a test in 
which the three components are listening, reading, and writing. There appears to be 
a connection between the three subtests. The items can be thought of as measuring a 
single English ability dimension and fitting a unidimensional model. The estimates 
might be biased if the subtests are not measured exactly similarly. To estimate the 
examinee’s ability in each sub-dimension, the unidimensional model may be fitted 
separately for each subtest. Due to the fact that the unidimensional model does not 
account for the relationships between different ability dimensions, these sub-scores 
apply only when there is no correlation between the subtests. The one-dimensional 
model restricts both approaches in this sense. A multidimensional model would 
provide more precise estimates and therefore be more efficient since it can draw 
strength from the responses of correlated ability dimensions (Finch, 2011; Liu et al., 
2013; Sheng & Wikle, 2007; Zhang, 2004; Zulaeha et al., 2020). Meanwhile, since 
model-data fit assessment conducted supported M3PLM as the most parsimonious, 
the next paragraph discusses the model and parameter estimation in detail.

Multidimensional 3‑parameter Logistic Model

Unlike unidimensional IRT, multidimensional IRT allows simultaneous analysis of 
multiple constructs. Multiple ability dimensions model the probability of success in 
MIRT. A vector �j=(�j1,……………,�jk) represents the ability parameter values for each 
individual. In Reckase (2009), items are classified based on discrimination parame-
ter values ai1=(ai1,……………,�ik) , difficulty parameter di = −aibi , and ci, a lower asymp-
tote parameter. M3PL was, therefore, implemented using this mathematical 
expression.

where exp(.) is the exponential function with base e.
P
(

Xij = 1∕�j, ai, ci,di

)

 is the probability of student j’s correct response to item i.
�j is vector of student j’s ability.
ai is vector of item i slope.
ci ∈ (0, 1) is guessing parameter.
di is the intercept parameter, and vectors ai.�̂jhave the same elements m, which is 

the number of dimensions.
The M3PL model was developed to account for empirical findings, such as those 

reported by Lord (1980), which indicate that examinees with low abilities are less likely 
to answer multiple-choice questions correctly. In this model, a single lower asymptote 
parameter is used to specify the probability of a correct response for examinees with 
very low values of θ. The process of selecting a correct response for individuals with 
low capabilities does not seem to be related to the constructs assessed by the test item. 
The interval of ci theoretically ranges between 0 and 1. However, in practice, Baker 

(1)P
(

Xij = 1∕�j, ai, ci,di

)

= Ci +
(

1 − Ci

)

exp
(

ai.�̂j + di

)

1 + exp
(

ai.�̂j + di

)
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(2001), Baker and Kim (2017), and Seock-Ho (2004) suggest that ci ranges from 0 to 
0.35 as an acceptable item calibration cut-off.

MIRT has been updated with some new concepts, such as the item characteris-
tics surface (ICS). Reckase (1985, 1997) describes the concepts of multidimensional 
item difficulty (MDIFF) and multidimensional item discrimination (MDISC) as being 
incompatible with each other. MDISC is an overall measure that quantifies the level of 
discrimination on multiple dimensions and is analogous to the ‘a’ parameter in UIRT. 
In the ICS, a longer vector indicates a more discriminating item. In the model, the dis-
crimination parameter measures how different items are. It is considered valuable if 
an item discriminates well between subjects with different abilities and interests in the 
exam. As ability increases, the probability of correctly answering a question increases 
with a higher discrimination parameter value. An ICS will be steeper with a high dis-
crimination parameter value, allowing the item to differentiate subjects better around 
its difficulty level. If the item difficulty is within the scope of the exam, items with 
a high discrimination power can contribute more to assessment precision than items 
with a low discrimination power (Ackerman, 1996; Ackerman et al., 2003; Ha, 2017; 
Kose & Demirtasli, 2012; Ul Hassan & Miller, 2022). Therefore, an item’s ability to 
discriminate between examinees is important for educators. MIRT items differentiate 
examinees in each dimension, whereas UIRT items only discriminate in one direction. 
The discriminating power of item i for the most discriminating combinations of dimen-
sions (M3PL) can be expressed as:

where a1, a2 and a3 are the discrimination parameter for each of item i.
More so, the MDIFF has the same meaning as bi in UIRT but is not interchange-

able. Using IRTs, MDIFF is the distance from the origin to the vector’s steepest slope 
(Smith, 2009; Ackerman et  al., 2003; Ha, 2017; Reckase, 1985). Thus, the general 
expression for the distance of the line from the origin is given by:

where di represents the intercept for item i. Depending on the sign of the distance, 
we can determine how difficult the item is. Positive MDIFF means that items are rel-
atively hard in the first quadrant, while negative MDIFF means that items are rela-
tively easy in the third quadrant (Ackerman et al., 2003; Ha, 2017; Mark et al., 1983; 
Reckase, 2007, 2009).

(2)MDISC =

√

√

√

√

m
∑

k=1

a2ik ≈

√

a2i1 + a2i2 + a2i3

(3)
MDIFF =

−
�

di
�

�

m
∑

n=1

a2
in

≈
−(di)

MDISC
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Current Study

This study aimed to investigate the dimensions of the physics test items and calibrate 
the test using both the parsimonious model based on Supplementary Item Response 
Theory (SIRT) and the Multidimensional Item Response Theory (MIRT) packages 
in the R programming language. High-quality test items are essential for assessing 
students’ proficiency levels and overall competence. Previous research has shown 
that MIRT models offer promise and provide better parameter indices when items 
are associated with multiple latent traits. However, there has been limited explora-
tion of parameter estimation when some items are linked to multiple dimensions, 
specifically using the M3PL model for calibration. The complexity of the physics 
test items at NOUN is a major concern since these items may not strictly adhere to 
a simple structure. Instead, they may exhibit various latent traits to different extents, 
regardless of their position in the test. Therefore, this study has four main objectives: 
(1) to determine the number of dimensions underlying the physics achievement test, 
(2) to understand the difficulty parameter of the test, (3) to estimate the discrimina-
tion parameter of the test, and (4) to assess the chance factor involved in the test.

Method

This study used a non-experimental ex-post facto design, chosen for its suitability in 
retrospectively describing an event and applying that description to verify its occur-
rence. In the context of Item Response Theory (IRT), the students’ answers to the 
test items served as the response variables, while the examinees’ abilities and the 
characteristics of the test items, as indicated by previous studies (Adekunle et  al., 
2021; Li et al., 2012), were considered latent predictor variables. Census sampling 
was employed to ensure a comprehensive representation of the target population, 
specifically, all undergraduate students enrolled in PHY101 across various study 
centers under the National Open University of Nigeria (NOUN). This approach was 
deemed appropriate as it covered the entire population under study.

The research instrument consisted of thirty-five items selected from the PHY 
101 physics achievement test. These items were meticulously developed by faculty 
lecturers to assess students’ comprehension of various physics concepts, including 
mechanics, thermodynamics, and electricity, among others. The instrument uti-
lized a multiple-choice format, evaluating students’ ability to analyze, reason, and 
apply physics concepts across a wide range of topics. Each item offered four answer 
options, with only one correct response allowed. Correctly answered items were 
coded as 1, while incorrectly answered items were coded as 0. Additionally, each 
test item measured three latent traits: reading ability, reasoning/cognitive-processing 
skill, and problem-solving in physics. These traits were taken into account during 
the testing process. It is worth emphasizing that the research instrument underwent 
a rigorous development process. Faculty lecturers responsible for item creation fol-
lowed a systematic procedure to ensure the validity and reliability of the test items. 
This process included the review of content experts and alignment of items with the 
intended learning outcomes of PHY 101. Subsequently, pilot testing was conducted 
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to identify and address potential issues related to item clarity, difficulty, and rele-
vance. Adjustments were made to the items based on the feedback received during 
pilot testing, ensuring their effectiveness in assessing the targeted knowledge and 
skills. Consequently, the instrument demonstrated empirical reliability with a coef-
ficient of 0.80, and its content validity was established at 0.89. Data collection took 
place across NOUN study centers located in all 36 states of Nigeria. The Directo-
rate of Examination and Assessment (DEA) at the University managed all aspects 
related to examinations and assessments. For data analysis, the study utilized exami-
nee data from 978 responses, of which 37.8% were females and 62.2% were males. 
The study used a comprehensive approach to analyze the data and extract meaning-
ful insights from secondary data obtained from the DEA. The primary analytical 
tools employed were the Supplementary Item Response Theory Models (sirt) pack-
age (Robitzsch, 2015, 2020) and the multidimensional item response theory (mirt) 
package (Chalmers, 2012) within the R language version 4.0.2. The function conf. 
detect was used to compute the DETECT under a confirmatory specification of item 
clusters (Stout et al., 1996; Zhang & Stout, 1999a, b). On the other hand, Explora-
tory DETECT was used when there were no predefined assumptions about the data’s 
structure, aiming to explore potential dimensions or factors that might influence 
item responses.

Initially, the data was assessed for dimensionality to understand the underlying 
structure of the PHY 101 test. Techniques like factor analysis or principal compo-
nent analysis were employed to reveal and isolate these hidden dimensions. The 
strength of the association between each item and these dimensions was examined, 
with strong associations indicating that the item measured that specific dimension. 
Labels and meanings were then assigned to these dimensions based on the content 
of items strongly associated with each factor. This process provided insights into the 
underlying structure of the data and shed light on distinct dimensions.

Confirmatory DETECT provided robust evidence supporting the test’s multidi-
mensional nature, while exploratory DETECT revealed three distinct dimensions: 
cognitive processing, reading ability, and problem-solving skills. After analyzing 
the dimensionality, the study focused on assessing the model-data fits to ensure the 
appropriateness of the chosen models. This step was critical in calibrating the mul-
tidimensional three-parameter logistic model for item parameters such as difficulty, 
discrimination, and susceptibility to chance influences. This comprehensive data 
analysis process contributed to the overall reliability and validity of the research 
findings by providing a deep understanding of the test’s structure and the quality of 
its individual items.

Results

We examined the dimensionality of the items in NOUN PHY 101 by applying Stout’s 
test of essential unidimensionality (Stout, 1987) to the responses of examinees on the 
test form. We used the RAM package Supplementary Item Response Theory Models 
(sirt) implemented in the R Language and Environment for Statistical Computing 
(R Core Team, 2019), as developed by Robitzsch (2015, 2020). Through both 
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confirmatory dimensionality evaluation (confirmatory DETECT) and exploratory 
dimensionality evaluation (exploratory DETECT), we determined the optimal 
number of dimensions to support the relevance of the test items based on the results 
from confirmatory dimensionality evaluation. DETECT, as used by Akerman (2003, 
p. 137), Ayanwale (2021, 2023), and Zhang (2013), is a nonparametric exploratory 
procedure for assessing dimensionality and estimating the magnitude of departure 
from unidimensionality. Consequently, Jang and Roussos (2007) and Zhang (2007) 
judge the dimensionality of test data using the classification indices below, while 
Table 1 presents the results of the test’s dimensionality assessment.

Essential unidimensionality DETECT < .20
Maximum value under simple structure ASSI=1  RATIO=1
Essential deviation from unidimensionality ASSI > .25     RATIO > .36
Essential unidimensionality ASSI < .25     RATIO < .36.
Strong multidimensionality                           DETECT > 1.00
Moderate multidimensionality .40 < DETECT < 1.00
Weak multidimensionality .20 < DETECT < .40

Table 1 illustrates the NOUN physics achievement test for undergraduates’ dimen-
sionality test. This table illustrates that the test items returned a DETECT value 
of 6.202, an ASSI value of 0.867, and a RATIO value of 0.863. There was strong 
evidence of multidimensionality in the NOUN physics achievement test, based on 
results obtained from undergraduate students (DETECT > 1.00). It is also of great 
significance to note that the outcome of this study showed the multidimensionality 
of the test to have a simple structure as the ASSI was approximately 1 (ASSI ≈ 1) 
and the RATIO was also approximately 1 (Ratio ≈ 1). Meanwhile, it is possible that 
DETECT might not produce optimal results in the absence of an approximate sim-
ple structure(Svetina & Levy, 2014). Using exploratory DETECT, further analysis 
of the students’ responses to the physics test was conducted to understand the actual 
number of dimensions of the test. Figure 1 illustrates the result that was obtained.

Figure  1 illustrates the dimensions underlying the examinees’ performance in 
the physics examination and the number of items loading under each dimension. 
The figure shows the three dimensions considered when estimating students’ perfor-
mance in the physics test. Based on the test’s nature, researchers, and experts sug-
gested that reading skills had a stronger impact on the first dimension of the test 
compared to cognitive processing/reasoning and problem-solving skills. In contrast, 
cognitive processing/reasoning ability was more dominant in the second dimension 
than reading ability and problem-solving skills, while problem-solving skill had a 

Table 1   Dimensionality 
assessment of physics 
achievement test

Unweighted Weighted

DETECT 6.202 6.202
ASSI 0.867 0.867
RATIO 0.863 0.863
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stronger impact on the third dimension of the test compared to cognitive process-
ing/reasoning and reading skills. An assessment of model fit was also conducted on 
examinee responses to determine the most parsimonious model for estimating and 
calibrating item parameters for the physics test items. This was achieved using mul-
tidimensional item response theory (mirt) packages of full information factor anal-
ysis. These packages were used to hypothesize and compare the multidimensional 
1-parameter logistic model (M1PL), multidimensional 2-parameter logistic model 
(M2PL), multidimensional 3-parameter logistic model (M3PL), and multidimen-
sional 4-parameter logistic model (M4PL). The assessment of model-data fit for the 
physics achievement test is presented in Table 2.

A summary of the results presented by the full information factor analysis is 
presented in Table  2, which contains the indices of fit through the Akaike Infor-
mation Criteria (AIC), Bayesian Information Criteria (BIC), Sample size Bayesian 
Information Criterion (SABIC), Hannan and Quinn’s information criterion (HQ) 
and the − 2loglikelihood ratio. As a result of the hypothesis comparison between 
the two models, the values for the indices of the M2PL solution (AIC = 32659.5, 
SABIC = 32893.7, HQ = 32914.2, BIC = 33328.9 and − 2logLikelihood = − 
16,193) were less than those for the M1PL solution. Furthermore, when compared 
with M2PL solution, M3PL showed an improved fitness with (AIC = 32250.8, 
SABIC = 32544.9, HQ = 32570.5, BIC = 33091.1, and − 2logLikelihood = 
−15,953), while M4PL shows an inferior fit when hypothesised with M3PL solu-
tion (AIC = 32236.5, SABIC = 32590.4, HQ = 32621.3, BIC = 33247.8, and − 2log-
Likelihood = − 15,911). The observed data does not match the predictions of the 
other models, which indicates a significant difference. Consequently, the M3PL IRT 
model was found to be the most appropriate one to calibrate NOUN physics achieve-
ment test. Next, we need to determine the level of difficulty of the NOUN physics 

Fig. 1   Dimensionality of the NOUN physics achievement test

Table 2   Model-data fit 
assessment for physics 
achievement test

Model AIC SABIC HQ BIC -2logLikelihood

M1PL 34600.5 34662.0 34667.4 34776.4 -17,264
M2PL 32659.5 32893.7 32914.2 33328.9 -16,193
M3PL 32250.8 32544.9 32570.5 33091.1 -15,953
M4PL 32236.5 32590.4 32621.3 33247.8 -15,911
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achievement items. To do this, we calibrated examinee responses to the test using 
the most parsimonious M3PL IRT model that closely matched the test’s characteris-
tics. Firstly, it should be noted that MDIFF difficulty parameter represents the equiv-
alent form of bi in the unidimensional IRT that were judged based on the principles 
laid out by Baker, 2001;, 2017; Hasmy, 2014 for judging the difficulty parameter of 
MDIFF. There are five levels of difficulty as defined by the authors. According to 
them, the item is extremely difficult when b or MDIFF ≥ 2, difficult when 0.5 ≤ b or 
MDIFF < 2, moderately difficult when − 0.5 ≤ b or MDIFF < 0.5, easy when − 2 ≤ b 
or MDIFF < − 0.5 and extremely easy when b or MDIFF < − 2. In Table 3, we pre-
sent the results of the study.

Based on the multidimensional calibration of the test, Table  1 shows that 13 
(37.1%) of the items have a moderate difficulty index, while 2 (5.8%) of the items 
have an extremely difficult index, and 9 (25.7%) of the items have a difficulty index 
(hard items). Of the remaining 11 (31.4%) items, there are easy items. Consider-
ing the results of this study, a reasonable number of the items on the physics test 
were moderately difficult for the examinees to answer. Essentially, the results sug-
gest that the items on the test are only appropriate for determining the proficiency 
of examinees who have a moderate level of proficiency in PHY 101 and those who 
are proficient in the course, depending on the test content. This test was not suit-
able for measuring the proficiency in physics of examinees who have a low level of 
knowledge about the course. The item ordering of the test has also been established 
in the literature as one of the factors that could affect the examinee’s performance. 
As a rule, a good test should start with relatively easy items and progress to more 
complex ones, enabling examinees with low proficiency to start the exam with con-
fidence instead of starting with moderately difficult items. Hence, it would appear 
that the pattern of difficulty of items revealed in Table 2 goes against the norms that 
should be followed when developing tests.

To evaluate the degree of discrimination that each item of the physics tests pos-
sesses across each dimension (a1, a2, and a3) in terms of discrimination against 
individuals, which is recognized as multidimensional item discrimination (MDISC), 
the discrimination parameter of the MDISC is the equivalent form of a.i. in the uni-
dimensional IRT. The discrimination was evaluated following the criteria estab-
lished by (Ayanwale et al., 2018; Ayanwale, 2019; Baker, 2001; Hasmy, 2014). To 
describe the item’s discriminatory power, the authors have determined that it is 
very highly discriminatory if a or MDISC ≥ 1.7, highly discriminatory if 1.35 ≤ a 
or MDISC < 1.7, moderately discriminating if 0.65 ≤ a or MDISC < 1.34, lowly dis-
criminating when 0.35 ≤ a or MDISC < 0.65, and very lowly discriminating when 
a < − 0.35. Detailed results are given in Table 4.

As shown in Tables 4 and 29 out of the 40 items (82.8%) have a very high dis-
criminating index, 2 out of the 40 items (5.7%) have a high discriminating index, 
3 out of 40 items (8.6%) have a moderately discriminating index, and we have one 
item (2.9%) with a low discriminating index out of the 40 items. There was also a 
positive discriminating index for all the test items, which indicates that as the exami-
nee’s abilities level increases, the probability that they will take correct responses 
increases. Due to the test’s items, there was strong discrimination between exami-
nees who were proficient in physics and those who were not proficient in the course. 
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In addition to this, Table  4 column 5 contains a parameter c (lower asymptote), 
which represents the probability that the item will be correct when guessing alone 
based solely on the item. In fact, by definition, the value of c is independent of the 
level of ability, so its value will not differ based on the level of ability. Consequently, 
regardless of the level of ability of the examinee, they will have exactly the same 

Table 3   Three-multidimensional item difficulty parameter of physics tests

Item d a1 a2 a3 g MIDFF Remarks

Item1 − 0.87 0.64 1.01 2.64 0.12 0.30 Moderately difficult
Item2 0.49 − 0.38 − 1.73 0.87 0.01 − 0.25 Easy
Item3 − 6.35 − 2.78 − 0.64 − 1.14 0.18 2.07 Extremely difficult
Item4 0.36 − 2.96 − 0.95 − 0.34 0.20 − 0.12 Easy
Item5 0.88 − 4.01 − 0.59 − 0.31 0.26 − 0.22 Easy
Item6 − 0.17 − 1.26 − 1.35 − 0.60 0.26 0.09 Moderately difficult
Item7 0.47 0.25 0.91 1.66 0.14 − 0.25 Easy
Item8 0.49 − 0.09 − 1.77 1.18 0.12 − 0.23 Easy
Item9 − 0.04 − 1.06 − 2.52 1.40 0.12 0.01 Moderately difficult
Item10 − 0.20 − 1.34 − 0.66 2.21 0.00 0.07 Moderately difficult
Item11 − 0.43 − 1.50 0.04 1.81 0.02 0.18 Moderately difficult
Item12 0.61 − 0.48 − 1.97 0.48 0.15 − 0.29 Easy
Item13 − 0.77 − 0.76 − 1.43 − 0.21 0.20 0.47 Moderately difficult
Item14 − 0.59 − 0.75 − 1.73 − 0.12 0.40 0.31 Moderately difficult
Item15 0.66 − 0.84 − 1.75 − 2.05 0.22 − 0.23 Easy
Item16 0.07 0.15 0.44 0.02 0.35 − 0.15 Easy
Item17 − 1.31 − 1.55 − 1.30 0.19 0.34 0.64 Difficult
Item18 − 0.32 0.63 2.01 1.01 0.33 0.14 Moderately difficult
Item19 − 3.28 − 2.21 − 1.33 0.63 0.38 1.24 Difficult
Item20 − 1.08 0.64 − 2.72 − 0.66 0.29 0.38 Moderately difficult
Item21 − 1.20 1.02 − 1.16 − 1.81 0.37 0.50 Difficult
Item22 − 1.82 1.00 − 2.14 − 0.48 0.22 0.76 Difficult
Item23 − 3.82 1.31 − 1.37 − 0.11 0.26 2.01 Extremely difficult
Item24 − 3.36 0.15 − 1.71 0.45 0.21 1.89 Difficult
Item25 − 0.88 − 0.05 − 0.08 3.88 0.01 0.23 Moderately difficult
Item26 − 2.63 − 2.13 − 0.39 − 0.33 0.30 1.20 Difficult
Item27 − 3.73 − 0.96 1.98 − 0.06 0.13 1.69 Difficult
Item28 − 1.48 − 2.40 0.88 1.39 0.05 0.51 Difficult
Item29 − 1.37 − 2.21 0.35 − 1.80 0.11 0.48 Moderately difficult
Item30 − 0.45 − 0.36 − 0.93 0.18 0.19 0.44 Moderately difficult
Item31 − 1.31 0.30 0.55 0.37 0.17 1.80 Difficult
Item32 0.05 − 0.59 − 0.53 − 0.26 0.00 − 0.06 Easy
Item33 0.53 − 0.67 − 1.36 − 0.63 0.00 − 0.32 Easy
Item34 0.39 − 0.56 − 1.17 − 1.34 0.07 − 0.21 Easy
Item35 − 0.59 − 1.39 − 2.15 0.45 0.21 0.23 Moderately difficult
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chance of getting the item correct by guessing the response (Baker, 2017). As the 
parameter c has a theoretical range of 0 ≤ c ≤ 1.0, in practice it is considered unac-
ceptable to have values greater than 0.35 regardless of how many times it is tested. 
Consequently, Baker (2001) found the range between 0 ≤ c ≤ 0.35 to be acceptable 
and recommended that it be used. In this regard, the guessing indices as depicted 

Table 4   Three-multidimensional item discriminating parameter of physics tests

Item a1 a2 a3 g Remarks MDISC Remarks

Item1 0.64 1.01 2.64 0.12 Acceptable 2.90 VHD
Item2 − 0.38 − 1.73 0.87 0.01 Acceptable 1.97 VHD
Item3 − 2.78 − 0.64 − 1.14 0.18 Acceptable 3.07 VHD
Item4 − 2.96 − 0.95 − 0.34 0.20 Acceptable 3.13 VHD
Item5 − 4.01 − 0.59 − 0.31 0.26 Acceptable 4.06 VHD
Item6 − 1.26 − 1.35 − 0.60 0.26 Acceptable 1.94 VHD
Item7 0.25 0.91 1.66 0.14 Acceptable 1.91 VHD
Item8 − 0.09 − 1.77 1.18 0.12 Acceptable 2.13 VHD
Item9 − 1.06 − 2.52 1.40 0.12 Acceptable 3.07 VHD
Item10 − 1.34 − 0.66 2.21 0.00 Acceptable 2.67 VHD
Item11 − 1.50 0.04 1.81 0.02 Acceptable 2.35 VHD
Item12 − 0.48 − 1.97 0.48 0.15 Acceptable 2.08 VHD
Item13 − 0.76 − 1.43 − 0.21 0.20 Acceptable 1.63 HD
Item14 − 0.75 − 1.73 − 0.12 0.40 Not acceptable 1.89 VHD
Item15 − 0.84 − 1.75 − 2.05 0.22 Acceptable 2.83 VHD
Item16 0.15 0.44 0.02 0.35 Acceptable 0.47 LD
Item17 − 1.55 − 1.30 0.19 0.34 Acceptable 2.03 VHD
Item18 0.63 2.01 1.01 0.33 Acceptable 2.33 VHD
Item19 − 2.21 − 1.33 0.63 0.38 Not acceptable 2.66 VHD
Item20 0.64 − 2.72 − 0.66 0.29 Acceptable 2.87 VHD
Item21 1.02 − 1.16 − 1.81 0.37 Not acceptable 2.38 VHD
Item22 1.00 − 2.14 − 0.48 0.22 Acceptable 2.41 VHD
Item23 1.31 − 1.37 − 0.11 0.26 Acceptable 1.90 VHD
Item24 0.15 − 1.71 0.45 0.21 Acceptable 1.78 VHD
Item25 − 0.05 − 0.08 3.88 0.01 Acceptable 3.88 VHD
Item26 − 2.13 − 0.39 − 0.33 0.30 Acceptable 2.19 VHD
Item27 − 0.96 1.98 − 0.06 0.13 Acceptable 2.20 VHD
Item28 − 2.40 0.88 1.39 0.05 Acceptable 2.91 VHD
Item29 − 2.21 0.35 − 1.80 0.11 Acceptable 2.87 VHD
Item30 − 0.36 − 0.93 0.18 0.19 Acceptable 1.01 MD
Item31 0.30 0.55 0.37 0.17 Acceptable 0.73 MD
Item32 − 0.59 − 0.53 − 0.26 0.00 Acceptable 0.83 MD
Item33 − 0.67 − 1.36 − 0.63 0.00 Acceptable 1.64 HD
Item34 − 0.56 − 1.17 − 1.34 0.07 Acceptable 1.87 VHD
Item35 − 1.39 − 2.15 0.45 0.21 Acceptable 2.60 VHD
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in Table 3 demonstrated that the majority of items have a guessing index within the 
acceptable range of 0.35 or less, except for items (14, 19 and 21) that have a lower-
asymptote index that exceeds 0.35. This could indicate that there are not many items 
in the physics test that may be susceptible to guessing behaviour.

Discussion

The Item Response Theory (IRT) framework emphasizes the importance of consid-
ering test dimensionality during test development and establishing a strong validity 
foundation to guide the construction of effective tests. Test dimensionality refers to 
the number of traits or dimensions the test aims to measure. Therefore, test items 
are designed and organized to align with these intended traits or dimensions. In sta-
tistical dimensionality analysis, the goal is to identify the underlying constructs of 
the test instrument, providing evidence of test validity. Many testing programs world-
wide typically assume a simple structure when analyzing data, meaning that each 
item measures only one trait. However, some testing programs have recognized the 
need for more complex analyses beyond simple structures, particularly in the con-
text of Multidimensional Item Response Theory (MIRT) modeling. This growing 
field requires dimensionality analyses tailored to MIRT models. This study focuses 
specifically on the measurement instruments used at NOUN, particularly the PHY 
101 physics test, which contains items described as multidimensional. These items 
require examinees to demonstrate knowledge across multiple content types and cog-
nitive ability levels. Consequently, accurately estimating item parameters becomes 
crucial in assessing an examinee’s ability in this subject, directly affecting the quality 
of test items. To address this, a multidimensional approach was employed to estimate 
the item parameters of the PHY 101 physics test items using the mirt package in the 
R language for statistical computing. The dimensionality analysis results led to the 
selection of the M3PL IRT model for calibrating PHY 101 test items based on model 
fit. These findings support previous research by Ackerman et al. (2003), Tobih et al. 
(2023), Liu et al. (2013), and Ul Hassan and Miller (2022), suggesting that increased 
dimensionality and complexity result in better model fit. Complex models with more 
dimensions are considered superior when grouping similar questions or items. This 
aligns with Wiberg’s (2012) observation that item parameters and ability estimates 
tend to align with the strongest factor in a multidimensional dataset with strong fac-
tors beyond the primary unidimensional parameterization. Therefore, MIRT is more 
suitable for real-world applications where multidimensionality is realistic.

Additionally, the difficulty indices of the physics test items were found to be of 
high quality. This suggests that the test is most suitable for assessing the proficiency 
of individuals with moderate to high proficiency in physics, but not for those with 
low proficiency. Some items were challenging, while others were moderately dif-
ficult. These findings are consistent with research by Adekunle et al. (2021), which 
highlight the impact of test length on item statistics and the precision of item diffi-
culty parameters concerning test dimensions. In contrast, Zulaeha et al. (2020) sug-
gested that a test length of 15 displayed a median correlation of 0.78 for variance 
estimates, indicating that the questions were more difficult, potentially leading to 
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guessing by respondents. Additionally, item difficulty parameters were highly influ-
enced by sample size.

Regarding the quality of discrimination item parameters, the study found that the 
physics test items effectively discriminated between proficient and non-proficient 
examinees. This aligns with the findings of Kose and Demirtasli (2012), Zulaeha et al. 
(2020), Liu et al. (2021), Zhang (2012), and Adekunle et al. (2021), which suggest that 
discrimination parameters are associated with multiple dimensions. Furthermore, as 
argued by Liu et al. (2013) and Mark et al. (1983), an item’s discrimination power on 
one dimension depends on its ability on other dimensions. Therefore, a dimension’s 
discriminating power increases as the abilities on other dimensions increase.

Additionally, the results indicated that test-takers were generally not influenced 
by chance factors when responding to test items, except for a few items (e.g., items 
14, 19, and 21 with c-parameters of 0.40, 0.38, and 0.37). The difficulty of these 
items may lead to guessing behavior rather than reflecting true ability, and other 
factors beyond proficiency may affect students’ responses. Therefore, employing an 
appropriate multidimensional model to determine the c parameter, rather than a uni-
dimensional model, is crucial to avoid overestimating test item indices. Past research 
has shown that some methods of estimating MIRT item parameters can be influ-
enced by the presence of chance factors.

Conclusion

Researchers who are interested in estimating MIRT model item parameters may find 
the results of this study useful. This research sought to examine various factors asso-
ciated with NOUN’s physics test, rather than focusing on the unidimensional struc-
ture, where individual items were associated with only one latent trait. Thus, these 
results might provide practitioners with additional insights into MIRT data mode-
ling. The results presented above suggest that parameter estimates obtained using 
the fitted M3PL model to the NOUN physics test remarked quality item parameters 
(difficulty, discrimination, and chance factor) with reduced bias. The study con-
cludes that multidimensional models of IRT are dependable and most appropriate 
for evaluating the psychometric quality of NOUN physics test items since the test 
evaluated test-takers in various areas (e.g., cognitive processing/reasoning, reading 
skills and problem-solving skills). According to the study, the university’s directo-
rate of examination and assessment needs to establish a psychometric unit and hire 
assessment experts with a deep understanding of test theories to help validate the 
instrument before administration. Establish item parameters based on multidimen-
sional models for courses with inherent variables that affect students’ performance 
and train and retrain lecturers who develop these items to keep them current. IRT 
practitioners working with multidimensional data should be aware of the implica-
tions presented above when responding to IRT questions that do not measure a sin-
gle trait. As a result, parameter estimation for items with multidimensional struc-
tures will be generally less accurate than for items with unidimensional structures 
and neglecting multidimensional structure will almost certainly result in biased 
difficulty, discrimination, and guesswork. Research in the future should address 
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limitations of this study. For calibration using R programming software, the time to 
converge was longer. Moreover, this study did not consider establishing examinees’ 
ability, which may be a potential area of concern and focus for future research. It 
is also possible to establish other NOUN courses parameters to assess whether the 
model used to model test-takers’ responses is appropriate, which can affect their per-
formance negatively or positively.
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