Skip to main content
Log in

Geometric Phase of a Two-level System Driven by a Classical Field

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigated the mixed state geometric phase of a two-level system which is coupled to a bosonic reservoir in both weak and strong coupling regimes, and driven by a classical field. Besides, we extended the direct-drive model to the indirect-drive model by incorporating an additional qubit. In the direct-drive model, the geometric phase undergoes corresponding alterations through the amplification of the classical field strength. Moreover, the combination of the classical driving and the strong coupling between the two-level system and the bosonic reservoir significantly changes the geometric phase. Furthermore, we elucidate the asymmetric effect of the detuning between the two-level system and the Lorentzian spectrum on the geometric phase, while achieving stability in the geometric phase regardless of the detuning value by appropriately adjusting the classical driving strength. In the indirect-drive model, intriguing phenomena arise, such as different behaviors of the geometric phase and the restoration of the symmetric effects of the detuning. The explicit dynamics of the geometric phase has been numerically analyzed by investigating the time-dependent factor of the reduced density matrix. Finally, the energy flow of the entire system was clarified by utilizing quasimode theory and visualizing the temporal evolution of the Bloch vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. Math. Phys. Eng. Sci. 392(1802), 45–57 (1984). https://doi.org/10.1098/rspa.1984.0023

    Article  MathSciNet  Google Scholar 

  2. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987). https://doi.org/10.1103/PhysRevLett.58.1593

    Article  ADS  MathSciNet  Google Scholar 

  3. Samuel, J., Bhandari, R.: General setting for berry’s phase. Phys. Rev. Lett. 60, 2339–2342 (1988). https://doi.org/10.1103/PhysRevLett.60.2339

    Article  ADS  MathSciNet  Google Scholar 

  4. Sjöqvist, E., Pati, A.K., Ekert, A., Anandan, J.S., Ericsson, M., Oi, D.K.L., Vedral, V.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845–2849 (2000). https://doi.org/10.1103/PhysRevLett.85.2845

    Article  ADS  Google Scholar 

  5. Singh, K., Tong, D.M., Basu, K., Chen, J.L., Du, J.F.: Geometric phases for nondegenerate and degenerate mixed states. Phys. Rev. A. 67, 032106 (2003). https://doi.org/10.1103/PhysRevA.67.032106

    Article  ADS  Google Scholar 

  6. Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984). https://doi.org/10.1103/PhysRevLett.52.2111

    Article  ADS  MathSciNet  Google Scholar 

  7. Mostafazadeh, A.: Noncyclic geometric phase and its non-abelian generalization. J. Phys. A: Math. Gen. 32(46), 8157 (1999). https://doi.org/10.1088/0305-4470/32/46/312

    Article  ADS  MathSciNet  Google Scholar 

  8. Carollo, A.C.M., Pachos, J.K.: Geometric phases and criticality in spin-chain systems. Phys. Rev. Lett. 95, 157203 (2005). https://doi.org/10.1103/PhysRevLett.95.157203

    Article  ADS  Google Scholar 

  9. Zhu, S.-L.: Scaling of geometric phases close to the quantum phase transition in the \(xy\) spin chain. Phys. Rev. Lett. 96, 077206 (2006). https://doi.org/10.1103/PhysRevLett.96.077206

    Article  ADS  Google Scholar 

  10. Wang, L.C., Yi, X.X.: Geometric phase and quantum phase transition in the one-dimensional compass model. Eur. Phys. J. D. 57(2), 281–286 (2010). https://doi.org/10.1140/epjd/e2010-00045-4

    Article  ADS  Google Scholar 

  11. Wang, X.-B., Matsumoto, K.: Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 87, 097901 (2001). https://doi.org/10.1103/PhysRevLett.87.097901

    Article  Google Scholar 

  12. Zhu, S.-L., Wang, Z.D.: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002). https://doi.org/10.1103/PhysRevLett.89.097902

    Article  ADS  Google Scholar 

  13. Zhu, S.-L., Wang, Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003). https://doi.org/10.1103/PhysRevLett.91.187902

    Article  ADS  Google Scholar 

  14. Nielsen, M.A., Dowling, M.R., Gu, M., Doherty, A.C.: Quantum computation as geometry. Science 311(5764), 1133–1135 (2006). https://doi.org/10.1126/science.1121541

    Article  ADS  MathSciNet  Google Scholar 

  15. Abdumalikov, A.A., Jr., Fink, J.M., Juliusson, K., Pechal, M., Berger, S., Wallraff, A., Filipp, S.: Experimental realization of non-abelian non-adiabatic geometric gates. Nature 496(7446), 482–485 (2013). https://doi.org/10.1038/nature12010

    Article  ADS  Google Scholar 

  16. Zu, C., Wang, W.-B., He, L., Zhang, W.-G., Dai, C.-Y., Wang, F., Duan, L.-M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514(7520), 72–75 (2014). https://doi.org/10.1038/nature13729

    Article  ADS  Google Scholar 

  17. Sekiguchi, Y., Niikura, N., Kuroiwa, R., Kano, H., Kosaka, H.: Optical holonomic single quantum gates with a geometric spin under a zero field. Nat. Photonics. 11(5), 309–314 (2017). https://doi.org/10.1038/nphoton.2017.40

    Article  ADS  Google Scholar 

  18. Nagata, K., Kuramitani, K., Sekiguchi, Y., Kosaka, H.: Universal holonomic quantum gates over geometric spin qubits with polarised microwaves. Nat. Commun. 9(1), 3227 (2018). https://doi.org/10.1038/s41467-018-05664-w

    Article  ADS  Google Scholar 

  19. Liu, B.-J., Song, X.-K., Xue, Z.-Y., Wang, X., Yung, M.-H.: Plug-and-play approach to nonadiabatic geometric quantum gates. Phys. Rev. Lett. 123, 100501 (2019). https://doi.org/10.1103/PhysRevLett.123.100501

    Article  ADS  Google Scholar 

  20. Yan, T., Liu, B.-J., Xu, K., Song, C., Liu, S., Zhang, Z., Deng, H., Yan, Z., Rong, H., Huang, K., Yung, M.-H., Chen, Y., Yu, D.: Experimental realization of nonadiabatic shortcut to non-abelian geometric gates. Phys. Rev. Lett. 122, 080501 (2019). https://doi.org/10.1103/PhysRevLett.122.080501

    Article  ADS  Google Scholar 

  21. Falci, G., Fazio, R., Palma, G.M., Siewert, J., Vedral, V.: Detection of geometric phases in superconducting nanocircuits. Nature. 407(6802), 355–358 (2000). https://doi.org/10.1038/35030052

    Article  ADS  Google Scholar 

  22. Solinas, P., Zanardi, P., Zanghì, N., Rossi, F.: Semiconductor-based geometrical quantum gates. Phys. Rev. B. 67, 121307 (2003). https://doi.org/10.1103/PhysRevB.67.121307

    Article  ADS  Google Scholar 

  23. Zhu, S.-L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005). https://doi.org/10.1103/PhysRevLett.94.100502

    Article  ADS  MathSciNet  Google Scholar 

  24. Duan, L.-M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science. 292(5522), 1695–1697 (2001). https://doi.org/10.1126/science.1058835

    Article  ADS  Google Scholar 

  25. Juliá-Díaz, B., Dagnino, D., Günter, K.J., Graß, T., Barberán, N., Lewenstein, M., Dalibard, J.: Strongly correlated states of a small cold-atom cloud from geometric gauge fields. Phys. Rev. A. 84, 053605 (2011). https://doi.org/10.1103/PhysRevA.84.053605

    Article  ADS  Google Scholar 

  26. Song, C., Zheng, S.-B., Zhang, P., Xu, K., Zhang, L., Guo, Q., Liu, W., Xu, D., Deng, H., Huang, K., Zheng, D., Zhu, X., Wang, H.: Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit. Nat. Commun. 8(1), 1061 (2017). https://doi.org/10.1038/s41467-017-01156-5

    Article  ADS  Google Scholar 

  27. Xu, Y., Hua, Z., Chen, T., Pan, X., Li, X., Han, J., Cai, W., Ma, Y., Wang, H., Song, Y.P., Xue, Z.-Y., Sun, L.: Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit. Phys. Rev. Lett. 124, 230503 (2020). https://doi.org/10.1103/PhysRevLett.124.230503

    Article  ADS  Google Scholar 

  28. Xu, K., Ning, W., Huang, X.-J., Han, P.-R., Li, H., Yang, Z.-B., Zheng, D., Fan, H., Zheng, S.-B.: Demonstration of a non-abelian geometric controlled-not gate in a superconducting circuit. Optica. 8(7), 972–976 (2021). https://doi.org/10.1364/OPTICA.416264

    Article  ADS  Google Scholar 

  29. Yang, X.-X., Guo, L.-L., Zhang, H.-F., Du, L., Zhang, C., Tao, H.-R., Chen, Y., Duan, P., Jia, Z.-L., Kong, W.-C., Guo, G.-P.: Experimental implementation of short-path nonadiabatic geometric gates in a superconducting circuit. Phys. Rev. Appl. 19, 044076 (2023). https://doi.org/10.1103/PhysRevApplied.19.044076

    Article  ADS  Google Scholar 

  30. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2005). https://doi.org/10.1103/RevModPhys.76.1267

    Article  ADS  Google Scholar 

  31. Fujikawa, K.: Topological properties of berry’s phase. Mod. Phys. Lett. A. 20(05), 335–343 (2005). https://doi.org/10.1142/S0217732305016579

    Article  ADS  MathSciNet  Google Scholar 

  32. Liang, S.-D., Huang, G.-Y.: Topological invariance and global berry phase in non-hermitian systems. Phys. Rev. A. 87, 012118 (2013). https://doi.org/10.1103/PhysRevA.87.012118

    Article  ADS  Google Scholar 

  33. Zhu, S.-L., Zanardi, P.: Geometric quantum gates that are robust against stochastic control errors. Phys. Rev. A. 72, 020301 (2005). https://doi.org/10.1103/PhysRevA.72.020301

    Article  ADS  Google Scholar 

  34. Du, J., Zou, P., Wang, Z.D.: Experimental implementation of high-fidelity unconventional geometric quantum gates using an nmr interferometer. Phys. Rev. A. 74, 020302 (2006). https://doi.org/10.1103/PhysRevA.74.020302

    Article  ADS  Google Scholar 

  35. Kleißler, F., Lazariev, A., Arroyo-Camejo, S.: Universal, high-fidelity quantum gates based on superadiabatic, geometric phases on a solid-state spin-qubit at room temperature. Npj Quantum Inf. 4(1), 49 (2018). https://doi.org/10.1038/s41534-018-0098-7

    Article  ADS  Google Scholar 

  36. Zhang, J.W., Yan, L.-L., Li, J.C., Ding, G.Y., Bu, J.T., Chen, L., Su, S.-L., Zhou, F., Feng, M.: Single-atom verification of the noise-resilient and fast characteristics of universal nonadiabatic noncyclic geometric quantum gates. Phys. Rev. Lett. 127, 030502 (2021). https://doi.org/10.1103/PhysRevLett.127.030502

    Article  ADS  Google Scholar 

  37. Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature 403(6772), 869–871 (2000). https://doi.org/10.1038/35002528

    Article  ADS  Google Scholar 

  38. Maclaurin, D., Doherty, M.W., Hollenberg, L.C.L., Martin, A.M.: Measurable quantum geometric phase from a rotating single spin. Phys. Rev. Lett. 108, 240403 (2012). https://doi.org/10.1103/PhysRevLett.108.240403

    Article  ADS  Google Scholar 

  39. Hebbache, M.: Entanglement of electron spins and geometric phases in the diamond color center coupled to the p1 center. Phys. Rev. B. 86, 195316 (2012). https://doi.org/10.1103/PhysRevB.86.195316

    Article  ADS  Google Scholar 

  40. Kowarsky, M.A., Hollenberg, L.C.L., Martin, A.M.: Non-abelian geometric phase in the diamond nitrogen-vacancy center. Phys. Rev. A. 90, 042116 (2014). https://doi.org/10.1103/PhysRevA.90.042116

    Article  ADS  Google Scholar 

  41. Arai, K., Lee, J., Belthangady, C., Glenn, D.R., Zhang, H., Walsworth, R.L.: Geometric phase magnetometry using a solid-state spin. Nat. Commun. 9(1), 4996 (2018). https://doi.org/10.1038/s41467-018-07489-z

    Article  ADS  Google Scholar 

  42. Zhao, P.Z., Cui, X.-D., Xu, G.F., Sjöqvist, E., Tong, D.M.: Rydberg-atom-based scheme of nonadiabatic geometric quantum computation. Phys. Rev. A. 96, 052316 (2017). https://doi.org/10.1103/PhysRevA.96.052316

    Article  ADS  Google Scholar 

  43. Liu, B.-J., Su, S.-L., Yung, M.-H.: Nonadiabatic noncyclic geometric quantum computation in rydberg atoms. Phys. Rev. Res. 2, 043130 (2020). https://doi.org/10.1103/PhysRevResearch.2.043130

    Article  Google Scholar 

  44. Guo, C.-Y., Yan, L.-L., Zhang, S., Su, S.-L., Li, W.: Optimized geometric quantum computation with a mesoscopic ensemble of rydberg atoms. Phys. Rev. A. 102, 042607 (2020). https://doi.org/10.1103/PhysRevA.102.042607

    Article  ADS  Google Scholar 

  45. Wang, L.C., Cui, H.T., Yi, X.X.: Berry’s phase with quantized field driving: Effects of intersubsystem coupling. Phys. Rev. A. 70, 052106 (2004). https://doi.org/10.1103/PhysRevA.70.052106

    Article  ADS  Google Scholar 

  46. Carollo, A., Fuentes-Guridi, I., Santos, M.F.m.c., Vedral, V.: Spin-\(1/2\) geometric phase driven by decohering quantum fields. Phys. Rev. Lett. 92, 020402 (2004). https://doi.org/10.1103/PhysRevLett.92.020402

  47. Yi, X.X., Wang, L.C., Wang, W.: Geometric phase in dephasing systems. Phys. Rev. A. 71, 044101 (2005). https://doi.org/10.1103/PhysRevA.71.044101

    Article  ADS  Google Scholar 

  48. Siddiqui, S., Gea-Banacloche, J.: Adiabatic geometric phase gate with a quantized control field. Phys. Rev. A. 74, 052337 (2006). https://doi.org/10.1103/PhysRevA.74.052337

    Article  ADS  Google Scholar 

  49. Zheng, S.-B.: Geometric phase for a driven quantum field subject to decoherence. Phys. Rev. A. 91, 052117 (2015). https://doi.org/10.1103/PhysRevA.91.052117

    Article  ADS  Google Scholar 

  50. Zhao, Z.-Y., Yan, R.-Y., Feng, Z.-B.: Shortcut-based quantum gates on superconducting qubits in circuit qed*. Chin. Phys. B. 30(8), 088501 (2021). https://doi.org/10.1088/1674-1056/abea96

    Article  ADS  Google Scholar 

  51. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511813993

  52. Liu, Y.-X., Sun, C.P., Nori, F.: Scalable superconducting qubit circuits using dressed states. Phys. Rev. A. 74, 052321 (2006). https://doi.org/10.1103/PhysRevA.74.052321

    Article  ADS  Google Scholar 

  53. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G., Meystre, P.: Atom-Photon Interactions: Basic Processes and Applications. Phys. Today 45(10), 115–116 (1992). https://doi.org/10.1063/1.2809840

    Article  Google Scholar 

  54. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007). https://doi.org/10.1093/acprof:oso/9780199213900.001.0001

  55. Dalton, B.J., Barnett, S.M., Garraway, B.M.: Theory of pseudomodes in quantum optical processes. Phys. Rev. A. 64, 053813 (2001). https://doi.org/10.1103/PhysRevA.64.053813

    Article  ADS  Google Scholar 

  56. Nie, J., Liang, Y., Wang, B., Yang, X.: Non-markovian speedup dynamics in markovian and non-markovian channels. Int. J. Theor. Phys. 60(8), 2889–2900 (2021). https://doi.org/10.1007/s10773-021-04885-y

    Article  MathSciNet  Google Scholar 

  57. Breuer, H.-P., Kappler, B., Petruccione, F.: Stochastic wave-function method for non-markovian quantum master equations. Phys. Rev. A. 59, 1633–1643 (1999). https://doi.org/10.1103/PhysRevA.59.1633

    Article  ADS  Google Scholar 

  58. Tong, D.M., Sjöqvist, E., Kwek, L.C., Oh, C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93, 080405 (2004). https://doi.org/10.1103/PhysRevLett.93.080405

    Article  ADS  Google Scholar 

  59. Chen, J.-J., An, J.-H., Tong, Q.-J., Luo, H.-G., Oh, C.H.: Non-markovian effect on the geometric phase of a dissipative qubit. Phys. Rev. A. 81, 022120 (2010). https://doi.org/10.1103/PhysRevA.81.022120

    Article  ADS  Google Scholar 

  60. Viotti, L., Lombardo, F.C., Villar, P.I.: Geometric phase in a dissipative jaynes-cummings model: Theoretical explanation for resonance robustness. Phys. Rev. A. 105, 022218 (2022). https://doi.org/10.1103/PhysRevA.105.022218

    Article  ADS  MathSciNet  Google Scholar 

  61. Rivas, Â., Huelga, S.F., Plenio, M.B.: Quantum non-markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77(9), 094001 (2014). https://doi.org/10.1088/0034-4885/77/9/094001

    Article  ADS  MathSciNet  Google Scholar 

  62. Breuer, H.-P., Laine, E.-M., Piilo, J., Vacchini, B.: Colloquium: Non-markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016). https://doi.org/10.1103/RevModPhys.88.021002

    Article  ADS  Google Scholar 

  63. Guarnieri, G., Uchiyama, C., Vacchini, B.: Energy backflow and non-markovian dynamics. Phys. Rev. A. 93, 012118 (2016). https://doi.org/10.1103/PhysRevA.93.012118

    Article  ADS  Google Scholar 

  64. Bylicka, B., Johansson, M., Acín, A.: Constructive method for detecting the information backflow of non-markovian dynamics. Phys. Rev. Lett. 118, 120501 (2017). https://doi.org/10.1103/PhysRevLett.118.120501

    Article  ADS  Google Scholar 

  65. Ma, T., Chen, Y., Chen, T., Hedemann, S.R., Yu, T.: Crossover between non-markovian and markovian dynamics induced by a hierarchical environment. Phys. Rev. A. 90, 042108 (2014). https://doi.org/10.1103/PhysRevA.90.042108

    Article  ADS  Google Scholar 

  66. Lang, R., Scully, M.O., Lamb, W.E.: Why is the laser line so narrow? a theory of single-quasimode laser operation. Phys. Rev. A. 7, 1788–1797 (1973). https://doi.org/10.1103/PhysRevA.7.1788

    Article  ADS  Google Scholar 

  67. Li, Y.-L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-markovian dissipative two-state system. Phys. Rev. A. 91, 052105 (2015). https://doi.org/10.1103/PhysRevA.91.052105

    Article  ADS  Google Scholar 

  68. Barnett, S., Radmore, P.: Quantum theory of cavity quasimodes. Opt. Commun. 68(5), 364–368 (1988). https://doi.org/10.1016/0030-4018(88)90233-7

    Article  ADS  Google Scholar 

  69. Dalton, B.J., Barnett, S.M., Knight, P.L.: Quasi mode theory of macroscopic canonical quantization in quantum optics and cavity quantum electrodynamics. J. Mod. Opt. 46(9), 1315–1341 (1999). https://doi.org/10.1080/09500349908231338

    Article  ADS  MathSciNet  Google Scholar 

  70. Xiao, X., Fang, M.-F., Li, Y.-L.: Non-markovian dynamics of two qubits driven by classical fields: population trapping and entanglement preservation. J. Phys. B: At. Mol. Opt. Phys. 43(18), 185505 (2010). https://doi.org/10.1088/0953-4075/43/18/185505

    Article  ADS  Google Scholar 

  71. Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A. 55, 2290–2303 (1997). https://doi.org/10.1103/PhysRevA.55.2290

    Article  ADS  Google Scholar 

  72. Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A. 78, 060302 (2008). https://doi.org/10.1103/PhysRevA.78.060302

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Department of Education of Liaoning Province (Grant No. JYTMS20230937)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors have read and approved the manuscript submission.

Corresponding author

Correspondence to Jing Nie.

Ethics declarations

Conflicts of interest

No potential conflict of interest was reported by the authors

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Nie, J. & Yang, X. Geometric Phase of a Two-level System Driven by a Classical Field. Int J Theor Phys 63, 72 (2024). https://doi.org/10.1007/s10773-024-05613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05613-y

Keywords

Navigation