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Abstract
We describe the trajectories of circular orbits of spinless and spinning test particles around a
rotating body in equatorial and non-equatorial planes via the Mathisson-Papapetrou-Dixon
equations. In this paper, these equations include the Ricci rotation coefficients with the
purpose of describing not only the curvature of space time, but also the rotation of the
spinning test particles that orbit around a rotating massive body. We found a numerical
difference between the trajectories of spinless test particles and spinning test particles in
the order of 10−7. We take as parameters: radius, energy, Carter’s constant and angular
momentum.

Keywords Kerr metric · Mathisson-Papapetrou-Dixon equations · Carter’s equations ·
Ricci rotation coefficients

1 Introduction

Oneof theways to study the physics of a rotational gravitational field, is to describe themotion
of test particles in this field. Typically in the literature, we find two main approaches to the
description of the motion of spinning test particles in a rotating gravitational field in non-
equatorial plane. The first one is given by Mathisson-Papapetrou-Dixon Equations (MPD)
[1–3] which yields the equations of motion of a spinning test particle in a given gravitational
field. The second takes the first integrals of motion given by Carter [4] and derives the orbits
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of spinless test particles around a rotating massive body. The term “particle” is because the
size of the test body is small compared to the scale of the curvature.

Themotion of particles in theKerr typemetric has been discussed bymany authors [5–10].
Many of these works study the motion in the equatorial plane for spinless and spinning test
particles via MPD Equations [11, 12]. Using this last formalism, we calculate the trajectories
of spinless and spinning test particles in non-equatorial planes. On the other hand, in the
literature, there are studies that use the Carter’s equations for both spinless and spinning
test particles in equatorial planes [13, 14], but there are few works that describe the motion
of spinless test particles around rotating bodies in non-equatorial planes [15, 16]. This is
the first novelty in relation to previous works. The majority of papers take the polar angle
as θ = π/2. In these cases, they reduce the problem only in the equatorial plane while the
particles could travel around themassive body. Of course, in the numerical calculation, taking
another integration variable is harder, as is the case of this angle. On the other hand, the study
of trajectories of spinning test particles in non-equatorial planes for a Kerr spacetime under
the Carter’s equations needs further investigation. We focus our work in the formalism given
by the MPD equations [2]. In this method, we are given a distribution of mass (m) with spin
tensor (Sρσ ) around on central source (M) which has a metric tensor gμν . These equations of
motion for a spinning test particle are obtained in terms of an expansion that depends on the
derivatives of the metric and the multipole moments of the energy-momentum tensor (Tμν)

[2], and are given by

D

dτ
pμ (τ) = −1

2
Rμ

νρσ vν (τ ) Sρσ (τ ) (1)

D

dτ
Sμν (τ ) = 2p[μ (τ) vν] (τ ) , (2)

where D/dτ means the covariant derivative, the vector pμ and the antisymmetric tensor Sμβ

are the linear and spin angular momenta respectively. Rμ
νρσ is the curvature tensor [17].

Since pμ pμ = constant and Sρσ Sρσ = constant along the particle trajectory [18]; then, we
may set

pμ = muμ, uμu
μ = −1 (3)

Sρσ = ερσ
μν p

μSν (4)

S2 = SμS
μ = 1

2m2 SμνS
μν, (5)

and with these expressions, we obtain the center of mass condition and the relation between
the spin tensor and the vector spin which is called spin supplementary condition (SSC). For
this case, we used the Tulczyjew supplementary condition [19]:

pμS
μ = 0. (6)

In the present paper,we calculate numerically, viaMPDequations, the trajectories for spin-
less and spinning test particles in circular orbits when the test particles are in non-equatorial
planes. We are interested in studying the effects from spin of the test particle orbiting in a
rotating gravitational field which is generated by a massive rotating body. In the majority of
cases, the description of trajectories is given by the study of the Christoffel symbols. The
novelty of our work is to take the Ricci Rotation Coefficients (RRC) in order to study the
trajectories of spinning test particles in non-equatorial planes. One of the properties of these
coefficients is the coordinates of the derivative vectors measure not only the deviation, but
also the rotation of all the frame vectors. On the other hand, when we study these trajectories,
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we can describe the behavior of particles with spin in a Kerr metric and the relationship
between the angular momentum of the central mass with the spin of the test particle.

The Carter’s equations are given by the first integrals of the equations of motion of a
spinless test particle around a rotating body for a Kerr metric both in an equatorial plane
and in non-equatorial planes [4]. These equations use the symmetries of the Kerr geometry
and the conserved quantities of energy (E), angular momentum (L), rest mass (M) and a
fourth integral of motion called Carter’s constant (Q). For the case of spinning test particles
in the equatorial plane, when the space-time possesses a Killing field, there exists a linear
combination of the components of momenta (pμ) and the spin tensor (Sμν) [20]. The study
for orbits of spinning test particles off the equatorial plane by the Carter’s equations needs
further investigation.

We will compare the results by numerical integration in three cases: first, we compare
between trajectories of spinless test particles in a non-equatorial plane. To describe these
trajectories, Carter’s equations are used. In this system of equations, a conserved quantity
associated with movement in the latitudinal direction is introduced. This quantity is called
Carter’s constant. We will compare the result of this system of equations with the trajectories
given by the integration of the MPD equations that include the Ricci Rotation Coefficients
(RRC).These last equations describe themotion for test particleswith spin. That is, in addition
to the four velocity of the particle, the components of the four spin vector are integrated. In
the second case, we numerically compare the trajectories of the test particles in the system
given by the MPD equations for two situations: first we integrate the MPD equations when
the magnitude of the four spin vector is equal to zero and we compare when its magnitude is
different from zero. This will allow us to describe the deviation of the trajectory if it has spin
or if it does not. Third case, we compare the behavior of two Boyer Linquist coordinates (θ ,
ϕ) in regard to the proper time (τ ) both to spinless and to spinning test particles.

The paper is organized as follows. In Section 2, the equations of motion MPD are reduced
to expressions that include the Ricci Rotation Coefficients (RRC). These equations describe
the motion of spinless and spinning test particles around a rotating body. We study the cases
when the spinless and spinning test particles are in the equatorial plane and give the set
of equations when the spinless and spinning test particles are out of the equatorial plane.
In Section 3, there is a brief description of Carter’s equations for spherical orbits. These
equations take three constants of motion given by the symmetries of a rotating body. A
fourth constant is obtained from the separability of the Hamilton-Jacobi equation. These
orbits are calculated numerically. Then, in Section 4, we present a numerical comparison
between the MPD equations and Carter’s equations for the spinless test particles both in the
equatorial plane and a non-equatorial plane.We take the initial values fromCarter’s equations
and replace them in the MPD equations. In the last section, the conclusions and some future
projects are formulated in order to describe spinning test particles in a Kerr type metric.

2 MPD Equations and the Ricci Rotation Coefficients

Generally when we solve a problem in General Relativity, we consider the field equations in
a local coordinate basis. Although we can choose the basis in order to describe the physical
system, this new set of equations of independent vector fields is called tetrad. This formalism
simplifies the principal quantities of the problem. The mathematical objects are projected in
the new basis for studying the problem, and then we can go back to the original basis with
another projection [21].
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The MPD equations had been traditionally used in the equatorial plane. We focus our
study not only in the equatorial plane, but also in a non-equatorial plane. In this paper, we
take the work from Tanaka et al. [11] who reduce the equations of motion using the RRC.
They solve the equations of motion for a circular orbit in the equatorial plane while we, with
the same method, solve the case for trajectories in a non-equatorial plane. Given this, the
equations of motion (1) and (2) for the tetrad components are reduced to

duα

dτ
= ωβγ

αvβuγ − SRα, (7)

dζ α

dτ
= ωβγ

αvβζ γ − Suαζ β Rβ . (8)

vμ − uμ = 1

2

(
SμνRνρσκuρSσκ

m2 + 1
4 RχξζηSχξ Sζη

)
, (9)

where ωβγ
α are the RRC and ζ α is the unit spin vector, which is defined by ζ α := Sa/S.

Here Rα and Sμν are defined by

Rα := R∗α
βγλv

βuγ ζ λ = 1

2mS
Rα

βγλv
β Sγ λ. (10)

Sγ λ := mSεγλ
ϑκu

ϑζ κ = mεγλ
ϑκu

ϑ Sκ , (11)

the last equation yields the relation between tensor spin (Sγ λ) and the vector spin (Sκ ). For
our calculation, we have an orthonormal frame with the RRC and we can extract information
about the curvature of the spacetime in question. It will be important when we describe the
trajectories of test particles off-equatorial plane.

On the other hand, the RRC are related with the coordinates of the derivative vectors that
measure not only the deviation, but also the rotation of all the frame vectors when moved in
various directions [22]. Furthermore, we can observe that the RRC carry information about
how the frame rotates and not just information about the curvature of spacetime.

2.1 Calculation of the Ricci Rotation Coefficients

Next, we define the Ricci rotation coefficients for a Kerr spacetime [23] as ωab
c =

eaμebνecν;μ where the semicolon indicates the covariant derivative (Appendix A).
In order to find a solution, it is convenient to introduce the tetrad frame [11] defined by

eiμ = (
ei t , ei r , ei θ , eiϕ

)

e0μ =
⎛
⎝

√
r2 − 2GMr

c2
+ a2

r2 + a2 cos2 θ
, 0, 0,−a sin2 θ

√
r2 − 2GMr

c2
+ a2

r2 + a2 cos2 θ

⎞
⎠ ,

e1μ =
(
0,

√
r2 + a2 cos2 θ

r2 − 2GMr
c2

+ a2
, 0, 0

)
,

e2μ =
(
0, 0,

√
r2 + a2 cos2 θ, 0

)
,
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e3μ =
(

− a sin θ√
r2 + a2 cos2 θ

, 0, 0,

(
r2 + a2

)
sin θ√

r2 + a2 cos2 θ

)
(12)

where the Greek letters distinguish the tensor indices (μ = t, r , θ, ϕ) from the tetrad
indices which are in the Latin alphabet (i = 0, 1, 2, 3). Here we use the metric signature
(−,+,+,+).

The RRC are given by [21, 24]

ω(a)(b)(c) = 1

2

[
λ(a)(b)(c) + λ(c)(a)(b) − λ(b)(c)(a)

]
(13)

where λ(a)(b)(c) are the rotation pre-coefficients and are defined by

λ(a)(b)(c) = e(b)μ,ν

[
e(a)

μe(c)
ν − e(a)

νe(c)
μ
]
. (14)

In this nomenclature, the authorwrites theLatin letters (a,b,c,...) enclosed in roundbrackets
that represent the labels of the four vectors of the tetrad, while the Greek letters (μ, ν)

represent the components of the vector.

2.2 Spinless Test Particles in a Kerr Metric

In this section, the equations ofmotion for spinless test particles in aKerrmetricwith constant
radius (r = r0) are solved. The aim is to write down the equations with the help of the (7)
and the RRC (Appendix A). In this case, the magnitude of the spin is equal to zero (S = 0)
and r is constant, i.e. u1 = 0. Since the test particle is spinless and according to (9), it can
be identified the velocity vμ with the velocity uμ in (7). Therefore the system of equations
is given by

d

dτ
u0 = ω02

0u0u2 (15)

d

dτ
u1 = ω02

1u0u2 + 2ω03
1u0u3 + ω22

1u2u2 + ω33
1u3u3 = 0 (16)

d

dτ
u2 = ω00

2u0u0 + 2ω03
2u0u3 + ω33

2u3u3 (17)

d

dτ
u3 = −2ω02

3u0u2 − ω23
3u2u3. (18)

We replace the values of the RRC and the tetrads in (15) - (18). These latter equations for
spinless test particles will be solved by numerical integration with Mathematica.

Tanaka et al. consider a class of circular orbits in the equatorial plane and assume that:
∼
θ := θ − π/2 = O (S/M) � 1. In this case, r = constant (u1 = 0), and close to the

equatorial plane (u2 = O(
∼
θ)). Under this assumption, the nontrivial equation is [11]

d

dτ
u1 = ω00

1u0u0 + ω30
1u3u0 + ω03

1u0u3 + ω33
1u3u3 = 0. (19)

In this case, the orbital angular velocity is given by

� = ±√
M

r 3/2 ± √
Ma

(20)

where M is the mass of central body and a is the angular momentum of the source.
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2.3 Spinning Test Particles in a Kerr Metric

First of all, for the case of spinning test particles in circular orbits and in the equatorial
plane, we assume that corresponds to: r = constant (u1 = 0), close to the equatorial plane

(u2 = O(
∼
θ )), and with the magnitude of spin (S2 = SμSμ). In this case, according to (7),

the nontrivial equations of the orbital motion are [11]

d

dτ
u1 = ω00

1u0u0 + ω30
1u3u0 + ω03

1u0u3 + ω33
1u3u3 − SR1 = 0

d

dτ
u2 = (

ω00
2u0u0 + ω30

2u3u0 + ω03
2u0u3 + ω33

2u3u3
) ∼
θ − SR2 (21)

where the components of Ra are given by

R0 = R3 = O(
∼
θ)

R1 = 3
M

r3
u0u3

S2

S
+ O(

∼
θ)

R2 = 3
M

r3
u0u3

S1

S
+ O(

∼
θ). (22)

In the equatorial plane, the orbital angular velocity for spinning test particles is given by

� = ±
√
M

r 3/2 ± a
√
M

[
1 − 3S

2

±√
Mr − a

r2 ± a
√
Mr

]
+ O(

∼
θ). (23)

This new expression corresponds to the spin contribution (S) at O(
∼
θ).

Now for the non-equatorial orbits; first, we take the work by Tanaka et al. [11] which
studies the motion of the spinning test particle in the equatorial plane, and then, we go
one step further and numerically calculate the trajectories of off-equatorial orbits. For this
treatment, we replace the “dynamical velocity v” (9) in (7) and (8), and obtain the set of
equations:

duα

dτ
= ωβγ

α

(
uβ + εβν

ϕλuϕSλRνρσκuρεσκ
τυuτ Sυ

8 + 2Rχξζηεχξ
ιϕuιSϕεζη

δεuδSε

)
uγ

−1

2
gαηRημρπ

(
uμ + εμν

γλuγ SλRνρσκuρεσκ
ωϑuωSϑ

8 + 2Rχξζηεχξ
ιϕuιSϕεζη

δεuδSε

)
ερπ

σκu
σ Sκ (24)

dSα

dτ
= ωβγ

α

(
uβ + εβν

ϕλuϕSλRνρσκuρεσκ
τυuτ Sυ

8 + 2Rχξζηεχξ
ιϕuιSϕεζη

δεuδSε

)
Sγ

−1

2
uαSβ Rβρλμ

(
uρ + ερν

ϕλuϕSλRνρσκuρεσκ
τυuτ Sυ

8 + 2Rχξζηεχξ
ιϕuιSϕεζη

δεuδSε

)
ελμ

φδu
φSδ. (25)

For the numerical integration, we need the initial values of the four velocities which will
be obtained from the Carter’s equations.

3 Equations of Motion and Carter’s Constant

In aKerr typemanifold, the symmetries provide three constants ofmotion: the energy (E), the
angular momentum (L), and the rest central mass (M). In addition, there is another constant
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which is due to the separability of the Hamilton - Jacobi equation and is called Carter’s
constant (Q). The equation of Lagrange for a Kerr metric leads immediately to the first
integrals of the t and ϕ equations, and the other two integrals of (r ) and (θ ) are obtained by
a separable solution of the Hamilton - Jacobi equation. The set of equations is given by [25]

�
·
t = a

(
L − aE sin2 θ

) + r2 + a2

�

[
E

(
r2 + a2 − aL

)]
, (26)

�
·
r
2 = [

E
(
r2 + a2

) ∓ aL
]2 − �

[
r2 + Q + (L ∓ aE)2

]
, (27)

�
·
θ
2

= Q − cos2 θ

[
a2

(
1 − E2) + L2

sin2 θ

]
, (28)

·
�ϕ = L

sin2 θ
− aE + a

�

[
E

(
r2 + a2

) − aL
]
, (29)

where L , E , and Q are constants and

� : = r2 + a2 cos2 θ,

� : = r2 + a2 − 2Mr ,

M , and a = J/Mc denote the central mass and specific angular momentum of the central
source which gives rise to the gravitational field represented by the Kerr space-time.

In the study of orbits of test particles around on Kerr metric, there exists a kind of orbits
called spherical, i.e., constant radius. This last orbit intersects the equatorial plane in a point
called a node. Since the metric has angular momentum, the nodes of spherical orbits are
dragged in the sense of the spin of the rotating body. When there is a particle orbiting in
a nonequatorial orbit, this traces a kind of helix until a maximum of latitude, and when it
reaches the maximum this begins to descend until a minimum latitude which is symmetric
to the maximum [26].

When the space-time admits a Killing vector ξυ , there exists a property that includes the
covariant derivative and the spin tensor, which gives a constant and is given by the expression
[20]

pνξν + 1

2
ξν,μS

νμ = constant, (30)

where pν is the linear momentum, ξν,μ is the covariant derivative of the Killing vector, and
Sνμ is the spin tensor of the particle. In the case of a Kerr metric, there are two Killing
vectors, owing to its stationary and axisymmetric nature. As consequence, (30) yields two
constants of motion: E is the total energy and L is the component of its angular momentum
along the axis of symmetry. Unfortunately, there is not a constant of motion associated to
the coordinate r ; therefore, for this method, there does not exist a equation of motion that
connects the constant of motion linked to coordinate r and the spin tensor. This mathematical
expression needs further investigation.

On the other hand, people avoid the error that shows the numerical integration due to
the explicit square roots in the r and θ in (27) and (28). In this formulation, they take the
Hamilton’s canonical equations which denote differentiation of the Hamiltonian with respect
to r and θ . This demonstration is based on a taxonomy of all periodic orbits around black holes
[27]. The set of equations constitutes a smooth system of ordinary differential equations and
can be integratedwithout change of variables. These equationswere integrated numerically to
generate the periodic orbits. These orbits describe themotion of test particles out of equatorial
plane, but this approach does not take into account the spinning test particles. So far, there
is not a work that connects successfully the equations of motion given by Carter and spin of
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the test particle. Within Carter’s equations, one finds in the literature a number of works, but
none considers the spinning test particle out of the equatorial plane [28].

4 Numerical Integration of the Equations of Motion

In this section of this paper, we study the MPD Equation not so much with the Christoffel
symbols, but with the RRC, which describe the trajectories of spinning test particles around
rotating massive bodies. Now, we shall compare numerically the trajectories of the test
particles, both the spinless and spinning. For this comparison, first we need to compare the
trajectories of the spinless test particles given by the Carter’s equations with the trajectories
given by MPD equations. In this case, we take as parameters: radius constant r = 10,
E = 0.9525, a = 1, Q = 4.224806, L = 2.810974, maximum latitude = 53.92928◦ and
magnitude of spin equal to zero.We replace these values in the Equations of Carter (26) - (29)
and find the initial values of the four velocities: dt0/dτ = 1.00748, dθ0/dτ = 2.854×10−3,
and dϕ0/dτ = 8.255 × 10−1. Then, these initial values of the four velocities are replaced
in the set of MPD equations for spinless test particles (15), (17) and (18). We plot in 3D the
trajectory for a spinless test particle in Mathematica (Fig. 1). Finally, we compare the data
table of the Cartesian coordinates both the Carter’s equations and MPD equations, and find
that the difference of values is in the order of 10−7.

Fig. 1 Trajectory for a spinless test particle (blue color). The values of the parameters are: r = 10, M = 1,
E = 0.9525, a = 1, Q = 4.224806, L = 2.810974
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Next step, we compare the trajectory of a spinless test particle (15), (17), (18), with the
trajectory of a spinning test particle (24), (25) in non-equatorial planes via MPD equations.
The components of the four vector of spin are: s0 = st = 4.2×10−4, s1 = sr = 1.23×10−5,
s2 = sθ = 9.9×10−5, s3 = sφ = 1.99×10−4.We replace the values of the RRC and the non
vanishing components of the curvature tensor given by Mino [23]. Then, we plot in 3D the
trajectories both for a spinless test particle and a spinning test particle inMathematica (Fig. 2).
And finally, we compare the data table of the cartesian coordinates both for a spinless test
particle and a spinning test particle, andfind that the difference of values is in the order of 10−4.
This small difference in the trajectories is given by the effect of spin in a test particle [29].

We make another numerical comparison of our results given by the MPD equations in
regard to the trajectories of spinless and spinning test particles. In this case, we take the
same initial values for the four velocities given above which were obtained by the Carter’s
equations (26) - (29), and replace these initial values in the MPD equations (24), (25). Then,
we take two Boyer Lindquist coordinates (θ , ϕ) and obtain a graph for each coordinate in
regard to the proper time (τ ) which show the difference in the trajectories between the spinless
and spinning test particles. The first one is the figure of the polar angle versus proper time
(θ vs τ ) (Fig. 3). In this graph, we find the period of the spinning test particle is longer than
the period of the spinless test particle. Moreover, in each orbit, the difference between the

Fig. 2 Trajectories for spinless (blue color) and spinning test particles (red color). The values of the parameters
are: r = 10,M = 1, E = 0.9525, a = 1, Q = 4.224806, L = 2.810974, s0 = 4.2×10−4, s1 = 1.23×10−5,
s2 = 9.9 × 10−5, s3 = 1.99 × 10−4
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2.2

Fig. 3 Graph of polar angle (θ ) vs proper time (τ ) for spinless (blue color) and spinning test particles (red
color). The initial conditions are: θ0 = 0.9412, dθ0/dτ = 0.03253, L = 2.810974, s0 = 4.2 × 10−4,
s1 = 1.23 × 10−5, s2 = 9.9 × 10−5, s3 = 1.99 × 10−4

trajectories of each test particle increases, that is, it is an accumulative process. This is due
to the contribution of the value of spin in the trajectory. The test particle starts in the polar
initial angle (θ0 = 53.92928◦) and reaches the maximum value in the opposite side of the
equatorial plane (θop = 143.2928◦). One can see in this graph that both the spinless and
spinning test particles reach the same maximum and minimum of latitude, but with a time
difference for the two paths. This is due to the precession of the spinning test particle.

As we wrote above, the difference in values between particles without spin and those with
spin is the order of 10−4. This difference is significant when we compare it with the error
of the numerical method, which is the order of 10−8. In the other words, the fact that the
particle has spin brings as a consequence that it separates from the trajectory of the geodesic.
This graph (Fig. 3), which is in natural units, shows the difference for each period and the
increase in the difference when it advances in proper time.

The second figure shows the relation between the azimuthal angle and the proper time
(Fig. 4). We find the slope of the graph for the spinning test particle is winding with relation
to the graph of the spinless particle. This phenomenon is another effect of the spin of the

10 20 30 40

5

10

15

20

25

30

Fig. 4 Graph of azimuthal angle (ϕ) vs proper time (τ ) for spinless (blue color) and spinning test particles
(red color). The initial conditions are: ϕ0 = 0, dϕ0/dτ = 0.08255, L = 2.810974, s0 = 4.2 × 10−4,
s1 = 1.23 × 10−5, s2 = 9.9 × 10−5, s3 = 1.99 × 10−4
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particle [30] and like the previous graph this winding is due to the nutation of the spinning
particle. The MPD equations described with the help of the RRC allow characterizing these
phenomena.

5 Conclusions

We found that the equations of motion for spinning test particles in the MPD equations (7)
- (9) describe the relation between the spin of the particle and the angular momentum of the
central mass. For this case, we take the variation of spin vector in the time and the first term
includes as much from the density of angular momentum (a) as from the spin of the test
particle (S). For the case of spin - orbit perturbation, the equations yield the relation between
the spin of the particle given by the magnitude of spin (S) and the orbit given to both the
curvature tensor (Rα

βγλ) and the velocity of center of mass (vμ).
For circular orbits close to equatorial plane, the difference of trajectories between spinless

test particles and spininng test particles is very small; but when the particles have spin the
difference in the time is bigger than when the particles does not have it.

The majority of works that include the Christoffel symbols in the MPD equations give a
description of the coupling between spin and field while in this paper, since we include the
RRC in theMPD equations, we study not only this coupling, but also the rotation of the frame
that travels with the test particle. Both the Christoffel symbols and Ricci coefficients are two
mathematical tools that describe the geometry of curved spacetime and study of trajectories
of spinning test particles in the presence of matter and energy.

Additionally the results obtained in this paper may be important guidelines when studying
accretion disks around rotating massive bodies. Since the particles around the central mass
orbit above the equatorial plane, it is possible to study in general what happens inside of this
accretion disk.

Appendix A: The Ricci Rotation Coefficients of the Kerr Spacetime

The non vanishing components are

ω01
0 = ω00

0 = ω1, ω1 := 1

�
3/2�

1
2

(
ra2 sin2 θ − Mr2 + Ma2 cos2 θ

)
, (A1)

ω31
0 = ω30

1 = ω13
0 = ω10

3 = ω03
1 = −ω01

3 = ω2, ω2 := ar sin θ

�
3/2

, (A2)

ω22
1 = −ω21

2 = ω33
1 = −ω31

3 = ω3, ω3 := r�
1
2

�
3/2

, (A3)

ω02
0 = ω00

2 = ω12
1 = −ω11

2 = ω4, ω4 := a2 cos θ sin θ

�
3/2

(A4)

ω32
0 = ω30

2 = −ω23
0 = −ω20

3 = ω03
2 = −ω02

3 = ω5, ω5 := a cos θ�
1
2

�
3/2

(A5)

ω33
2 = −ω32

3 = ω6, ω6 :=
(
r2 + a2

)
cos θ

�
3/2 sin θ

. (A6)
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Here we follow the notation ω1 − ω6 [11] and group the components of same value
with a simple index ωi (i = 1 − 6). Where: a is the angular momentum of the source, � :=
r2 + a2 cos2 θ and � := r2 + a2 − 2Mr .
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