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Abstract This paper presents an assessment of the

accuracy of cooperative localization of a wireless capsule

endoscope (WCE) using radio frequency (RF) signals with

particular emphasis on localization inside the small intes-

tine. We derive the Cramer–Rao lower bound (CRLB) for

cooperative location estimators using the received signal

strength (RSS) or the time of arrival (TOA) of the RF

signal. Our derivations are based on a three-dimension

human body model, an existing model for RSS propagation

from implanted organs to the body surface and a new TOA

ranging error model for the effects of non-homogeneity of

the human body on TOA of the RF signals. Using models

for RSS and TOA errors, we first calculate the 3D CRLB

bounds for cooperative localization of the WCE in three

major digestive organs in the path of GI tract: the stomach,

the small intestine and the large intestine. Then we analyze

the performance of localization techniques on a typical

path inside the small intestine. Our analysis includes the

effects of the number of external sensors, the external

sensor array topology, number of WCEs used in coopera-

tion and the random variations in the transmitted power

from the capsule.

Keywords Wireless capsule endoscopy (WCE) � RSS

and TOA localization � Cramer–Rao lower bound (CRLB) �
3D cooperative localization

1 Introduction

In the past decade, miniaturization and cost reduction of

semiconductor devices have allowed the design of small,

low cost computing and wireless communication devices

used as sensors in a variety of popular wireless networking

applications and this trend is expected to continue in the

next few decades [1]. One of the leading wonders of this

wireless networking breakthrough is the emergence of

wireless wireless capsule endoscopy (WCE). The technol-

ogy was introduced by the Given Imaging, Yoqneam, Israel

in 2000 [2, 3]. Food and Drug Administration (FDA)

approved its clinical usage in 2001. Examination of the

Gastrointestinal (GI) tract using WCE is commonly used

for a number of diseases such as the inflammatory bowel

disease, the ulcerative colitis and the colorectal cancer.

WCE uses radio frequency (RF) signals to transmit

approximately fifty five thousands clear pictures of inside

the GI tract wirelessly to the body-mounted sensor array,

therefore, it provides a non-invasive way to visualize the

entire small intestine, where traditional endoscopy and

colonoscopy visualization techniques can hardly reach.

However, physician has no clue on the exact location of the

capsule inside the GI tract to associate it with the pictures

showing abnormalities such as bleeding or tumors. It is

desirable to use the same RF signal for localization of the

WCE as it passes through the human GI tract.

In recent years, the feasibility of several technologies for

localization of the WCE has been explored. These tech-

nologies can be divided into those using magnetic field or

inertial systems [4, 5], using image processing techniques

[6–8] and techniques using RF signals [1, 9]. In magnetic

sensing based techniques, a magnet is inserted into the

WCE and the WCE is located by measuring the magnetic

field [4]. This technique increases the weight and size of
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the WCE and the magnetic field of the WCE used for

localization will be interfered by the external magnetic

fields used for other applications such as the magnetic

resonance imaging (MRI) systems. One can also insert

radiation opaque material into the WCE and trace the

location of the WCE using X-ray or computed tomography

(CT) scan [5]. Continuous imaging using X-ray or CT scan

is very expensive and it bears the health risks for the

patient. Using the RF signal used for image transmissions

for the WCE to also locate the capsule offers itself as a

natural and low cost solution that does not add to the

capsule complexity and payload. Therefore, it has been

chosen for use with the Smartpill capsule [10] in USA and

the M2A capsule [11] in Israel. These companies use the

received signal strength (RSS) of the waveform for the

purpose of localization of the WCE. A more accurate

metric for localization is the time of arrival (TOA) or the

time of flight of the signal [12].

For RF based localization, a widely known benefit of

TOA based techniques is their high accuracy compared to

RSS based techniques. The TOA based technique relies on

measurements of travel time of signals between the known

reference nodes and unknown terminal nodes. As a result,

ranging information is calculated by multiplying the

propagation velocity of RF signal and the measured TOA

value. On the other hand, the human body is formed of

various organs with complex structures. Each organ has a

unique characteristic of conductivity and relative permit-

tivity. Since propagation velocity inside human body is a

function of the relative permittivity, medical implanted

devices placed in different positions cause different prop-

agation velocities due to the RF signal traveling through

various tissues or organs. This variation in speed is the

dominant source of error for TOA-based RF localization

inside the human body [13].

In this paper, we address the accuracy limits of RF

localization techniques for WCE localization with partic-

ular attention to localization inside the small intestine.

Fundamentally, RF localization is either based on the RSS

or more accurate TOA. The limited existing literature is

focused on developing algorithms and mathematical mod-

els for solving the triangulation problems. Some pre-

liminary results on performance evaluation of two specific

localization algorithms for two dimensional (2D) RSS- and

TOA-based techniques inside the human body are reported

in Frisch et al. [14] and Kawasaki and Kohno [13]

respectively. In our previous work, we have used the

Cramer–Rao Lower Bound (CRLB) [15, 16] for perfor-

mance evaluation of RSS based localization using a single

pill inside the major organs in the GI tract: stomach, small-

intestine and large intestine [17]. The CRLB has been used

traditionally for the analysis of the accuracy of outdoor

localization using GPS and for a variety of indoor

geolocation applications for the human and robotics

applications [18], we have also modeled the 3D statistical

ranging error for TOA-based localization inside the torso

[19]. This paper provides a unified framework and meth-

odology for calculation of the CRLB for comparative

performance evaluation of the RSS- and TOA- based

cooperative localization with multiple capsules operating

inside the GI tract. We apply this analytical framework to

compare the performance of the RSS- and TOA-based

cooperative localizations using multiple capsules in the

three major organs of the GI tract as well as to assess the

accuracy of these techniques as the WCE moves along the

complex path of movements inside the small intestine.

Analytical results presented here includes the effects of

number of external sensors; the external sensor array

topology, number of WCE in cooperation and the random

variations in transmit power from the capsule.

The rest of the paper is organized as follows. We begin in

Sect. 2 by defining a methodology for performance evalu-

ation and introducing the ranging error models for RSS and

TOA based localization techniques. We present a GI tract

localization scenario inside the organs and the path of

movements of the WCE and for that scenario, we introduce

an implant to body surface path loss model as well as a TOA

ranging error model. In Sect. 3, using the capsule movement

and body mounted sensor locations in our scenario and the

ranging error models, we derive a universal CRLB for

cooperative performance evaluation of cooperative RSS-

and TOA-based WCE localization techniques and the

localization bound with randomness in the transmitted

power. In Sect. 4, we provide results of the localization

accuracy in stomach, small intestine and large intestine as

well as path of movements inside the small intestine for

different number of WCEs and body mounted sensor

topologies. We provide our conclusions in the Sect. 5.

2 Performance Evaluation Scenario and RF Behavior

Modeling

To calculate the CRLB, we define a performance evalua-

tion scenario and models for the behavior of the localiza-

tion metrics [20], the RSS and TOA, for RF signaling in

between the GI tract and the body-mounted sensors used

for localization. In this section we introduce a general

scenario for comparative performance evaluation of RSS-

and TOA-based localization for capsule endoscopy appli-

cation. The scenario is designed to reflect the performance

in different organs, the path of movement of the WCE

inside the small intestine, and the number and pattern of

installation of body mounted sensors on the torso. Since the

received signal on the body-mounted sensors is distorted

with the multipath receptions caused by the refraction at
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the boundary of organs and tissues inside the human body,

models for behavior of the RSS and TOA are fairly com-

plicated. These models are then introduced in the rest of the

section.

2.1 Performance Evaluation Scenario

Figure 1a shows the relative location and shape of the three

major organs in the GI tract, stomach, small intestine and

colon or large intestine. In order to emulate a scenario for

comparative performance evaluation of RSS- and TOA-

based localization systems we first analyses the effects of the

shape of the organs by comparing the localization perfor-

mance in the three major organs. Then, we focus on the

analysis of the performance as the WCE moves along the

small intestine. To create the environment, we use a three-

dimensional (3D) human model from the full-wave elec-

tromagnetic field simulation system (Ansoft [21]). This 3D

human body model has a spatial resolution of 2 millimeters

and includes frequency dependent dielectric properties of

more than 300 parts in a male human body. Figure 1b shows

the digitized picture of the three major organs in this human

body model. For comparative performance evaluation in

different organs, we calculate the CRLB for each grid point

of an organ and we compare the CDF or these errors for

different topologies of the body mounted sensors. Since

small intestine is a long curled organ, the WCE takes a path

to go through this organ Given the 3D CAD model of the

small intestine, we found the path of the movement of the

capsule and imported this path into the software simulation

tool for RF propagation modeling.

Given a 3D model of the intestinal tract, shown in Fig. 2a,

we applied 3D image processing techniques to trace the path

of movements inside the intestine. In the case of the large

intestine, since it already has a very clear pattern, which looks

like a big hook, applied 3D skeletonization technique [22, 23]

to extract the path. Since the shape of the small intestine is

much more complicated, the same technique does not work

well. In this case, we developed an element sliding technique

to trace the path. The basic idea behind this technique is to

define an element shape with its radius automatically

adjustable to the radius of the small intestine. As the element

shape goes along the small intestine, the center of the element

shape is recorded to define a clear path movement inside the

small intestine. The result of the path extracted for large and

small intestines from the 3D model is shown in Fig. 2b. For

comparative performance evaluation, we determine the

CRLB along the path of capsule in the small intestine for

different topologies of body-mounted sensors.

To define the topologies of the body-mounted receiver

sensors, similar to [14], we assume the receiver arrays are

placed on a jacket worn by the patient during the exami-

nation. We calculated the CRLB for 8, 16, 32 and 64 body-

mounted receiver sensors spread over a rectangular area

with a three dimensional range of 268� 323� 312 milli-

meters. Sensor receivers are mounted in grids in equal

number in front and on the back of the jacket. An example

of a typical network topology for 32 receiver sensors is

illustrated in Fig. 3. Using the path loss models as well as

the path of movement inside the small intestine for the RSS

and the ranging error model for TOA estimations, we

determine the CRLB for each of the three major organs as

well as path of movement inside the small intestine for

different body mounted sensor topologies.

2.2 Path Loss Model for RSS-Based Localization

of the WCE

Calculation of the CRLB for performance evaluation of the

RSS-based localization need a path-loss model for the RF

propagation from the inside of the GI tract, where the WCE

Fig. 1 Anatomy of GI tract. a A schematic of the GI tract. b The

digitized major organs in the GI tract
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travels, to the body mounted sensors used as reference

points for localization. The path-loss model we used for the

performance evaluation of RSS-based WCE localization

inside the human body is the one reported in [24, 25]. The

model was developed by National Institute of Standards

and Technology (NIST) at 402–405 MHz MICS band

using a fully digitized human body with detailed organs

and tissues and a 3D fullwave electromagnetic field sim-

ulator. This model relates the LpðdÞ, the path loss in dB

between the WCE and the body-mounted sensors at dis-

tance d by the following equation:

RSSðdÞ ¼ Pt � PLðd0Þ � 10alog10

d

d0

þ Sðd [ d0Þ ð1Þ

where d0 is the reference distance set at 50 mm, PLðd0Þ is

the path loss at the reference distance d0; a is the path loss

gradient and S is a zero mean log-normally distributed

random variable representing the shadow fading effect

caused by different human tissues.

The model is developed for the near-surface implants

applications with distances less than 10 cm inside the

human body from the surface skin as well as deep-tissue

implants applications with distances more than 10 cm.

The parameters associated with the two scenarios for the

implant to body surface path loss model are summarized in

Table 1. In this table, dB is the standard deviation of

shadow fading S. In our simulations, 10 cm distance

between the WCE and body mounted receiver sensors is

used as the threshold for choosing between the two models.

2.3 Ranging Error Model for TOA Localization

of the WCE

Traditional localization systems such as GPS use the more

accurate TOA localization approach. To determine the

distance between a terminal and a reference point, the TOA

(a) (b)

Fig. 2 a 3D model for large and small intestine. b 3D path model for large and small intestine

Fig. 3 A typical 3D pattern of body mounted sensors used as

reference points of the performance evaluation scenario for localiza-

tion of the WCE

Table 1 Parameters for the statistical implant to body surface path-

loss model

Implant to body surface LPðd0Þ dB a rdB

Deep tissue 47.14 4.26 7.85

Near surface 49.81 4.22 6.81
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of signal is measured to determine the flight time of the

radio wave. The distance is calculated by multiplying the

time of flight of the signal with the speed of radio propa-

gation in the medium, which is the same as the speed of

light for those applications.

In traditional indoor scenario TOA based localization, the

biggest challenge is the appearance of the so called ‘‘unde-

tected direct path problem’’ [26], for TOA based localization

of the WCE, the most challenging problem comes from the

complexity of the environment where the capsule travels

through. Various organs and tissues with different permit-

tivity make it difficult to predict the propagation speed of RF

signal traveling through the human body. Since we do not

know the speed of the propagation inside the human body, to

calculate the distance, we may use the average speed of

propagation in different organs [13]. This approach causes

ranging error caused by deviations of the actual speed of

propagation in different organs from the average speed. This

error is much higher than the traditional TOA-based ranging

error caused by the bandwidth and power limitations [27] and

it dominates the TOA-based localization error [28]. There-

fore, we need a TOA ranging error model to account for this

error source in TOA ranging process.

In this part, we will summarize our work in modeling of

the TOA ranging error caused by lack of information of the

real propagation velocity inside the human body. The cur-

rent TOA ranging method calculates the distance by mul-

tiplying the TOA with the velocity derived from the average

permittivity of the human body. This approach results a

ranging error caused by inhomogeneity of body as a medium

for radio propagation. We propose a 3D simulation platform

to address this issue in details. In RF localization literature

[25, 29], the ranging error is defined as:

DME ¼ d � d̂ ð2Þ

where d is the actual distance and d̂ is the estimated dis-

tance and DME is the distance measurement error. Con-

sidering the total distance traveled through the body is

added by the distance in each organ or tissue, the total

distance can be expressed as:

dtotal ¼ d1 þ d2 þ � � � þ dn ð3Þ

where d1 to dn are the distances traveled in each organ or

tissue. In reality, we use the average permittivity of human

body to estimate the average propagation velocity inside

human body, which is

�v ¼ c
ffiffiffiffi

��r

p ð4Þ

where the �v is the average velocity and the ��r is average

relative permitivity of the organ/tissues. Therefore, the

estimated distance is expressed as:

d̂ ¼ ŝ�̂v ¼ ðŝ1 þ ŝ2 þ � � � þ ŝnÞ
c
ffiffiffiffi

��r

p

¼
X

n

i¼1

dic

vi

ffiffiffiffi

��r

p ¼ ð d1

c=
ffiffiffiffi

��1

p þ d2

c=
ffiffiffiffi

��2

p � � � dn

c=
ffiffiffiffi

��n

p Þ c
ffiffiffiffi

��r

p

ð5Þ

where s1 to sn are the time the signal traveled inside each

organ or tissue. di and �i are the path length inside each

organ/tissue and the relative permitivity of each organ/

tissue. The difference between dtotal and d̂ is the ranging

error caused by human tissue inhomogeneity that we refer

to as DME in Eq. 2. This error between the actual distance

and the distance measured by TOA and average velocity of

the propagation is caused by using a single velocity rather

than multiple velocities. To determine the statistics of this

error, we simulated the effect of inhomogeneous tissues on

TOA ranging in a 3D torso environment, shown in Fig. 4.

We have selected approximately five hundred pairs of

random locations on the human body torso and for each

pair, we have calculated the DME using Eq. 2. The human

organs’ relative permittivities are a function of the oper-

ating frequency, we studied the TOA ranging error at MICs

band for the center frequency of 405 MHz, which is the

reserved band for implant and in body applications. The

average permittivity is calculated by weighting the per-

mittivity of each organ according to their volume, the

average permittivity is 46.35 in the torso environment. The

permittivity and volume of different organs used for this

simulation is shown in Table 2.

Figure 5 presents the results of simulation and the

best fit Gaussian distribution to the results. The mean

value of DME is -3.92 mm, while the standard devia-

tion of DME rT is 24.3 mm. The mean value of DME is

a negative value because the largest organ in the torso

cavity is the lungs, which have a much smaller permit-

tivity value than the average permittivity of human tis-

sues. Hence, the signal propagates faster in the lungs

than the average speed of signal propagation inside

human body. When we use the average propagation to

calculate the estimated distance, the value is smaller than

the real distance, because we underestimated the distance

signal went through the lungs.

3 CRLB for Cooperative Localization Inside the GI

Tract

In this section, based on the performance evaluation sce-

nario, path loss and TOA ranging error models in Sect. 2,

we derive a universal 3D CRLB for cooperative localiza-

tion of the WCE inside the GI tract. We begin by
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developing performance bounds for RSS-and TOA-based

localization for one capsule traveling inside the GI tract the

for different patterns of body-mounted array of sensors. We

then extend our analysis to cooperative localization using

multiple capsules. In the cooperative localization, a patient

takes more than one capsule in different times and locali-

zation is based on the measured RSS and TOA among the

capsules as well as the pattern of body-mounted sensors.

The performance of RSS based localization depends on

variations of the transmitted power and that power is

affected by the variations in the behavior of the batteries. In

the latter part of this section, we provide a performance

evaluation methodology for analysis of the effects of these

variation on the performance of the RSS-based localization

techniques.

3.1 CRLB for Single WCE Localization

Consider the WCE whose location is being estimated is

indexed 1, and m body mounted receiver sensors denoted with

indexes 2. . .mþ 1. Each receiver sensor i is capable of mea-

suring the TOA ti or RSS ri from the WCE. The observation

vector is X ¼ ½t2; . . .; tmþ1� for the TOA case or X ¼
½r2; . . .rmþ1� for the RSS case. Assume he location coordinate

of the WCE is h1 ¼ ½x1; y1; z1�, then our objective here is to

estimate the location of the WCE ĥ1. The ti observations are

Fig. 4 Simulation scenario for the DME in TOA ranging. The

transmitter and receiver pairs are randomly distributed on the surface

of body torso. The path length through each organ are marked as

different colors in order to calculate the DME caused by tissue non-

homogeneity. a Stomach. b Small intestine. c Large intestine. d Large

intestine (Color figure online)

Table 2 Organ parameters used for simulation �r; vðcm3Þ½ �

Intestine

(50.7, 3936.3)

Stomach

(67.8, 357)

Gallbladder

(52.3, 12.4)

Lung (23.77, 4320) Heart (65.97, 625.4) Kidney (68, 325.1)

Spleen (63.1, 160.2) Liver (51.15, 1357) Muscle (47.8, 32403.4)
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modeled as normal random variables fti=h1;hi
�Nðdi;1; =�v; r2

TÞ,
where di;1 is the distance between the WCE and receiver sensor

i. �v is the average propagation speed of RF signal inside the

human GI tract, and rT is the parameter describing the TOA

ranging error caused by human tissue non-homogeneity. The ri

measurements are lognormally distributed fridB=h1;hi
�

NðPrðdBÞ; r2
shÞ, with PrðdBÞ ¼ P0ðdBÞ � 10alog10ðd1; iÞ.

P0ðdBÞ is the RSS at the reference distance (i.e. 50 mm) from

the WCE. a is the path loss gradient and rsh is the variance of

the log normal shadowing.

The CRLB of ĥ1 is covðĥ1Þ� Iðh1Þ�1
where Iðh1Þ is the

Fisher information matrix (FIM).

Ih1
¼ �EOh1

ðOh1
ln iðXjh1; hÞÞ ¼

Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

2

6

4

3

7

5

ð6Þ

where iðXjh1; hÞ is the logarithm of the joint conditional

probability density function:

iðXjh1; hÞ ¼
X

mþ1

i¼2

logfs1jh1;hi
ðfor TOAÞ ð7Þ

iðXjh1; hÞ ¼
X

mþ1

i¼2

logfr1jh1;hi
ðfor RSSÞ ð8Þ

and

Ixx ¼ �
X

mþ1

i¼2

E½
o2logfsijh1;hi

o2x2
1

� ðfor TOAÞ ð9Þ

Ixx ¼ �
X

mþ1

i¼2

E½
o2logfrijh1;hi

o2x2
1

� ðfor RSSÞ ð10Þ

Similar expressions can be extend to Iyy; Izz; Ixy; Ixz and Iyz.

The CRLB on the variance of the TOA/RSS location

estimation is

r2
1 ¼ tr covhðx̂1; ŷ1; ẑ1Þf g
¼ Varhðx̂1Þ þ Varhðŷ1Þ þ Varhðẑ1Þ
¼ min trðcovðĥ1ÞÞ ¼ trðIðh1Þ�1Þ
ð�IxxðIyy þ IzzÞ þ IxyIxy þ IxzIxz þ � � �
þ IyzIyz=ð�IxxIyyIzz þ IxxIyzIyz þ � � �
þ IxyIxyIzz � IxyIyzIxz � IxzIxyIxx þ IxzIyyIxz

ð11Þ

The derivations of the likelihood function for the TOA and

RSS case was originally derived in [15] for 2D case. Here,

we extended the work to 3D scenario for WCE applica-

tions. The details are given in the appendix.

3.2 CRLB for Multiple WCEs Cooperative

Localization

The localization problem is formulated as follows, N

wireless endoscopic capsules are distributed in the GI tract

with locations given by hc ¼ ½p1; p2; . . .; pN �. These pills

are blindfolded devices but they can measure the RSS from

each other and transmit the information out to the receiver

array for further processing. M receiver sensors are placed

on the surface of the human body with location given by

hr ¼ ½pNþ1; . . .; pNþM �. The vector of device parameters is

h ¼ ½hc; hr�. For this three dimensional system, pi ¼
½xi; yi; zi�T, where i 2 ½1;N þM�and T is the transpose

operation. The unknown parameters to be estimated can be

represented by a 3� N coordinates matrix.

hc ¼ ½p1; p2; . . .; pN � ¼
x1 x2 . . . xN

y1 y2 . . . yN

z1 z2 . . . zN

2

6

4

3

7

5

ð12Þ

Consider devices (devices include capsules and receivers) i

and j make pair-wise observations Xi;j . We assume each

receiver sensor can measure the RSS from all the capsules

inside the body, but the path loss parameters for different

links varies as the distance between the receiver sensor and

capsule inside the body changes. Therefore, Let HðiÞ ¼ j:

device j makes pair-wise observations with device i.

H if g ¼ 1; . . .; i� 1; iþ 1; . . .;N þMf g for i 2 ½1;N� and

H if g ¼ 1; . . .;Nf g for i 2 ½N þ 1;N þM� because a

device cannot make pairwise observation with itself and

the receivers do not make observations with receivers

either. Therefore the length of the observation vector X is

N � ðN þM � 1Þ þM � N.

By reciprocity,we assume Xi;j ¼ Xj;i. Thus, it is suffi-

cient to consider only the lower triangle of the observation

matrix X when formulating the joint likelihood function

Fig. 5 The CDF of DME caused by human tissue inhomogeneity
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[15]. The CRLB on the covariance matrix of any unbiased

estimator ĥ is given by [30]:

covðĥÞ ¼ E½ðĥ� hÞðĥ� hÞT� �F�1
h ð13Þ

where E½:� is the expectation operation and F is the FIM

defined as:

Fh ¼ �EOhðOh ln f ðXjhÞÞT

¼ Eh½
o

oh
ln f ðXjhÞ o

oh
ln f ðXjhÞT�

¼
FRxx FRxy FRxz

FT
Rxy FRyy FRyz

FT
Rxz FT

Ryz FRzz

2

6

4

3

7

5

ð14Þ

where f ðXjhÞ is the joint probability distribution function

(PDF) of the observation vector X conditioned on h. Then

the logarithm of the joint condition PDF is:

iðXjhÞ ¼
X

NþM

i¼1

X

j2H;j\i

logfXjhðXi;jjpi; pjÞ ð15Þ

It is shown in [15] The elements of Fh are:

½FRxx
�k;l ¼

c
X

i2HðkÞ

ðxk � xiÞ2

ds
ki

k ¼ l

�cIHðkÞðlÞ
ðxk � xlÞ2

ds
kl

k 6¼ l

8

>

>

>

>

>

<

>

>

>

>

>

:

ð16Þ

½FRxy
�k;l ¼

c
X

i2HðkÞ

ðxk � xiÞðyk � yiÞ
ds

ki

k ¼ l

�cIHðkÞðlÞ
ðxk � xlÞðyk � ylÞ

ds
kl

k 6¼ l

8

>

>

>

>

<

>

>

>

>

:

ð17Þ

½FRxz
�k;l ¼

c
X

i2HðkÞ

ðxk � xiÞðzk � ziÞ
ds

ki

k ¼ l

�cIHðkÞðlÞ
ðxk � xlÞðzk � zlÞ

ds
kl

k 6¼ l

8

>

>

>

>

<

>

>

>

>

:

ð18Þ

½FRyy
�k;l ¼

c
X

i2HðkÞ

ðyk � yiÞ2

ds
ki

k ¼ l

�cIHðkÞðlÞ
ðyk � ylÞ2

ds
kl

k 6¼ l

8

>

>

>

>

>

<

>

>

>

>

>

:

ð19Þ

½FRyz
�k;l ¼

c
X

i2HðkÞ

ðyk � yiÞðzk � ziÞ
ds

ki

k ¼ l

�cIHðkÞðlÞ
ðyk � ylÞðzk � zlÞ

ds
kl

k 6¼ l

8

>

>

>

>

<

>

>

>

>

:

ð20Þ

½FRzz
�k;l ¼

c
X

i2HðkÞ

ðzk � ziÞ2

ds
ki

k ¼ l

�cIHðkÞðlÞ
ðzk � zlÞ2

ds
kl

k 6¼ l

8

>

>

>

>

>

<

>

>

>

>

>

:

ð21Þ

Here, c is a channel constant and s is an exponent, both of

which are functions of the measurement type and are given

in Table 3.

where for TOA based localization technique, vp is the

propagation speed of the signal and rT is the standard

deviation of the ranging error. for RSS based localization

technique, a is the path loss gradient and rdB is the standard

deviation of the shadow fading.

Let x̂i; ŷi; ẑi be the unbiased estimation of xi; yi; zi, the

trace of the covariance of the ith location estimate is given

by:

r2
i ¼ tr covhðx̂i; ŷi; ẑiÞf g

¼ Varhðx̂iÞ þ VarhðŷiÞ þ VarhðẑiÞ

� FRxx
� ðFRxy

FRxz
Þ

FRyy
FRyz

FRyz
FRzz

�1 !

FRxy

FRxz

 ! �1

i;i

2

4

3

5

þ FRyy
� ðFRxy

FRyz
Þ

FRxx
FRxz

FRxz
FRzz

�1 !

FRxy

FRyz

 ! �1

i;i

2

4

3

5

þ FRzz
� ðFRxz

FRyz
Þ

FRxx
FRxy

FRxy
FRyy

�1 !

FRxz

FRyz

 ! �1

i;i

2

4

3

5

ð22Þ

3.3 CRLB When Randomness Exists in Transmitted

Power

Until now, we assume the sensors have perfect knowledge

of their transmit power,if none of the N sensors have per-

fect knowledge of their transmit power. The Bayesian

CRLB [30] also called as Vantrees inequality states that

any estimator h must have error correlation matrix R2
satisfying

R2[ F�1 ¼ ½Fh þ Fp� ð23Þ

where R2 ¼ E½ðĥ� hÞðĥ� hÞT�, with Fh and Fp are the

fisher information matrix and prior information matrix

respectively and are given by Eq. 24.

Fh ¼ �E½OhðOh ln f ðpi;jjhÞÞT� ð24Þ

Fp ¼ �E½OhðOh ln f ðhÞT� ð25Þ
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where pi;j is the bi-directional measurement vector. The

prior information matrix Fp is given in Eq. 26.

Fp ¼ diag½0T
n ; 0

T
n ; 0

T
n ; 1

T
N=r

2
p� ð26Þ

where 0n is a length-n vector of zeros and 1n is an N length

vector of ones and r2
p is the variance of the random variable

p0i(the power at 1 cm distance from transmitter i), which is

assumed to have an i.i.d Gaussian prior for every sensor i.

We model the bi-directional measurements Pi;j and Pj;i

using vector pi;j ¼ ½Pi;jPj;i� as a bi-variate Gaussian with

mean ui;j and variance Ci;j , where

ui;j ¼
p0;j � 10a log 10

jri� rjj2

D2
0

p0;i � 10a log 10
jri� rjj2

D2
0

2

6

6

6

6

4

3

7

7

7

7

5

ð27Þ

Ci;j ¼ r2
dB

1 q

q 1

� �

ð28Þ

where a is the path loss exponent, and q is the correlation

coefficient between the bidirectional measurements,

0� q� 1 . For the purpose of discussion we transform the

bidirectional measurement vector pi;j by an orthogonal

matrix A as:

p̂i;j ¼ Api;j; A ¼
1 1

1 �1

� �

ð29Þ

such a full rank transformation of measurement does not

change the Fisher information. For simplicity of notation, we

denote p̂i;j ¼ ½�pi;jp
D
i;j�

T
, where �pi;j corresponds to the average

of the two measurements and pD
i;j corresponds to the difference

between the two measurements. After some mathematical

analysis, it is seen that �pi;j has a mean �ui;j and covariance �C

and pD
i;j has a mean uD

i;j and covariance CD as given below:

�ui;j ¼ p0;j þ p0;i � 10a log 10
jri� rjj2

D2
0

ð30Þ

�C ¼ ð1þ qÞr2
dB

2
I3nþN ð31Þ

uD
i;j ¼

p0j � p0i

2
ð32Þ

CD ¼ ð1� qÞr2
dB

2
I3nþN ð33Þ

where I3nþN is 3nþ N � 3nþ N identity matrix and �u and

uD are the mean values of the sum and difference of

measurements respectively for all measurement pairs,

�u ¼ ½�ui1;j1 ; . . .; �uis;js �
T ð34Þ

�u ¼ ½�ui1;j1 ; . . .; �uis;js �
T ð35Þ

where i1; j1; . . .; is; js corresponds to each unique pair. A

pair makes measurement if they are in the measurement

range of each other. Here we assume that the measurement

range is infinite (i.e., every sensor can do measurements

with every other sensor.) The Fisher information matrix Fh

given in Eq. 17 can be split into two sub matrices �Fh and

FD
h corresponding to sum and difference measurements due

to their independence.

Fh ¼ �Fh þ FD
h ð36Þ

The Fisher information matrix of a vector of multivariate

Gaussian measurements with mean lh and covariance C is

given by [31] and shown in the appendix. The derivation of

the individual elements of the matrix are given in [32].

4 Performance Evaluation Results

In this section, we present the results of our analysis of the

accuracy for localization of the WCE as it travels inside the

human GI tract. We compare the performance of RSS and

TOA based localization techniques in the major digestive

organs in the GI tract as well as the path of movements of

the WCE inside the small intestine. We study the effects of

the number of receiver sensors on body surface and their

topology on the localization accuracy. We also analyze the

influence of number of transmitter sensors in cooperation

and the randomness in their transmitted power on the

localization accuracy. As shown in Fig. 8, M receiver

sensors are distributed evenly on the surface of the body

torso and N capsule pills are distributed inside the GI tract

environment. Connectivity is assumed between the WCEs

and the body mounted sensors and among the WCEs. The

path loss parameters are determined by the length of each

connection as mentioned in Sect. 2.

For the analysis of the experiments, we compute the

average Root Mean Square Error (RMSE) of the location

error of each situation. For the case of N different capsule

locations, the average RMSE is computed by:

RMSEavg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 r2

xi
þ r2

yi
þ r2

zi

N

s

ð37Þ

where r2
xi
; r2

yi
andr2

zi
are the variance of each coordinate

value of the ith pill location, given by Eq. 15.

Table 3 Differences in parameters for TOA and RSS

Channel constant c Exponent s

TOA c ¼ 1

ðvprT Þ2
2

RSS ð 10a
rdB log 10

Þ2 4
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4.1 Effect of Organ Shape and Location

To evaluate the impact of the organ shape and location on

localization accuracy. We fixed the number of receiver

sensors to 32 and assumed only one single capsule in each

organ. We calculated the 3D-CRLB for all the possible

location points inside each organ (634 points for stomach,

1926 points for small intestine and 3334 points for large

intestine). Figure 6 shows the CDF comparison of location

error bound in different organs for RSS and TOA based

localization.

The localization error for capsule in small intestine and

stomach is apparently smaller than that in large intestine

for both RSS and TOA based localization techniques. The

average value of ri for RSS based localization technique is

four times larger than that of TOA based techniques which

confirms that TOA based ranging is better for high reso-

lution requirement when the multipath problem is not

severe. The localization error for capsule in stomach has

the lowest average value but distributed in a wider range

compared to the errors in other two environments. These

observations can be explained by the geometric relation-

ship between the sensor array and the organs. As we can

see from Fig. 2a, stomach is located in the upper part of the

receiver sensor array system, and its volume is the smallest

among the three organs. Therefore, the localization error

varies more in the stomach environment. The points loca-

ted in the upper part of stomach have larger localization

error value as they are far from the center of the receiver

array system, the points in the lower part of stomach have

smaller localization error value. The small intestine is

located in the center part of human abdomen cavity and the

lumen is more centralized compared to large intestine.

Therefore, the localization error inside small intestine is

smaller than that in large intestine. Considering the phy-

sicians are expecting localization accuracy less than several

centimeters. The TOA ranging based system provides a

more promising results.

4.2 Effect of Number of Receiver Sensors

In this section, we investigate the impact of number of

receiver sensors on localization accuracy. In this experi-

ment, 12000 Monte Carlo simulations (3 different organs, 4

different number of receiver sensors and 1000 simulations

per organ) were carried out with the number of receiver

(a)

(b)

Fig. 6 The CDF of location error bounds in stomach, small intestine

and large intestine for a single capsule. a RSS based localization.

b TOA based localization

Fig. 7 Performances of RSS- and TOA-based localization as a

function of number of receiver sensors
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sensors varied from 8 64. During each simulation, we

assume one capsule is located randomly inside the human

digestive system. The results show that the number of

receivers has significant influence on the accuracy of

localization when the number of receivers is smaller than

32 especially for RSS based localization technique. Finally,

notice that for all the three organs, at least 32 receiver

sensors are needed to guarantee the performance of 50mm

average RMSE (Fig. 7).

4.3 Effect of Sensor Configuration

In this experiment, three different placement for receiver

sensors are considered, which represents the potential

sensor arrangement in practice, as shown in Fig. 8.

Half of the sensors are on the front plane of the jacket and,

the other half are located in the rear plane of the jacket.

These sensor configurations can be seen to have three dis-

tinct configurations namely, (1): Sensors concentrated at the

borders of the jacket, (2): Sensors uniformly distributed in

both the planes of the jacket, (3): Sensors concentrated at the

center of the jacket. Figure 9 shows the RMSE of the three

different sensor population for the three distinct configura-

tions. Better performance is achieved when the sensors are

concentrated near the center of the jacket for RSS based

localization technique, while sensors distributed around the

border of the jacket achieves higher accuracy for TOA based

localization technique. Arranging all the sensors according

to the technique employed is important to achieve the opti-

mal performance for the localization system.

4.4 Effects of the Shape of the Path in the Small

Intestine

Since the small intestine is a curled and folded long tube in

the GI tract, it is the most complex part in the digestive

system. We specifically analyzed the accuracy limit when

the capsule moves along its path in the small intestine

(a) (b)

(c)

Fig. 8 Three patterns for sensor configuration considered for analysis of the bounds. a Topology1: square configuration. b Topology2: parallel

line configuration. c Topology3: grid configuration
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because the location of abnormalities found in this organ

attracts the physicians mostly. Our analysis is based on the

same RSS path loss and, TOA ranging models, but along

the small intestine path shown in Fig. 2b. The length of this

typical 3D intestine path model is 8 meters and we have

used 32 body-mounted sensors for localization. The results

of RSS- and TOA-based localization accuracy bounds

along the small intestine path are shown in Fig. 10. The

mean of localization error bounds for the RSS- and TOA

based localizations are 48 and 13 mm. In addition, the

accuracy limit of RSS based localization technique fluc-

tuates much more higher than the TOA based localization

technique. The accuracy limit of RSS based technique

varies more than 10 mm along the small intestine path,

while the accuracy limit of TOA based technique only

exhibits less than 0.5 mm of variation along the small

intestine path. However, both techniques show similarities

in performance influenced by the geometric relationship

between the capsule transmitter and the receiver array on

the body surface. For example, the localization error bound

for both techniques reaches the local maximums at 4 and

6 m from the beginning of the small intestine.

4.5 Effect of Number of Pills in Cooperation

For this experiment, we fixed the number of receivers on

body surface to 32 and increased the number of pills from 1

to 5. The pills are assumed to be randomly distributed

inside the digestive system and they can measure the RSS

or TOA from each other. We studied the effect of coop-

eration among pills using 15000 different situations for

cooperative WCE localization.

The results are presented in Fig. 11 as the number of pills

increase from 1 to 5. Localization error decreased by 5 mm

(a)

(b)

Fig. 9 Three sensor configuration considered for analysis of the

bounds for 64 sensors. a TOA, b RSS

(a)

(b)

Fig. 10 The accuracy limit of localization along the small intestine

path. a RSS-based localization. b TOA-based localization
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for RSS based technique while it remains almost the same for

TOA based technique. Compared to the impact of number of

receiver sensors, the number of pills in cooperation has less

influence on the accuracy of localization. Therefore, our

results indicate that increasing the number of receiver sensors

on body surface is a more effective way to improve the overall

localization performance than increasing the number of pills

in cooperation for RSS or TOA based capsule localization.

4.6 Effect of Random Power on the Bounds

in Different Organs

In this section, we calculate the bounds for different organs

when theres randomness in the transmitted power. We plot

the lower bound on the 1� r uncertainty ellipse for r̂i, the

estimate of the ith capsule sensor coordinate. In this

example, we use rdB ¼ 7:85 and a ¼ 4:26 based on the

path loss model discussed in previous sections. For the

simulation, we consider q ¼ 0:704. The bounds behaves

similar at different values of q. We also found the bounds

as a function of q. Finally, in these examples, the prior

knowledge of transmit power is rp ¼ 10 dB. We also

consider the case when rp ¼ 0 dB for comparison purpose.

For perfectly known transmit power (i.e. rp ¼ 0 dB), the

uncertainty ellipse is shown by solid lines whereas for

rp ¼ 10 dB, it is shown by dotted lines. As we can see in

Table 4, the increase in the RMSE for all three organs

when, randomness in the transmit power exist.

Figure 4 shows corresponding bound in each organ

individually. It is observed with given configuration of

anchor nodes capsules in large intestine suffered the largest

localization error when there was variance in transmitting

power. For small intestine, the value of RMSE for rp ¼
0 dB was 22.1399 mm and for rp ¼ 10 dB was

22.4024 mm, i.e. an increase in error of about 0.2625 mm.

Next, we calculate the bound over the entire range of

correlation coefficient values. Here, we have used a grid of

64 sensors with configuration number 3. The rest of the

parameters are kept the same as the previous simulations.

In this experiment, the capsule is assumed to be in any one

of the three organs and the average performance bounds as

a function of q is calculated. As seen in Fig. 12, as p

approaches 0, the lower bounds are not affected with ran-

domness in transmitted power as much as it is affected at

lower value of q. Also, at lower values of q, the RMSE is

lower than that at the higher values.

5 Conclusion

We investigated the potential accuracy limits for RSS and

TOA based RF localization for the wireless WCE as it

travels inside the human GI tract using the CRLB. Results

of our analysis showed the possibility of achieving average

localization error 5 cm in the digestive organs for RSS

based localization technique and average localization error

of 1.5 cm for TOA based localization technique. To

achieve these levels of accuracy, we showed that more than

Fig. 11 Performances as a function of number of pills in cooperation

for RSS-and TOA-based localization

Table 4 Percentage increase in the RMSE (mm) of the capsule in

three different organs of the GI track

Human organ rp ¼ 0 dB rp ¼ 10 dB %

Stomach 20.8284 21.8090 4.7

Small intestine 22.1399 22.4024 1.2

Large intestine 26.2381 28.0591 7.1

Fig. 12 The CRLB versus correlation coefficient q, for two different

rp with 64 sensors in parallel configuration. Th path loss model

parameters are rdB ¼ 7:85 and a ¼ 4:26
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32 sensors mounted on the body surface is needed. Our

results demonstrate that increasing the number of sensors

mounted on body surface has more influence on the overall

localization performance than increasing the number of

pills inside the GI tract. We also analyzed the effect of

randomness in transmit power on the localization accuracy

in different organs and found that large intestine suffers

more inaccuracies due to this effect and that can increase

the error by 7:1 %. Since physicaians require accuracies of

up to 10 cm for the WCE localization, results of this study

suggests that designing RF localization techniques for the

WCE is practical.
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