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Abstract
Currently, the most popular indoor geolocation technique used in smart device is the RSS-based Wi-Fi localization. The 
general accuracy of Wi-Fi localization in around 10–15 m. To improve this accuracy in indoor areas, site survey is com-
monly used to collect a signature data base. With the emergence of smart buildings and the IoT to connect the sensors for 
the smart building, a number of low power sensor devices with diversified power levels will be deployed in the building. 
The radiated RSS from these devices can be used to improve the precision of the RSS based localization. In this paper we 
introduce an analytical frame work for calculation of the CRLB in an environment with variable radiated powers from sen-
sors to complement the Wi-Fi localization. We use the analytical framework to demonstrate the accuracy of localization in 
the third floor of the Atwater Kent Laboratory at Worcester Polytechnic Institue, for existin Wi-Fi localization and variety 
of sensor deployment scenarios. The existing CRLB calculation for the RSS-Based localization use the differential value of 
the received signal strength from given reference points to calculate the variance of the location estimate. As a result, effect 
of the transmitted power from the sources is eliminated. In another words this approach cannot demonstrate the effects of 
transmitted power of the reference device on the performance of the system. By introducing the concept of certainty in the 
measurement of the RSS, we also introduce a novel model for calculation of the performance of RSS based localization with 
inclusion of the effects of the transmitted power from the reference sources.

Keywords  Internet of Things (IoT) · Localization · Cramer Rao lower bound openparen (CRLB)

1  Introduction

Recently, various positioning techniques have been devel-
oped for accurate indoor geolocation. These techniques can 
be roughly divided into two classes. The first and most popu-
lar one is traditional technique, which measures received 
signal strength (RSS), time of arrival (TOA) or other sig-
nal property matrixes and calculate distance between the 
transmitter and receiver. Then triangulation is applied to 
the measured distances and the location can be determined. 
Another technique is based on pattern recognition, which 
is more intelligent and can improve the positioning perfor-
mance when the measurements are not reliable [1, 2].

In 3D indoor environment, the localization problem 
becomes extremely complicated. The first consideration 

is the difference between the techniques utilized in indoor 
and outdoor geolocation systems. The widely used GPS 
is no longer an option for the indoor environment since it 
requires LOS which is blocked in most situations. Many 
new techniques have been explored recently. The most 
used one is RF-based technique. Since the properties of RF 
signals like Received Signal Strength (RSS) and Time-of-
Arrival (ToA) can be utilized to determine to the distance 
between the transmitter and receiver. Then the triangula-
tion can be applied to find out the location of the mobile 
points (MPs) [2–5]. Recently, more sensor are introduced 
into the area of indoor geolocation, such as accelerometer, 
gyroscope, and barometer, which is commonly described as 
sensor-fusion techniques [19, 6–8]. Moreover, since most 
of the building will have cameras all over the building for 
security purposes, the image processing techniques can also 
be applied in the indoor geolocation area. Another consid-
eration is the difference in the maps used in the outdoor and 
indoor environment. The Google map can be acquired easily 
when the users are in the outdoor environment with high-
accurate outdoor geolocation. But when one comes indoor, 
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the outdoor map is no longer accurate enough since the out-
door maps cannot show the detailed structure of the indoor 
environment on different floors and the transition between 
floors. So indoor maps should be used instead. The last con-
sideration is the 3D geolocation vs 2D geolocation schemes. 
There have been large amount of researches conducted for 
the 2D geolocation. But when it comes to 3D scenarios, 
the problem becomes more complex. For example, the WiFi 
signal will suffer extra loss when going through the ceilings 
between floors and the pass loss model should be changed 
accordingly. In the 2D scenarios, every estimated location 
is on a certain floor. But in 3D scenarios, more information 
should be applied such as how to whether the user is inside 
or outside the building, on which floor is the user located and 
whether the user is in the elevator or on the stair.

From the considerations above, it is crucial to look 
deeply into the 3D indoor geolocation problems from dif-
ferent aspects. Cramer-Rao Lower Bound (CRLB) is a typi-
cal method which evaluates the positioning performance 
of different techniques. It can give the lower bound for the 
positioning schemes so that all the techniques can be com-
pared accordingly. CRLB has been well explored in many 
previous researches, but none of them consider the factor 
of certainty of coverage. As we all know, when signal goes 
from the transmitter to the receiver, it will suffer all kinds 
of fading and losses. There is a possibility that the transmit-
ted signal becomes lower than the receiver’s sensitivity so 
that it cannot be detected. In this case, the location is out of 
coverage and cannot used for position detection. Consider-
ing the matter of coverage, it is essential to determine the 
probability that one location is within the coverage before 
we start to calculate CRLB [9, 10].

In this study, we tried to explore how the coverage probabil-
ity can affect the procedure of CRLB calculation and conse-
quently the performance evaluation. The calculation of cover-
age probability is specifically derived as the basic foundation 
of the follow-up CRLB calculation. Scenarios are designed for 
conducting experiments which is based on the infrastructure of 
Atwart Kent Laboratory (AKL). Both 2D and 3D scenarios are 
designed and comparisons are made accordingly.

In the following section, we will describe the methodol-
ogy in detail. Section 3 elaborates the results and analysis 
while conclusion is made in Sect. 4.

2 � Related Work

Since smart phone is powerful with various embedded sensors 
(Barometer, Gyroscope, etc.) and other applications (WiFi, 
GPS), approach for intruder detection can be implemented in 
multiple methods. Some related work has been done related 
to this topic. Smart devices have become essential parts of 
our daily life. Smart phone owners can not only use their 

phones to make phone calls, but also access a wide range 
of services and information. They can read breaking news, 
conduct transaction through online banking, and even get 
information about their health condition from the small but 
smart devices. Another important application of smart phones 
is localization and navigation. With various embedded sen-
sors, location can be estimated by different techniques which 
makes smart phone a good candidate for both outdoor and 
indoor geolocation. GPS is reliable and accurate in the out-
door localization. By acquiring the Line-of-Sight from the 
satellites, location can be calculated by using triangulation. 
Other sensors can also be utilized for indoor localization, such 
as Wi-Fi, barometer, accelerometer, gyroscope and etc. Wi-Fi 
signal is the most popular technique that is used in the indoor 
localization. From the received signal strength (RSS) or time 
of arrival (ToA), distance from the access points (APs) can 
be calculated and triangulation can be applied to acquire the 
estimated location as well. Barometer is good in determine the 
height of the user inside the building, since altitude is closely 
related to the air pressure measured by the barometer. Accel-
erometer is used for measuring the acceleration of the move-
ment. By calculating the second integral of the acceleration, 
distance of movement can be calculated. Gyroscope is helpful 
in detecting motion and by looking into the data gathered from 
this sensor, every motion can be detected so that the location 
can be estimated according to that [11, 12].

Although indoor geolocation has been explored for a cou-
ple of years, there are still challenging problems in this area, 
among which the map selection and performance evaluation 
problem are the most crucial and critical. The commonly 
used Google maps have good performance in the outdoor 
localization and navigation. By using Google maps, one can 
be guided to a place with high speed and accuracy GPS 
application. However, the Google maps do not pay much 
attention to the indoor environment, in which the detailed 
layout should be displayed. So it is crucial for us to find 
out whether the smart phone is operating in the outdoor or 
indoor environment and the correct map can be selected 
accordingly. Also, in multiple-floor buildings, layout differs 
from different floors. Therefore, we should also find out the 
which floor the smart phone user is currently located in so 
that the corresponding map can be displayed. The first part 
of the map selection problem can be described as outdoor-
indoor transition detection and the second part as multi-floor 
transition detection. To solve these to detection problems, 
proper sensor selection is the very first step, after which 
scenarios and algorithms can be designed and consequently 
experiments can be conducted [13–15].

For any indoor geolocation problem, it equally important 
to evaluate the performance. It is essential since a criterion 
is needed for designing algorithm and deploying the APs so 
that we can compare different techniques that are used and 
choose the one with the best performance. But there are still 
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some challenging issues related to this problem. A general 
and efficient way should be provided and we can utilize it to 
analyze any indoor geolocation system. The approach can 
also be modified since for different localization schemes, 
other sensors will be fused and the modified scheme is able 
to respond to any change.

The work described by [16] presents an approach which 
detects intruder for WLAN access. Least Mean Square 
(LMS) and Prioritized Maximum Power (PMP) are used as 
two RSS-based matching algorithms. Their performance of 
accuracy are compared in indoor and outdoor-indoor areas 
and PMP algorithm provides a better performance than LMS 
in positioning application.

An approach using fusion of sensors, WLAN signals 
and building information for indoor/campus localization 
is developed by [8]. This method shows the possibilities 
of combing the measurements from different sensors and 
building information to obtain accurate indoor localization 
as well as the possibilities that sensors can aid in intruder 
detection [17, 2].

Some indoor personal navigation applications are intro-
duced in [2]. Map Matching Algorithms are implemented, 
which make the Pedestrian Navigation Module (PNM) have 
the capbility to provide localization results even with bad 
reception of GPS signals.

Another approach is described in [18, 19] which fuse 
dead reckoning (DR) algorithm, GPS, and RFID for pedes-
trian positioning. This method is implemented as software 
module with web-based APIs on computing systems which 
shows that GPS and the active RFID tag system can seam-
lessly and effectively adjust estimation errors in DR as well 
as possibilities for sensor fusion localization.

3 � Probability of Coverage

To analyze the coverage certainty, we should start from the 
commonly used path loss model in decibels, which is given 
by:

where Lp is the total path loss from the transmitter to 
receiver. L0 is the normalized path loss, which is the power 
loss at 1 m. � is the gradient indicating the relation between 
distance and power. In the environment of office buildings, 
the materials of the buildings are brick, wood, metal, and 
other composites. These materials have different gradients 
from 2 to 6. In large office area, � is changeable according to 
different r, which indicates the distance from the transmitter 
to the receiver.

The transmitted signal is also expected to have different 
path losses in different directions, causing power variation 
when it reaches to receiver. This variation is commonly 

(1)Lp = L0 + 10� log10 r

called shadow fading or large-scale fading since its cause 
is obstruction by objects around the receiver. It is not fea-
sible to model shadow fading in a deterministic way, and 
therefore we usually use statistical models instead. We 
define l as the shadow fading in the radio propagation, 
which is a zero mean normally distributed random variable 
with a standard deviation of � . The probability distribution 
function (PDF) for shadow fading can be written as:

Every receiver has its own sensitivity, which is the minimum 
RSS that it can recognize. Given the PDF of the shadow 
fading, we can calculate the probability that the RSS in one 
location will be lower that the sensitivity (Outage) as well as 
the probability that it is higher than the sensitivity (Cover-
age). It is obvious that the sum of the two will be one and we 
only need calculate one of them. We denote s as the differ-
ence between transmitted power and the sensitivity, which 
indicates the maximum power loss for effective transmission. 
Then the probability of coverage can be derived as follow:

where erfc() is the complementary error function, and 
erfc(x) =

2√
�
∫ ∞

x
e−t

2

dt . Then we can replace Lp with Eq. (1), 
and the coverage probability is written as:

From Eq. (4), we can see that all the factors are constant 
except d, which means that the probability is a function of 
the distance between the transmitter and receiver.

4 � Channal Modelling with Probability 
of Coverage

Path loss model plays an important role in designing local-
ization algorithms and performance evaluation. There has 
been numerous researches that focus on channel modelling 

(2)f (l) =
1√
2��

e−l
2∕2�2

(3)

Prob(Coverage) = Prob(Lp + l < s) = Prob(l < s − Lp)

= 1 − ∫
∞

s−Lp

f (l)dl

= 1 − ∫
∞

s−Lp

1√
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2∕2𝜎2

dl

= 1 −
1

2
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�
s − Lp√

2𝜎

�

(4)Prob(Coverage) = 1 −
1

2
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s − L0 − 10� log10 r√

2�
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for wide and local area networks. The empirical path loss 
model is no longer fit for Indoor 3D environment. In mul-
tistory building, the power-distance gradient � will change 
according to different distances, so the commonly used 
path loss model is given:

From Eq. (5), it is clear that path loss becomes greater when 
the distance between the transmitter and receiver becomes 
larger. But the method that we use to calculate coverage 
certainty stay the same. Equation (35) can still be used in 3D 
scenarios and the only difference is that we should replace 
the empirical path loss model with the 3D distance-parti-
tioned model, which creates a different Lp.

However, in reality, in some occasions, the RSS can-
not be detected in indoor environment because of severe 
shadow fading. In this case, the typical method of channel 
modelling is not suitable since the data is incomplete so 
that we can not find out a optimized fit for the RSS data 
(Fig. 1).

With the concern of probability of coverage, we can find 
receive the supposed RSS even if the interference from the 
surrounding is severe and then we can apply the commonly 
used linear fit method to model the indoor channel.

5 � CRLB with Bayes’ Theorem

Let’s assume that a mobile device is moving in an environ-
ment where N access points are deployed. These fixed access 
points can be any kind of IoT devices with different transmitted 
power, frequencies and radio propagation characteristics. Then 
deviation of CRLB start from the empirical pathloss model:

(5)Lp = L0 +

⎧
⎪⎪⎨⎪⎪⎩

20log10r, (10 ≥ r ≥ 1m)

20 + 30log10
r

10
, (20 ≥ r > 10m)

29 + 60log10
r

20
, (40 ≥ r > 20m)

47 + 120log10
r

40
, (r > 40m)

where distance from mobile device to ith access point can 
be calculated as ri =

√
(x − xi)

2 + (y − yi)
2 . In this case, the 

estimator is the coordinate of the mobile device’s location, 
which can be denoted as � = [x y]T , and (xi, yi) is the coor-
dinate of the ith access point.

Then the probability distribution function of observation 
(pathloss) given certain estimator can be determined as:

We also have the probability of coverage as pi(�) . From 
Bayesian Theory, we also know that:

All the observations can be considered as addictive and 
independent from one another, thus the joint PDF for the 
observations can be derived as:

From the theory of CRLB we also know that it is the inverse 
of Fisher Information Matrix, which is denoted as I(�) and 
can be calculated as follows:

Since

We can rewrite the Fisher matrix as:

where

(6)Lpi = L0 + 10�ilog10(ri) + X(�)

(7)

pi(Lpi∕�) =
1√
2��

exp
�
−

1

2�2
[Lpi − L0 − 10�ilog10ri]

2
�
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Fig. 1   Channel modeling
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and

So that

CRLB is the trace of the covariance matrix, which means 
that �2

r
= �2

x
+ �2

y
 . In this way, the total CRLB can be calcu-

lated no matter how many APs are covered.
Actually, we can find out the close form of I

1
(�) and I

2
(�):

Then:

Let’s take � = Lpi − L0 − 10�ilog10(ri) , so that:

6 � CRLB with Probability of Coverage

In this section, we provide the general description of pathloss 
models, according to which, CRLB and probability of cover-
age can be derived in multiple-dimension scenarios. Since the 
commonly-used CRLB does no include the effect of transmit-
ting power (proved in later section), we hybrid both of CRLB 
and probability of coverage in pursuing more reliable perfor-
mance evaluation.

6.1 � Cramer‑Rao Lower Bound

Cramer-Rao Lower Bound (CRLB) indicates the smallest 
estimation error under given observations and is frequently 
used in evaluating the performance of localization systems.

The usage of matrix only fits the condition that there are 
more than 2 APs. If only one AP is available, another method 
should be applied instead.

In this case, the partial differential equation should be:

Then the location error can be estimated as follow:

I2(�) =

N�
i=1

⎡
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−E

�
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�x2

�
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(11)cov(dr) = I(�)−1 =
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x
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xy
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�x
= −

1
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⋅
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(15)dLpi(r) =
10�i

ln10

dr

r
, i = 1, 2, ...,N

And covariance of dr can be derived:

which is also the variance of dr, so the CRLB in this case is

In order to investigate the relation between the location error 
and signal strength error, we apply a differential operation 
to both sides of Eq. (33) with respect to two coordinates x 
and y, then we have:

where Lpi is the total path loss from APi to the loca-
tion of (x,  y); (xi, yi) is the coordinate of APi ; �i is the 
power-distance gradient for signal coming from APi ; 
ri is the distance between the receiver and APi , and 
ri =

√
(x − xi)

2 + (y − yi)
2 ; N is the number of APs.

The set of Eq. (19) can be written in matrix form as:

where

From Eq. (20), we can estimate the location error.

Since the path loss estimation error is identical to the error 
caused by shadow fading, which has zero mean and variance 
of �2 , and these errors for different APs are independent with 
each other, then we can have the two equations as follow:

(16)dr =
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Then the covariance matrix of the location error dr is given 
by

The standard deviation of location error is finally derived as

From Eq. (24), we can see that if the transmission environ-
ment is given, the location error only relies on the coordina-
tion of the receiver (x, y), and we can calculate the CRLB at 
any location according to that.

In the previous sections, all we have discussed are focused 
on the analysis in 2D condition. But in reality, 3D geolocation 
schemes are more important in indoor environment. Therefore, 
we should have a deeper look at how to expand our methods 
to 3D environment.

The calculation for CRLB needs more expansion since the 
coordinate of every location becomes three dimensional. In 
3D environment, we use similar method to start the derivation 
of CRLB.

To analyze the relation between RSS and the least location 
error (CRLB), we can apply partial differential to Eq. (25) [10, 
19]. Then we have

In this case, the matrix form should also be expanded to 
three dimension, where

By using the same least-square estimation method we 
mentioned before, estimation of the location error can be 
evaluated:

and the covariance matrix of the location error is

Then the CRLB can be calculated as follow:
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Since every coverage probability and CRLB is redefined 
here, the 3D CRLB can be calculated in the same way which 
is described in Eq. (32).

6.2 � CRLB Concerning Probability of Coverage

From the previous section, we can calculate the probability 
that a location can be covered by a AP as well as the CRLB 
which shows the minimum location error under this condi-
tion. It is reasonable for us that calculate the CRLB concern-
ing the effect of coverage certainty, so that the total CRLB 
will be more reliable and accurate.

We denote pi as the probability that a certain location can 
be covered by APi , which can be calculated by Eq. (4). Sup-
pose there are N APs in total, the probability that k APs are 
covered can be calculated according to the probabilities we 
calculated before. The number of combinations C of select-
ing k elements out of N can be calculated as

To calculated the CRLB concerning coverage certainty, all the 
probabilities for the combinations should be explored and the 
total CRLB should be the summation of every individual CRLB 
times its corresponding probability. For example, if only 1 AP 
is covered, then there are N combinations ( C = N ) in this case. 
Suppose AP1 is the one that is covered, then the probability for 
this condition is given from the concept of probability theory

where Pronk is the probability that only AP1 is covered while 
others are not. Note that we should skip the situation when 
all the APs are not covered. In this condition, no location 
estimation can be made, since no information can be used to 
determine the location of the receiver. Therefore, it is useless 
to discuss this situation.

However, we should mention that when i = 0, 1, 2 , which 
means that no AP or only one/two APs are covered, matrix 
H′H will be singular and CRLB cannot be determined. It is 
reasonable since we are able to find the location estimation 
only when more than 3 APs are accessible. In this case, 
Prob0 − 2 can no longer be used in computing the PCRLB 
and we should normalize the probabilities by:

(28)
�r =

√
�2
x
+ �2

y
+ �2

z

C =

(
N

k

)
=

N!

k!(N − k)!
=

N(N − 1)⋯ (N − k + 1)

k(k − 1)⋯ 1

(29)Probk =

C∑
i,j

[
k∏
i

pi ∗

N−k∏
j,j≠i

(1 − pj)

]

(30)
Probk

� =
Probk
N∑
k=2

Probk
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And,

Similarly, we can calculate the probabilities for all the other 
conditions ( Prob2,Prob3,⋯ ,ProbN ). Then the total CRLB 
can be calculated as follow

In this way, we can calculate the total CRLB no matter how 
many APs are covered.

6.3 � Scenarios Design

To compare different geolocation systems, the very first step 
is to design test scenarios so that their performance can be 
evaluated in a same way.

We have designed 5 scenarios which can be divided into 
two types, 2D scenarios and 3D scenarios. The first 3 sce-
narios are designed on the same floor and we can compare 
these 3 scenarios for the effects of AP number. In Scenario 
4 and 5, APs are deployed in multiple floors, and we can 
compare the effect of 3D scenarios. The detailed scenario 
description is given as follow:

•	 Scenario 1: 3 APs are placed on the ceiling of the same 
floor (at 3 of the 4 corners).

•	 Scenario 2: 4 APs are placed on the ceiling of the same 
floor (at the 4 corners).

•	 Scenario 3: 5 APs are placed on the ceiling of the same 
floor (at the 4 corners and the middle).

•	 Scenario 4: 4 APs are placed on the ceiling of the 1st 
floor (at the 4 corners), and we calculate the total CRLBs 
of the three floors.

•	 Scenario 5: 4 APs are placed on the ceiling of every floor 
(at the 4 corners, 12 APs in total), and we calculate the 
total CRLBs of the three floors.

We assume that every floor has a space of 30 m × 30 m 
and a height of 5 meter. Every floor is sampled in every 0.1 
meter (the 4 edges are not includes), so we have 299 × 299 
= 89401 samples in total for every scenario.

6.4 � Limits and Challenges of Combined CRLB

There are two aspects that we should pay extra attention to.
First of all, the increase of access number will dramati-

cally increase the amount of possibilities as well as the 
amount of computation. For instance, when we have only 

(31)
N∑
k=0

Probk
� = 1

(32)CRLBtotal =

N∑
i=0

CRLBi ⋅ Probi
�

have 4 APs, there are 4!

3!1!
= 4 possibilities that 3 of them 

can cover the mobile device. When the number increase to 
5, we have 5!

3!2!
= 10 possibilities. When the number becomes 

to 6, we will have 6!

3!3!
= 20 possibilities. So it is obvious that 

the amount of computation will increase greatly even if we 
only add one access point. The most reliable way is to limit 
the amount of access points used in localization so that the 
computation can also be limited within a reasonable range. 
This means we will pick the most useful points in estimating 
the receivers location, i.e.

The other aspect is the consideration of H matrix. For every 
deployment we can find a H matrix respectively. But not all of 
the matrix are full-ranked. If one matrix are singular, we cannot 
find its inverse matrix so that we cannot calculate the CRLB 
according to that. This will happen when all the access points 
are located at the same plane so that two of the columns in the H 
matrix will have the same or opposite values. To avoid this situ-
ation, we have to remove the combination that will cause singu-
lar H matrix from our possibility set. Also, we do not consider 
the situation when 0, 1, or 2 access points are covered since the 
amount of APs are too small and we cannot estimate the mobile 
device’s location according to the information. But note that we 
can still have the probability that get these situations, thus when 
calculating the combined CRLB, we use normalized probability 
instead of the one we calculated before.

7 � Probability‑of‑Coverage

The concept of Probability-of-Coverage (PoC) starts from 
the commonly used RF path loss model [13], which repre-
sents the distance-power relationship in different environ-
ment and scenarios of operation:

where Lp is the total path loss from the transmitter to receiver 
and L0 is the power loss at first meter. r is denoted as the dis-
tance from the transmitter to the receiver. � is the gradient 
indicating the relation between distance and power. In the 
environment of office buildings, the materials of the build-
ings are brick, wood, metal, and other composites. These 
materials have different gradients from 2 to 6. Thus, � is 
changeable according to different environment so that vari-
ous path loss models have been designed in literature.

The transmitted signal is also affected by shadow fading 
or large-scale fading, which can be denoted as X(�) and it is 
a zero mean normally-distributed addictive random variable 
with a standard deviation of � . The probability distribution 
function (PDF) for shadow fading can be written as:

(33)Lp = L0 + 10� log10 r

(34)f (X(�)) =
1√
2��

e−X(�)
2∕2�2
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We all know that every device has its own sensitivity, which 
is the minimum RSS that it can recognize. Therefore, with the 
variation of shadow fading, RSS at a certain location may goes 
below the sensitivity of the mobile device. Given the PDF of 
the shadow fading, we can calculate the probability that the 
RSS in one location will be lower that the sensitivity (Outage) 
as well as the probability that it is higher than the sensitivity 
(Coverage). We denote Lpmax as the difference between trans-
mitted power and the sensitivity, which indicates the maximum 
power loss for effective transmission. Then the Probability-of-
Coverage (PoC) can be derived as follows:

where erfc(⋅) is the complementary error function. From 
Eqs. (33) and (35), we can see that PoC is closely related 
to the specific path loss model, the standard deviation of 
shadow fading � as well as the sensitivity and transmitted 
power s. Note that althogh PoC is derived from the empirical 
path loss model here, we can replace Lp in Eq. (35) with any 
other path loss model which fits a specific scenario. Figure 3 
shows the effect of transmitted power from −10 dBm to 20 
dBm at different distances, where free-space path loss model 
is used ( � = 2 ) and standard deviation of shadow fading is 
set as 5 dB.

8 � CRLB with PoC

Cramer-Rao Lower Bound (CRLB) indicates the smallest 
estimation error under given observations and is frequently 
used in evaluating the performance of localization systems [19, 
20]. The derivation of CRLB has been widely used in many 
researches but as described before, all the calculation of CRLB 
is under the assumption that the mobile device is covered by all 
the access points, which is impossible in the environment full 
of low-energy IoT devices, whose coverage is not as wide as 
the high-power wireless devices. In this section, attempts are 
made to combine the CRLB with PoC to fit it into the IoT envi-
ronment so that more reasonable conclusions are guaranteed.

Let’s assume that a mobile device is moving in an environ-
ment where N access points are deployed. These fixed access 
points can be any kind of IoT devices with different transmitted 

(35)

Prob(Coverage) = Prob(Lp + X(𝜎) < Lpmax)

= Prob(X(𝜎) < Lpmax − Lp)

= 1 − ∫
∞

Lpmax−Lp

f (X(𝜎))dl

= 1 − ∫
∞

Lpmax−Lp

1√
2𝜋𝜎

e−X(𝜎)
2∕2𝜎2

dl

= 1 −
1

2
erfc

�
Lpmax − Lp√

2𝜎

�

power, frequencies and radio propagation characteristics. Then 
deviation of CRLB start from the empirical pathloss model:

where distance from mobile device to ith access point can 
be calculated as ri =

√
(x − xi)

2 + (y − yi)
2 . In this case, the 

estimator is the coordinate of the mobile device’s location, 
which can be denoted as � = [x y]T , and (xi, yi) is the coor-
dinate of the ith access point.

Then the probability distribution function of observation 
(pathloss) given certain estimator can be determined as:

We also have the probability of coverage as pi(�) . Then

All the observations can be considered as addictive and 
independent from one another, thus the joint PDF for the 
observations can be derived as:

From the theory of CRLB we also know that it is the inverse 
of Fisher Information Matrix, which is denoted as I(�) and 
can be calculated as follows:

Since

We can rewrite the Fisher matrix as:

where

(36)Lpi = L0 + 10�ilog10(ri) + X(�)

(37)

pi(Lpi∕�) =
1

2��2
exp

(
−

1

2�2
[Lpi − L0 − 10�ilog10ri]

2
)

(38)pi(Lpi;�) = pi(Lpi∕�) ⋅ pi(�)

(39)

p(Lp;�) =

N∏
i=1

pi(Lpi;�)

=

N∏
i=1

pi(Lpi∕�) ⋅ pi(�)

I(�) =
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−E
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�2ln(p(Lp;�))

�x2
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and

So that

CRLB is the trace of the covariance matrix, which means 
that �2

r
= �2

x
+ �2

y
 . In this way, the total CRLB can be calcu-

lated no matter how many APs are covered.
However, in the traditional derivation of CRLB, pi(�) 

is always considered as 1, which means that I2(�) is zero 
and the key parameters that affect the performance of sys-
tem are the deployment of access points and the pathloss 
model. In fact, when devices with various transmitted 
power are deployed, they will not perform the same way 
even if they share the same progagation characteristic.

There are two aspects that we should pay extra atten-
tion to. First of all, from Eq. (40), the increase of access 
number will add more information to the Fisher matrix so 
that when we take the inverse of it, the value in the covari-
ance matrix will become smaller which indicates that the 
estimators are less deviated. This makes sense that when 
more information are provided, the better localization 
performance would be. However, in fact, when the num-
ber of access points reaches a certain value, the densely-
deployed sensors can no longer improve the localization 
precision. They will interfere with one another and affect 
the entire system’s performance. So it is crucial that we 
explore how the number of access points will affect the 
CRLB and what is the best strategy for the deployment 
of IoT devices.

Another issue falls into the other part of Fisher matrix, 
which is how the PoC may affect the performance of the 
entire system. From the same equation we can see that, when 
I2(�) is included in the calculation of CRLB, it also leads to 
a decrease ofthe value in covariance matrix. It is because, 
when PoC is considered, the calculation of Fisher matrix 
will be biased so that the information from APs with higher 
PoC will be more weighted than the ones with lower PoC, 
and thus, generate more accurate location estimation. It will 
be further proved by a simulation in the following section.

9 � Results and Analysis

In this section, we will present the results and give our analy-
sis from which conclusions can be made.

I2(�) =

N�
i=1

⎡
⎢⎢⎣
−E

�
�2ln(pi(�))

�x2

�
− E

�
�2ln(pi(�))

�x�y

�

−E
�
�2ln(pi(�))
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�
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(41)cov(dr) = I(�)−1 =

[
�2
x
�2
xy

�2
xy

�2
y

]

9.1 � Contours of CRLB in Three Scenarios

We illustrate the contours of CRLB for the three Scenarios 
in Figs. 2, 3 and 4. In the figures, characteristic of error 
performance is clearly presented.

Note that although the space is 30 m × 30 m, we do not 
include the observations on the edges. Consequently, the 
contour shows a 29.9 m × 29.9 m space instead of a 30 m 
× 30 m one.

9.2 � CDFs of Different Scenarios

When we explore more about the statistical characteristic 
of the performance, we illustrate the CDFs of different sce-
narios under both RSS-only and Barometer-assisted CRLB, 
which is shown in Figs. 5, 6, 7.

From the figure, we can see that the location error is 
decreased when more information from other floors is 
applied. Moreover, if the barometer assist the calculation of 
the CRLB, the performance is greatly improved (Figs. 8, 9, 
10, 11, 12 and 13).

9.3 � CRLB and PCRLB Comparison

Maximum, minimum, and mean CRLB value of the three 
scenarios using these two methods are listed in Table 1. 
From the table, we can find that by adopting the barometer-
assisted method, a 41.67%, 29.29%, and 19.20% improve-
ment can be achieved under the Scenarios 1, 2, and 3 
respectively.

9.4 � Scenarios Design

To compare different geolocation systems, we designed 3 
scenarios which can be used in checking the effect of mul-
tiple parameters. The detailed scenario description is given 
as follow:

Fig. 2   Probability of coverage in different transmitted power
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•	 Scenario 1: 3 High-Power (HP) APs are placed on the 
ceiling and 27 Low-Power (LP) APs are placed in grid 
on the 3rd floor of Atwater Kent Laboratory, which 
is shown in Fig. 14. The red dots represent the HP 
Wi-Fi routers while the black ones represent the LP 
RF devices, such as iBeacons or smart bumps. N(3 − 8) 
APs with the smallest path-loss will be selected for 
localization instead of all the APs, since we find that 
the rest APs can hardly contribute to the improvement 
of localization precision;

•	 Scenario 2: The deployment of the APs is the same as 
Scenario 1. The transmitted power is set to different lev-
els so that how it can influence the localization precision 
can be investigated;

Fig. 3   PoC in different transmitted power

Fig. 4   Contour of CRLB in scenario 1

Fig. 5   Contour of CRLB in scenario 2

Fig. 6   Contour of CRLB in scenario 3

Fig. 7   CDFs for three scenarios
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•	 Scenario 3: The deployment of HP APs stays the same 
while the LP APs is deployed randomly in on the floor so 
that the effect of different deployment can be explored;

The HP devices are set with a transmitted power of 
20 dBm and the LP devices from − 10 to 20 dBm in different 

Table 1   Barometer-assisted method versus RSS-only method in error 
performance

CRLB (m) Maximum Minimum Mean

Scenario 1 (Baro) 3.4641 2.1274 2.8113
Scenario 1 (RSS) 7.2791 2.5492 4.8193
Scenario 2 (Baro) 2.5254 1.6267 2.0658
Scenario 2 (RSS) 4.2394 1.9236 2.9214
Scenario 3 (Baro) 2.1120 1.3761 1.7286
Scenario 3 (RSS) 2.9488 1.5440 2.1393

Fig. 8   Contour for scenario 1

Fig. 9   Contour for scenario 2

Fig. 10   Contour for scenario 3

Fig. 11   CDFs for 3 scenarios in 2D

Fig. 12   average CRLB in different transmitted power linear
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scenarios. The channel model that is used is the distance-
partitioned model with operating frequency as 2.4 GHz. 
The 3rd floor has a space of 23 m × 16 m and a height of 5 
meter. Samples are taken in every 0.1 m (the 4 edges are not 
includes), so we have 229 × 159 = 36411 samples in total 
for every scenario.

9.5 � CRLB with Different LP Device Number

The CDFs of CRLB with different selected APs number 
are shown in Fig. 15. We can see that, when the number 
increases, the range becomes narrower, which indicates 
higher localization accuracy. But one thing should be paid 
attention to. As the selected APs number increases, the 
computational complexity will also increase exponen-
tially. As described before, the complexity will be pro-
portional to the factorial of the number N. Therefore, it is 
crucial to choose a suitable number so that the system can 
achieve highest efficiency with shortest processing time 

and reasonable localization precision. Table 2 illustrate the 
mean CRLB with different APs number vs. computational 
complexity. We cam easily find that, it is a wise choice to 
pick 5 or 6 APs since the complexity becomes too large 
afterwards.

It is also worthwhile to mention that why we do not 
increase the number of HP devices. In the IoT environment, 
WiFi routers will be placed every several meters. So in our 
scenarios, three HP devices are quite enough to cover the 
entire area, which is exactly how our department deploy the 
routers. On the other hand, since the LP devices only cover 
comparatively smaller areas, and they are widely used and 
deployed, we can investigate more on these devices, and see 
how it may affect the localization precision when the number 
of LP devices changes.

9.6 � CRLB in Different Transmitted Power

We illustrate the CDFs of CRLB for Scenario 2 in Fig. 16. 
In this figure, characteristic of error performance under dif-
ferent sets of transmitted power is clearly presented. Note 
that the CRLB will increase as the power level increases. 
It is because that when transmitted power becomes greater, 
more error from longer distance will be counted so that 
the localization precision will be worse than the ones with 
lower power level. Moreover, we can see that when standard 

Fig. 13   Average CRLB in different transmitted power

Fig. 14   Deployment of APs in AK building

Table 2   CRLB versus 
computational complexity

n �(CRLB) O(n!)

3 4.68889 6
4 3.78545 24
5 3.40171 120
6 3.11401 720
7 2.92253 5040
8 2.80, 453 40,320

Fig. 15   CRLB with different number of selected APs



22	 International Journal of Wireless Information Networks (2019) 26:10–23

1 3

deviation � increases, the CRLB will also increase, indicat-
ing worse localization accuracy.

9.7 � CRLB with Different LP Device Deployment

We also investigate how different deployment schemes can 
affect the CRLB. As is demonstrated in Fig. 17, it is straight-
forward that the random deployment will degrade the sys-
tem localization performance. However, it is still crucial to 
explore how much worse random deployment can be than 
grid, since most of time the LP devices are not fixed, their 
location will change and they can be anywhere generating 
information in the IoT environment.

10 � Conclusion

In this paper, we present an approach to improve the per-
formance of a 3D RSS-based geolocation system by using 
barometer in smart devices. A modified 3D path loss model 

is presented which brings penalty of ceilings into considera-
tion. Based on the pressure-height physical law, we char-
acterize the vertical estimation and fit it into a Gaussian 
Distribution. Calculation of 3D CRLB is provided as an 
expansion of the original 2D CRLB for performance evalu-
ation. Moreover, We design 3 scenarios of different floors 
with various AP deployment strategies and conduct series of 
experiments for comparison. The improvement is specified 
with contour and CDFs of the scenarios and quantified from 
a comparison table.

Future work includes: To expand our system to buildings 
with more complicated architecture, which will make the 
research more related to the real world. Fully combining 
the barometer and RSS signal should also be explored, so 
that smaller error can be reached. It is also feasible if we 
integrate our technique with other sensors in smart phones 
to find if more improvement can be reached.
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