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Abstract
Recently it is shown that the non-relativistic quantum formulations can be derived from an
extended least action principle Yang (2023). In this paper, we apply the principle to massive
scalar fields, and derive the Schrödinger equation of the wave functional for the scalar fields.
The principle extends the least action principle in classical field theory by factoring in two
assumptions. First, the Planck constant defines the minimal amount of action a field needs
to exhibit in order to be observable. Second, there are constant random field fluctuations. A
novelmethod is introduced to define the informationmetrics tomeasure additional observable
information due to the field fluctuations, which is then converted to the additional action
through the first assumption. Applying the variation principle to minimize the total actions
allows us to elegantly derive the transition probability of field fluctuations, the uncertainty
relation, and the Schrödinger equation of the wave functional. Furthermore, by defining the
information metrics for field fluctuations using general definitions of relative entropy, we
obtain a generalized Schrödinger equation of the wave functional that depends on the order
of relative entropy. Our results demonstrate that the extended least action principle can be
applied to derive both non-relativistic quantum mechanics and relativistic quantum scalar
field theory. We expect it can be further used to obtain quantum theory for non-scalar fields.

Keywords Massive scalar field Schrödinger equation of wave functional Relative
entropy Planck constant Least action principle

1 Introduction

Advancements of quantum information and quantum computing [1, 2] in recent decades have
inspired active researches for new foundational principles for quantum mechanics from the
information perspective [3–35]. Reformulating quantum mechanics based on information
principles can bring in new conceptual insights to the unresolved challenges in the current
quantum theory. For instance, is probability amplitude, or wavefunction, just a mathematical
tool or associated with ontic physical property? Does quantum entanglement imply non-local
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causal connection among entangled objects?With this motivation, recently an extended least
action principle is proposed to derive the formalism of non-relativistic quantum mechanics
[36]. The principle can be understood as extending the least action principle in classical
mechanics by minimizing proper information measures. This is achieved by factoring two
assumptions. First, there is a lower limit to the amount of action a physical system needs to
exhibit in order to be observable. Such a discrete action unit is defined by the Planck constant.
It serves as a basic unit to measure the observable information from the action a physical
system exhibits during its motion. Second, there is vacuum fluctuation that is completely
random. New information metrics are introduced to measure the additional distinguishabil-
ity, or observable information, due to these random fluctuations, which is then converted to
additional amount of action due to the vacuum fluctuations using the first assumption. Apply-
ing the variational principle to minimize the total actions allows us to elegantly recover the
basic formulations of non-relativistic quantum mechanics. In addition, a family of general-
ized Schrödinger equation for the wave functional is obtained by defining the information
metrics for vacuum fluctuations using generic relative entropy definitions.

The goal of this paper is to apply the same principle to relativistic quantum field theory.
Specifically, we will apply the extended least action principle to derive the quantum field
theory of massive scalar fields. Impressively, we find that the only adjustment needed to the
extended least action principle is to replace the assumption of random vacuum fluctuations
in the non-relativistic setting to random field fluctuations in the relativistic settings. By
recursively applying the extended least action principle, we are able to derive the transition
probability density of the field fluctuations, the uncertainty relation, andmost importantly, the
Schrödinger equation of the wave functional for the scalar fields. The Schrödinger equation
of the wave functional is the fundamental equation for the quantum scalar field theory in the
Schrödinger picture, and it is typically introduced as a postulate. Here we derive it from a
first principle. Similarly to the non-relativistic quantum formalism, by relaxing the definition
of the information metrics using generic relative entropy, we obtain a family of generalized
Schrödinger equations. The application of such generalized Schrödinger equations needs
further investigation, but the result shows the flexibility of the mathematical framework.

The Schrödinger picture offers several advantages compared to the standard Fock space
description of scalar fields [37]. In particular, the Schrödinger wave functional gives an
intrinsic description of the vacuumwithout reference to the spectrum of excited states, which
is an inherent problem in the Fock space of state in curved spacetime [37]. It is also argued that
the Schrödinger picture in field theory is themost natural representation from the viewpoint of
canonical quantumgravitywhere the spacetime is usually decomposed into a spatialmanifold
evolving in time [39]. The Schrödinger formulations in both non-relativistic quantum theory
and relativistic quantum field theory allows us to understand the difference and similarity
between the two theories. It may provide hints on applying certain concepts from one theory
to the other. For instance, calculating information metrics such as the entanglement entropy
of a quantum field is challenged [40]. In non-relativistic quantummechanics, such a quantity
for entangled systems is typically calculated with the help of the wave function. With the
availability of the Schrödinger wave functional, one may find a similar method to calculate
the entangled entropy for a scalar field.

Extending the least action principle in classical mechanics to derive quantum theories not
only shows clearly how classical mechanics becomes quantum mechanics, but also offers a
powerful mathematical framework. As shown in this paper, the principle and mathematical
framework allow us to derive the Schrödinger equation for the wave functional of the scalar
field in a way very similar to that in the non-relativistic settings. Although the derivation
is currently carried in the Minkowski spacetime, it should not be difficult to extend the
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derivation in a curved spacetime. The extended least action principle also provides interesting
implications on the interpretation of quantum theory, which will be discussed in a separate
report.

The rest of the article is organized as follows. First, we briefly overview the least action
principle for the classical scalar field, since it is the starting point of the quantum formulation.
Second, we review the underlying assumptions for the extended least action principle and
what should be adjusted to apply the principle in the case of scalar fields. In Section 4 we
apply the principle recursively to analyze the dynamics of field fluctuations, then derive the
uncertainty relation and the Schrödinger equation for the wave functional. The Schrödinger
equation is generalized in Section 5. We then conclude the article after comprehensive dis-
cussions and comparisons to previous relevant research works.

2 Classical Theory for Massive Scalar Fields

This section briefly reviews the classical theory of scalar fields, the canonical transformation,
and the Hamilton-Jacobi equation. Consider a massive scalar field configuration . Here we
denote the coordinates for a four dimensional spacetime point x either by x x 0 x i

where i 1 2 3 , or by x t x where x is a spatial point. The field component at a
spacetime point x is denoted as x x . The Lagrangian density for the a massive scalar
field is given by

1

2
x 2 1

2
m2 x 2

1

2
x 2 1

2
x 2 m2 x 2 (1)

where 0 1 2 3 and the convention of Einstein summation is assumed. The first term
1
2 x 2 resembles the kinetic energy density in Newtonian mechanics, while the second
term is the potential energy density and denoted as V x . The correspondent action
functional is

A d4x (2)

The momentum conjugate to the field is defined by

x
0

0 x x (3)

Applying the least action principle to minimize the action functional S, one obtains the
Euler-Lagrange equation

m2 2 0 (4)

which is the Klein-Gordon equation for the massive scalar field.
Variables form a pair of canonical variables, and the corresponding Hamiltonian

is constructed by a Legendre transform of the Lagrangian [37]

H d3x x x

d3x
1

2
x 2 V (5)

Nextwewant to apply the canonical transformation technique in field theory. To do this,we
will need to choose a foliation of the spacetime into a succession of spacetime hypersurfaces.
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Here we only consider the Minkowksi spacetime and it is natural to choose these to be the
hypersurfaces t of fixed t . The field configuration for t can be understood as a vector
with infinitely many components for each spatial point on the Cauchy hypersurface t at
time instance t and denoted as t x t x . For simplicity of notation, we will still denote

t x x for the rest of this paper, but the meaning of x should be understood as
the field component x at each spatial point of the hypersurfaces t at time instance t . In
Appendix A, we show that by an extended canonical transformation, the action functional of
the field can be written as

Ac dt
S

t
H (6)

where S t is a generation functional that satisfies the identity x S x . A special
solution to the least action principle for the above action functional is S t H 0.
Substituting H from (5), we have

S

t
d3x

1

2
x 2 V x 0 (7)

Since x x S x , the above equation can be rewritten as

S

t
d3x

1

2

S

x
2 V x 0 (8)

This is theHamilton-Jacobi equation for the scalar field that governs the evolution of the func-
tional S between the spacelike hypersurfaces. It is equivalent to the Klein-Gordon equation
(4).

As also shown inAppendixA, suppose the scalar field configuration follows a probability
distribution, with probability density t for the hypersurface t , the average value of
the action functional is,

Sc dt
S

t
d3x

1

2

S

x
2 V x (9)

Note that Sc and S are different functional, where Sc can be considered as the ensemble aver-
age of classical action functional and S is a generation functional introduced in an extended
canonical transformation that satisfied x S x . Now we consider the generalized
canonical pair as S , and apply the least action principle on the action functional defined
in (9). Variation of Sc over leads to (8), and variation of Sc over S gives

t x

S

x
d3x 0 (10)

which is the continuity equation for the probability density. Both (8) and (10) determine the
dynamics of the classical scalar field ensemble, and they are obtained by applying the least
action principle based on the action functional Sc defined in (9).

3 The Extended Least Action Principle

Ref. [36] shows that the least action principle in classical mechanics can be extended to
derive quantum formulation by factoring in the following two assumptions.

Assumption 1 – A quantum system experiences vacuum fluctuations constantly. The
fluctuations are local and completely random.
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Assumption 2 – There is a lower limit to the amount of action that a physical system
needs to exhibit in order to be observable. This basic discrete unit of action effort is
given by 2 where is the Planck constant.

The first assumption is generally accepted in mainstream quantum mechanics, which is
responsible for the intrinsic randomness of the dynamics of a quantum object. Locality of
vacuum fluctuation is assumed, and it implies that for a composite system, the fluctuation of
each subsystem is independent of each other.

The justifications of the second assumption is explained in detail in Section II of Ref. [36].
Historically the Planck constant was first introduced to show that the energy of radiation from
a black body is discrete. One can consider the discrete energy unit as the smallest unit to
be distinguished, or detected, in the black body radiation phenomenon. In general, it is
understood that Planck constant is associated with the discreteness of certain observable in
quantummechanics. Here, we just interpret the Planck constant from an informationmeasure
point of view. Essentially, what we assume is that there is a lower limit to the amount of
action that the physical system needs to exhibit in order to be observable or distinguishable
in potential observation, and such a unit of action is defined by the Planck constant.

Making use of this understanding of the Planck constant inversely provides us a new
way to calculate the additional action due to vacuum fluctuations. That is, even though we
do not know the physical details of vacuum fluctuations, the vacuum fluctuations manifest
themselves via a discrete action unit determined by the Planck constant as an observable
information unit. If we are able to define an information metric that quantifies the amount of
observable information manifested by vacuum fluctuations, we can then multiply the metric
with the Planck constant to obtain the action associated with vacuum fluctuations. Then,
the challenge to calculate the additional action due to vacuum fluctuation is converted to
define a proper new information metric I f , which measures the additional distinguishable,
hence observable, information exhibited due to vacuum fluctuations. Even though we do not
know the physical details of vacuum fluctuations (except that as Assumption 1 states, these
vacuum fluctuations are completely random and local), the problem becomes less challenged
since there are information-theoretic tools available. The first step is to assign a transition
probability distribution due to vacuum fluctuation for an infinitesimal time step at each
position along the classical trajectory. The distinguishability of vacuum fluctuation then can
be defined as the information distance between the transition probability distribution and a
uniform probability distribution. Uniform probability distribution is chosen here as reference
to reflect the complete randomness of vacuumfluctuations. In information theory, the common
informationmetric tomeasure the information distance between two probability distributions
is relative entropy. Relative entropy is more fundamental to Shannon entropy since the latter
is just a special case of relative entropy when the reference probability distribution is a
uniform distribution. But there is a more important reason to use relative entropy. As shown
in later sections, when we consider the dynamics of the system for an accumulated time
period, we assume the initial position is unknown but is given by a probability distribution.
This probability distribution can be defined along the position of classical trajectory without
vacuum fluctuations, or with vacuum fluctuations. The information distance between the two
probability distributions gives the additional distinguishability due to vacuum fluctuations.
It is again measured by a relative entropy. Thus, relative entropy is a powerful tool allowing
us to extract meaningful information about the dynamic effects of vacuum fluctuations.
Concrete form of I f will be defined later as a functional ofKullback-Leibler divergence DK L ,
I f f DK L , where DK L measures the information distances of different probability
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distributions caused by vacuum fluctuations. Thus, the total action from classical path and
vacuum fluctuation is

St Sc
2

I f (11)

where Sc is the classical action. Non-relativistic quantum theory can be derived through a
variation approach to minimize such a functional quantity [36], St 0. When 0,
St Sc. Minimizing St is then equivalent to minimizing Sc, resulting in Newton’s laws in
classical mechanics. However, in quantum mechanics, 0, the contribution from I f must
be included when minimizing the total action. We can see I f is where the quantum behavior
of a system comes from. These ideas can be condensed as

Extended Principle of Least Action – The law of physical dynamics for a quantum
system tends to exhibit as little as possible the action functional defined in (11).

Now we want to apply this principle to the scalar field and derive the quantum scalar field
theory. Assumption 1 needs to be slightly modified, since in the field theory, one does not
deal with a physical object. Instead, we are dealing with the field configuration. Assumption
1 is restated as

Assumption 1a – There are constant fluctuations in the field configurations. The fluc-
tuations are completely random, and local.

It is not our intention here to investigate the origin, or establish a physical model, of such field
fluctuations. Instead, we make a minimal number of assumptions on the underlying physical
model, only enough so that we can apply the variation principle based on minimizing the
total action.

Assumption 2 is unchanged for quantum field theory. The action of the classical scalar
field Sc is given by (2), or (9). Similarly, the metrics to measure the additional distinguishable
information exhibited due to field fluctuations, is defined as a functional of Kullback-Leibler
divergence DK L , I f f DK L , where DK L measures the information distances of differ-
ent probability distributions caused by field fluctuations. Thus, the total action due to both
classical field dynamics and field fluctuation is given by the same equation as (11). Quantum
field theory can be derived through a variationmethod tominimize such a functional quantity,

St 0.
Alternatively, we can interpret the extended least action principle more from an informa-

tion perspective by rewriting (11) as

It
2

Sc I f (12)

where It 2St . Denote Ip 2Sc , which measures the amount of Sc using the discrete
unit 2. Ip is not a conventional information metric but can be considered carrying mean-
ingful physical information about the observability of the classical field. More discussion on
the meaning of observability is provided later in Section 6. Similarly, I f measures the dis-
tinguishable information of the probability distributions with and without field fluctuations.
Thus, It is the total observable information. With (12), the extended least action principle
can be restated as1

1 The term observability is not related to the concept of observable in traditional quantum physics since it is
not associated with a Hermitian operator. Also, one should not confuse the term with the same terminology
in system control theory.
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Principle of Least Observability – The law of physical dynamics for a quantum field
tends to exhibit as little as possible the observable information defined in (12).

Mathematically, there is no difference between (11) and (12) when applying the variation
principle to derive the laws of field dynamics. The form of (11) in terms of actions appears
more familiar in the physics community. However, The form of (12) in terms of observability
seems conceptuallymore generic.Wewill leave the exact interpretations of the principle alone
and use the two interpretations interchangeable in this paper. The key point to remember is that
the Planck constant connects the physical action to metrics related to observable information
in either interpretation.

Next we will show that by applying the variational principle to minimize the action func-
tional defined in (11), we can obtain the uncertainty relation and the Schrödinger equation
of the wave functional for the scalar field, which are the basic formulation of the quantum
scalar field.

4 Quantum Theory for Massive Scalar Fields

4.1 Field Fluctuations and Uncertainity Relation

First we consider the field fluctuations in an equal times hyper-surfaces for an infinitesimal
time internal t . At a given time t t t in the hyper-surface t , the field configuration
fluctuates randomly, , where is the change of field configuration due
to random fluctuations. Define the probability for the field configuration to transition from
to as p . The expectation value of classical action over all possible field
fluctuations is Sc p d3x dt where is given by (1) for a scalar field. For
an infinitesimal time internal t , one can approximate t t . The classical
action for the infinitesimal time internal t is approximately given by

Sc p
t

x 2

2 t
V x t d3x (13)

The informationmetrics I f is supposed to capture the additional revelation of information due
to field fluctuations in the hypersurface t . Thus, it is naturally defined as a relative entropy,
or more specifically, the Kullback-Leibler divergence, to measure the information distance
between p and some prior probability distribution. Since the field fluctuations are
completely random, it is intuitive to assume the prior distributionwithmaximal ignorance [33,
45]. That is, the prior probability distribution is a uniform distribution .

I f DK L p

p ln p

Combined with (13), the total action functional defined in (11) is

St p
x 2

2 t
V x t d3x

2
p ln p
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Taking the variation St 0 with respect to p gives

St
2

x 2

t

2V t
d3x ln

p
1 p 0 (14)

Since p is arbitrary, one must have

x 2 2V t 2 d3x t ln
p

1 0

When t is infinitesimally small, we can ignore the higher order term with t 2, and obtain
the solution for p as

p e
1

t x 2d3x 1

1

Z
e

1
t x 2d3x (15)

where Z is a normalization factor that absorbs factor e 1. (15) shows that the transition
probability density is a Gaussian-like distribution. It is independent of and can be simply
denoted as p . Clearly, the expectation value of x is

x p x 0 (16)

We also want to evaluate the expectation value field fluctuations at two spatial points in
hypersurface t , x t x and x t x ,

x x p x x (17)

In Appendix B, we verify that

x x
t

2
x x (18)

Recall that , and t t . Since 0, one has
t 0 as well. Thus, t , we re-arrange (18) as

x x
2

x x (19)

Applying the Cauchy-Schwarz inequality we get

x x x x
2

x x (20)

But comparing with the -function in the right hand side of (20) appears inappropriate.
Instead, we introduce a pair of positive spatial test functions f x g x 3 , and
define

f g p
t

x f x x g x dxdx (21)

Repeating the similar calculations from (18) to (20), we can obtain

f g
2

f g (22)

where f g
t

f x g x dx. This is the uncertainty relation between the field variable
and its conjugate momentum variable for the scalar fields.
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4.2 Derivation of The Schrödinger Equation for theWave Functional

We now turn to the field dynamics for a period of time from tA tB . As described earlier,
the spacetime during the time duration tA tB is sliced into a succession of N Cauchy
hypersurfaces ti , where ti t0 tA ti tN 1 tB , and each time step is an
infinitesimal period t . The field configuration for each ti is denoted as ti , which has
infinite number of components, labeled as x ti x ti , for each spatial point in ti .
Without considering the random field fluctuation, the dynamics of the field configuration is
governed by the Hamilton-Jacobi equation (8). Furthermore, we consider an ensemble of
field configurations for hypersurface ti that follow a probability density2 ti ti
which follows the continuity equation (10). As shown in Section 2, both the Hamilton-Jacobi
equation and the continuity equation can be derived through variation over the classical action
functional Sc, as defined in (9), with respect to and S, respectively.

To apply the extended least action principle, first we compute the action from the dynamics
of the classical field ensemble as defined in (9). Next we need to define the information
metrics for the field fluctuations, I f . For each new field configuration due to the field
fluctuations, there is a new probability density ti . We need a proper metrics to
measure the additional revelation of observable information due to the field fluctuations on
top of the classical field dynamics. The proper measure of this distinction is the information
distance between ti and ti . A natural choice of such informationmeasure is the
relative entropy DK L ti ti .Moreover, we need to consider the contributions
for all possible . Thus, we take the expectation value of DK L over , denoted as . Then
the contribution of distinguishable information due to field fluctuations for hypersurce ti is
DK L ti ti . Finally, we sum up the contributions from all hypersurfaces,
lead to the definition of information metrics

I f

N 1

i 0

DK L ti ti (23)

N 1

i 0

p ti ln
ti

ti
(24)

Notice that p is a Gaussian-like distribution given in (15). When t is small, only small
fluctuations will contribute to I f . As shown in Appendix C, when t 0, I f turns out
to be

I f
4

1

t

t

x
2d3x dt (25)

Equation (25) is analogous to the Fisher information for the probability density [36, 44] in
non-relativistic quantum mechanics. Some literature directly adds such Fisher information
term in the variation method as a postulate to derive the Schrödinger equation [41, 43]. But
(25) bears much more physical significance than Fisher information. First, it shows that I f

is proportional to . This is not trivial because it avoids introducing additional arbitrary con-
stants for the subsequent derivation of the Schrödinger equation. More importantly, defining
I f using relative entropy opens up new results that cannot be obtained if I f is defined using
Fisher information, because there are other generic forms of relative entropy such as Rényi
divergence or Tsallis divergence. As will be seen later, by replacing the Kullback-Leibler

2 The notation ti is legitimate since in this case describes the field configuration for the equal time
hypersurface ti .
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divergence with Rényi divergence, one will obtain a family of generalized Schrödinger equa-
tions.

Together with (9), (25), and (11), the total action functional is

St
S

t

1

2

S

x
2 V x

2

8

1

x
2 d3x dt (26)

Variation of St with respect to S gives the same continuity (10), while variation with respect
to leads to (see Appendix C)

S

t

1

2

S

x
2 V x

2

2R

2R
2 x

d3x (27)

where R t t . The last term in theR.H.S. of (27) is the scalar field equivalence of
the Bohm quantum potential [49]. In non-relativistic quantummechanics, the Bohm potential
is considered responsible for the non-locality phenomenon in quantum mechanics [50]. Its
origin is mysterious. Here we show that it originates from the information metrics related to
relative entropy, I f .

Defined a complex functional t R t ei S t , the continuity equation and the
extended Hamilton-Jacobi equation (27) can be combined into a single functional derivative
equation (see Appendix C),

i
t

t

2

2

2

2 x
V x d3x t (28)

This is the Schrödinger equation for the wave functional t with Hamiltonian operator

2

2

2

2 x
V x (29)

It governs the evolution of wave functional t between hypersurfaces t . The potential
density in (28), for the massive scalar field, is given in (1) as V x 1

2 x 2

m2 x 2 . But it can be generalized to be

V x
1

2
x 2 m2

2
x 2 x 3 x 4 (30)

where the coefficients , , represent mass and other coupling constants. Once the
Schrödinger equation for the wave functional t is obtained, other standard results
follow, such as the solutions for the wave functional and the energy of the ground state and
excited state [37].

In summary, by recursively applying the same extended least action principle in two
steps, we recover the uncertainty relation and the Schrödinger representations of the standard
relativistic quantum theory of scalar field [37, 38]. In the first step, we analyze the dynamics
of field fluctuations in a hypersurface t for a short period of time interval t , and obtain
the transitional probability density due to field fluctuations; In the second step, we apply the
principle for a cumulative time period to obtain the dynamics laws that govern the evolutions
of and S between the hypersurfaces. The applicability of the same principle in both steps
shows the consistency and simplicity of the theory, although the forms of Lagrangian density
are different in each step. In the first step, the Lagrangian density is given by (1), while
in the second step, we use a different form of Lagrangian density S t H . As
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shown in Appendix A, and are related through an extended canonical transformation.
The choice of Lagrangian or does not affect the variation outcome, that is, the form of
Legendre’s equations. We choose as the Lagrangian density in the second step in order to
use the pair of functional S in the subsequent variation procedure.

It is important to point out that the derivation of (28) depends on a particular foliation of
the Minkowski spacetime. Therefore, the theoretical framework presented here treats time
parameter differently and it is not obvious if the theory is Lorentz invariance. The issue is
extensively studied in [42, 43], and the answer is that the theory is still fully relativistic.
This is because using the resulting Hamiltonian operator given by (29) and (30), one can
identify the generators for translation and rotation operations for both time-like and spatial-
like directions, and these generators satisfy the Poincaré algebra[43]. Although the theory
singles out a particular time parameter for use through the foliation of spacetime, the Poincaré
algebra guarantees that the resulting dynamical evolution is fully relativistic. This is because
satisfying this algebra guarantees that one can construct a Poincaré covariant stress-energy
tensor for the dynamical variables3.

5 The Generalized Schrödinger Equation for theWave Functional

As mentioned earlier, by relaxing the definition of the information metrics I f , one can
generalize the Schrödinger equation for the wave functional. The term I f is supposed to
capture the additional distinguishability exhibited by the field fluctuations, and is defined
in (23) as the summation of the expectation values of Kullback-Leibler divergence between

t and t . However, there are more generic definitions of relative entropy, such
as the Rényi divergence [51, 53]. From an information theoretic point of view, it is legitimate
to consider alternative definitions of relative entropy. Suppose we define I f based on Rényi
divergence,

I f

N 1

i 0

DR ti ti (31)

N 1

i 0

p
1

1
ln

ti
1 ti

(32)

Parameter 0 1 1 is called the order of Rényi divergence. When 1, I f
converges to I f as defined in (23). In Appendix D, we show that using I f and following the
same variation principle, we arrive at a similar extended Hamilton-Jacobi equation as (27),

S

t

1

2

S

x
2 V x

2

2R

2R
2 x

d3x (33)

with an additional coefficient appearing in the Bohm quantum potential term. Defined a
complex functional t R t ei S t , the continuity equation and the extended

3 Note that even though the way we derive the Schrödinger equation for the wave functional is different
from that in [42, 43], once both theories agree on the Schrödinger equation and the Hamiltonian operator, the
procedure to identify the generators that satisfy Poincare algebra is the same. Thus, the discussions in [42, 43]
regarding the compliance to relativistic theory is applicable here.
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Hamilton-Jacobi equation (33) can be combined into an equation similar to the Schrödinger
equation (see Appendix D),

i
t

t

2

2

2

2 x
V x d3x t (34)

When 1, the regular Schrödinger equation of wave functional (28) is recovered, as
expected. Equation (34) gives a family of linear equations for each order of Rényi divergence.

As observed in Appendix D, if we define , then t R t ei S t ,
and (34) becomes the same form of the regular Schrödinger equation (28) but with replace-
ment of to . It is as if there is an intrinsic relation between the order of Rényi divergence
and the Plank constant . This remains to be investigated further. On the other hand, if

the wavefunction is defined as usual without the factor , t R t ei S t , it
will result in a nonlinear Schrödinger equation for the wave functional. This implies that the
linearity of Schrödinger equation depends on how the wave functional is defined from the
pair of real functional S .

We also want to point out that I f can be defined using Tsallis divergence [52, 54] as well,
instead of using the Rényi divergence,

I f

N 1

i 0

DT ti ti

N 1

i 0

p
1

1

ti
1 ti

1 (35)

When t 0, it can be shown that the I f defined above converges into the same form as
(D4). Hence it results in the same generalized Schrödinger (34).

6 Discussion and Conclusions

6.1 Alternative Formulation of the Extended Least Action Principle

Wemention in Section 3 that the extended least action principle can be restated as the principle
of least observability by interpreting Ip 2Sc as the observable information of the classical
field. Ip is not a conventional information metric but can be considered carrying meaningful
physical information. To see this connection, recall that the classical action is defined as an
integral of the Lagrangian over the spaceetime. There are two aspects to understanding the
action functional. A larger value of action indicates 1.) the more dynamic effort the system
exhibits; and 2.) the easier to detect physical variables in the field, or in other words, the more
physical information available for potential observation. Thus, action Sc not only quantifies
the dynamic effort of the field, but also is associated with the detectability, or observability,
of the field during dynamics. In classical mechanics, we focus on the first aspect via the
least action principle, and derive the law of dynamics from minimizing the action effort. The
second aspect is not useful since we cannot quantify the intuition that S is associated with
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the observability of the physical object. One reason is that there is no natural unit of action
to convert S into an information related metric. The introduction of the Planck constant in
Assumption 2 helps to quantify this intuition.

Alternatively, we can interpret the least observability principle based on (12) as mini-
mizing I f with the constraint of Sc being a constant, and 2 simply being a Lagrangian
multiplier for such a constraint. Again, mathematically, it is an equivalent formulation. In
that case, Assumption 2 is not needed. Instead it will be replaced by the assumption that
the classical action functional Sc is a constant with respect to variations on and S. But
such an assumption needs sound justification. Which assumption to use depends on which
choice is more physically intuitive. We believe that the least observability principle based
on Assumption 2, where the Planck constant defines the discrete unit of action effort to
exhibit observable information, gives more intuitive physical meaning of the mathematical
formulation and without the need of a physical model for the field fluctuations.

6.2 Comparisons with Relevant ResearchWorks

The Schrödinger equation for the wave functional of scalar fields is typically introduced as a
postulate [37, 38] instead of derived from a first principle. An impressive attempts to derive
it from the entropic dynamics approach can be found in Ref. [41, 43]. The entropic dynamic
approach bears some similarity with the theory presented in this work. For instance, the
formulations are carried out with two steps, an infinitesimal time step and a cumulative time
period. It also aims to derive the physical dynamics by extremizing information quantity
such as the relative entropy. However, the entropic dynamics approach relies on another
postulate on energy conservation to complete the derivation of the Schrödinger equation.
The theory presented in this paper, on the other hand, has the advantage of simplicity since it
recursively applies the same least observability principle in both infinitesimal time step and
cumulative time period. The entropic dynamics approach also requires several seemingly
arbitrary constants in their formulations, while we only need the Planck constant and its
meaning is clearly given in Assumption 2. We clearly show that the Bohm potential term in
(27) is originated from the information metrics of field fluctuations I f , while [41–43] justify
it from information geometry perspective. The advantages of our approach have two fold.
First, it is far more conceptually clear to define I f as expectation value of relative entropy
between different probability distribution due to field fluctuations. There is clear physical
meaning associated with I f . Second, we show that by using the general definition of relative
entropy for I f we obtain the generalized Schrödinger equation, which is unclear using the
information geometry justification. Despite the difference between the present works and the
entropic dynamics approach, it is encouraged to notice the common interests. In particular,
the results in [42, 43] can be useful if we want to extend the present works to the scalar fields
in curved spacetime.

The derivation of the Schrödinger equation in Section 4.2 starts from (9) which is inspired
from its non-relativistic version initially proposed by Hall and Reginatto [46, 47]. Ref. [36]
gives a rigorous justification to the non-relativistic version of (9) using canonical transforma-
tion method. In Appendix A, we extend the canonical transformation method to scalar fields
and prove (9). Hall and Reginatto [46, 47] only show the formulations in the non-relativistic
setting. Even in the non-relativistic formulations, Hall and Reginatto assume an so-called
exact uncertainty relation, while in our theory the exact uncertainty relation is derived from
the same least observability principle in a infinitesimal time step.
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6.3 Limitations and Future Researches

Assumption 1a makes minimal assumptions on the field fluctuations, but does not provide a
more concrete physical model for the field fluctuations. The underlying physics for the field
fluctuations is expected to be complex but crucial for a deeper understanding of quantum field
theory. It is beyond the scope of this paper. The intention here is to minimize the assumptions
that are needed to derive the Schrödinger equation for the wave functional, so that future
research can just focus on justifying these assumptions.

As shown in the appendix, the infinite dimension integration over the field variable x
is approximated as a N dimensional integral, then we take the limit N . This essen-
tially assumes a uniform Lebesgue measure. There is argument that probability integration
measure is needed to ensure consistency between Fock representation and Schödinger rep-
resentation [39]. More rigorous mathematical treatment of infinite dimension integration is
desirable. We also assume that the probability density and its first order of functional
derivative approach zerowhen . These assumptions are intuitive and give the correct
results, but it is valuable to seek for stronger justifications.

The formulations presented in this paper is based on the flat Minkowski spacetime. We
expect it is possible to extend the formulations to curved spacetimes and derive the Schödinger
equation for curved spacetime. Furthermore, it would be interesting to investigate whether
the least observability principle can be applied to non-scalar fields such as fermion matter
fields whose equation of motion is the Dirac equation.

6.4 Conclusions

The extended least action principle, or least observability principle,which is initially proposed
to derive the non-relativistic quantum theory [36], is applied here to the scalar field theory.We
successfully obtain the Schrödinger equation for the wave functional of the scalar field using
the mathematical framework based on the principle. The Schrödinger equation of the wave
functional is the fundamental equation for the quantum scalar field theory in the Schrödinger
picture, and it is typically introduced as a postulate. Here we derive it from a first principle.
The Schrödinger equation enables one to calculate other standard results for the scalar fields,
such as the solutions for the wave functional and the energy of the ground state and excited
states[37, 38].

The least observability principle illustrates how classical field theory becomes quantum
field theory from the information perspective. These are captured in the two assumptions
stated in Section 3. Assumption 2 points out that the Planck constant defines the discrete unit
of action that a field configuration needs to exhibit in its dynamics in order to be observable.
Classical field theory corresponds to a theory when such a lower limit of discrete action
effort is approximated as zero. Assumption 1a demands new metrics to measure the addi-
tional observable information exhibited from field fluctuations, which is then converted to
additional action using Assumption 2. These new information metrics are defined in terms
of relative entropy to measure the information distances of different probability distributions
caused by field fluctuations. To derive quantum theory, the extended least action principle
seeks to minimize the total action from both classical field dynamics and additional field
fluctuations. Nature appears to behave in a most economic fashion and exhibits as least
observable information as possible. Furthermore, defining the information metrics I f using
Rényi divergence in the extended least action principle leads to a generalized Schrödinger
equation (34) that depends on the order of Rényi divergence. At this point it is inconceivable
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that one will find physical scenarios for which the generalized Schrödinger equation for the
wave functional with 1 is applicable. However, the generalized Schrödinger equation
is legitimate from an information perspective. It confirms that the mathematical framework
based on the extended least action principle can produce new results.

The works in Ref. [36] and this paper show that the extended least action principle can
be applied to derive both non-relativistic quantum mechanics and relativistic quantum scalar
field theory, demonstrating the versatility of the frameworks based on the principle. Extending
the present work to scalar fields in curved spacetime is highly feasible. It is also reasonable
to speculate the principle can be applied to obtain the quantum theory for non-scalar fields
such as fermion matter fields, though it can be much more challenging since the structure of
Lagrangian density for non-scalar fields is complicated.

Lastly, the extended least action principle also brings in interesting implications on the
interpretation aspects of quantum mechanics, including new insights on quantum entangle-
ment, which will be reported separately.

Appendix A: Canonical Transformation for Classical Scalar Field

Suppose we choose a foliation of the Minkowksi spacetime into a succession of fixed t
spacetime hypersurfaces t . The field configuration for t can be understood as a vector
with infinitely many components for each spatial point on the Cauchy hypersurface t at
time instance t and, denoted as t x t x x . Here, the meaning of x should
be understood as the field component x at each spatial point of the hypersurfaces t at
time instance t . We want to transform from the pair of canonical variables into a
generalized canonical variables and preserve the form of canonical equations. Denote
the Lagrangian for both canonical coordinators as L

t
x x d3x H and

L
t

x x d3x K , respectively, where H is defined in (5) and K is the new
form of Hamiltonian with the generalized canonical variables. We will omit the subscript t

in the integral. To ensure the form of canonical equations is preserved from the least action
principle, one must have

tB

tA

dt L tB
tA

dt x x d3x H 0 (A1)

tB

tA

dt L tB
tA

dt x x d3x K 0 (A2)

One way to meet such conditions is that the Lagrangian in both integrals satisfy the following
relation

x x d3x K x x d3x H
dG

dt
(A3)

where G is a generation functional, and is a constant. When 1, the transformation is
called extended canonical transformations. Here we will choose 1. Re-arranging (A3),
we have

dG

dt
x x x x d3x K H (A4)

Choose a generation functionalG x x d3x S t , that is, a type 2 generation
functional analogous to the type 2 generation function in classical mechanics [36]. Its total
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time derivative is

dG

dt
x x x x d3x

S

t

S

x
x d3x

S

x
x d3x

(A5)
The last two terms in (A5) are obtained by applying the chain rule of functional derivative.
Comparing (A4) and (A5) results in

S

t
K H (A6)

x
S

x
(A7)

x
S

x
(A8)

From (A6), K S t H . Thus, L x x d3x S t H . We can
choose a generation functional S such that does not explicitly depend on t during motion.
For instance, supposed S t F f t , one has F x ,
so that 0 and L S t H . Then the action integral in the generalized
canonical coordinators becomes

Ac

tB

tA

dt L
tB

tA

dt
S

t
H (A9)

where H is given in (5). If one further imposes constraint on the generation functional
S such that the generalized Hamiltonian K 0, (A6) becomes the field theory version of
the Hamilton-Jacobi equation for the functional S, S t H 0. It is a special solution
for the least action principle based on Ac when the generalized canonical field variables are

.
Now consider that the field configuration is not definite but follows a probability dis-

tribution at any point of t . Alternatively, this can be understood as an ensemble of field
configurations with probability density . In this case, the Lagrangian density is L , and
the average value of the action integral for the ensemble of field configurations is,

Sc dt
S

t
H (A10)

If we change the generalized canonical pair as S , applying the least action principle based
on Sc by variation of Sc over , one obtains, again, the field theory version ofHamilton-Jacobi
equation for the functional S, S t H 0.

Appendix B: Proof of (18)

Given the transition probability density (15), we want to calculate the normalization factor Z .
There are an infinite number of spatial points in the hypersurface t . Rigorous mathematical
treatment of infinite dimension integrals is challenged. We take a practical approach here and
assume the fields are initially defined on a discrete lattice with N number of vertices. Then,
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we take the limit of lattice distance approaching zero and N . Equation (15) can be
approximated as

p
1

Z
e

N
i 1

2 xi x 1

Z

N

i 1

e
2 xi x (B1)

where x x 1 x 2 x 3 is an infinitesimal small spatial volume, and t 1.
By the normalization condition,

1 p
1

Z

N

i 1

e
2 xi x

N

j 1

d x j
1

Z

N

i 1

e
2 xi x d xi

1

Z

x N 2 (B2)

Therefore, we have Z x N 2. Next we evaluate x x . Labeling the two
spatial points x x j and x xk in the lattice. If j k,

x x p x j xk (B3)

1

Z

N

i j k

e
2 xi x d xi e

2 x j x x j d x j

e
2 xk x xk d xk (B4)

x 1 e
2 x j x x j d x j e

2 xk x xk d xk (B5)

But the two integrals are zero. Thus, x x 0. If j k, similar calculation gives

2 x
x

e
2 x j x 2 x j d x j

1

2 x

t

2

1

x
(B6)

Thus, we have

x x
0 for x x

t
2

1
x for x x

(B7)

It is equivalent to rewrite (B7) as x x t
2 x x since both expressions give

the same identity

x x d3x
t

2
(B8)

Appendix C: Derivation of the Schrödinger Equation

The key step in deriving the Schrödinger equation is to prove (25) from (23). To do this, one
first takes the functional derivative of around up to the second order. Here we
omit the time labeling for t .

x
x d3x

1

2

2

x x
x x d3xd3x (C1)
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The expansion is legitimate because (15) shows that the variance of fluctuation displacement
is proportional to t . As t 0, only very small is significant. Then

ln ln 1
1

x
x d3x

1

2

2

x x
x x d3xd3x (C2)

1

x
x d3x

1

2

2

x x
x x d3xd3x

1

2

1

x
x d3x 2 (C3)

Substitute the above expansion into (23),

DK L ti ti
x

x d3x
1

2

2

x x
x x d3xd3x

1

2 x
x d3x 2

t

4

2

2 x
d3x

1

2 x
x d3x

x
x d3x

t

4

2

2 x
d3x

1

2 x x
x x d3xd3x

t

4

2

2 x
d3x

t

4

1

x
2d3x

In the above derivations, we have used the fact that x 0 and identity (18). Performing
the integration in the first term by explicitly expanding the integration measure over all
the spatial points x in the hypersurface t ,

2

2 x
d3x d3x

x t

d x
x x

(C4)

d3x
x x

d x d x
x x

(C5)

d3x
x x

d x
x

x
x

x (C6)

Assuming is a smooth functional such that its first functional derivative approaches zero
when x , the above integral vanishes, and we obtain

DK L ti ti
t

4

1

ti

ti
x

2d3x (C7)

Substitute this into (23),

I f

N 1

i 0

DK L ti ti (C8)

N 1

i 0

t

4

1

ti

ti
x

2d3x (C9)

4

1

t

t

x
2d3x dt (C10)
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which is (25). The next step is to derive (27). Variation of I given in (26) with a small arbitrary
change of , , results in

I
2

h

S

t

1

2

S

x
2 V x

2

8

1

x
2

d3x dt (C11)

2

h

S

t

1

2

S

x
2 V x

2

8

1

x
2

2

8

1

x
2 d3x dt (C12)

Note that the symbols refers to variation over while refers to variation over . Expanding
the integration measure and performing the integration by part for the last term, we have

1

x
2 d3x dt

2

x x
d3x dt (C13)

d3x
x x

d x dt d x
2

x x
(C14)

d3x
x x

d x dt d x
x

2

x
(C15)

d3x dt
2

x
2 2 2

2 x
(C16)

Insert (C16) back to (C12),

I
2

h

S

t

1

2

S

x
2 V x

2

8

1

x
2 2 2

2 x
d3x dt

(C17)
Taking I 0 for arbitrary , we must have

S

t

1

2

S

x
2 V x

2

8

1

x
2 2 2

2 x
d3x 0 (C18)

Defining R t t , one can verify that

1

x
2 2 2

2 x

4

R

2R
2 x

(C19)

Substituting it back to (C18) gives the desired result in (27). Now defining t
t ei S , and substituting (C18) and the continuity (10), we have

i

t

i

2 t

S

t
(C20)

i

2 x

S

x
d3x

1

2

S

x
2 V x

2

8

1

x
2

2 2

2 x
d3x (C21)
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On the other hand, computing the second order of functional derivative of gives

x

1

2 x

i S

x
(C22)

2

2 x

i 1

x

S

x

1

4

1

x
2 2 2

2 x

1
2

S

x
2 (C23)

2

2

2

2 x

i

2 x

S

x

2

8

1

x
2 2 2

2 x

1

2

S

x
2 (C24)

Comparing (C21) and (C24), one can recognize the Schrödinger equation for the wave func-
tional ,

i

t

2

2

2

2 x
V x d3x (C25)

Appendix D: Rényi Divergence and the Generalized Schrödinger Equa-
tion

Based on the definition of I f in (31), and starting from (C1), we have

1 1
1

x
x d3x

1

2

2

x x
x x d3xd3x 1

1 1
1

x
x d3x

1

2

2

x x
x x d3xd3x

1

2
1

1

x
x d3x

1

2

2

x x
x x d3xd3x 2

1 1
x

x d3x
1

2

2

x x
x x d3xd3x

1

2
1

1

x
x d3x 2

In the last step we have applied the normalization condition 1. Similar to the
derivationof (C6), by assuming is a smooth functional such that its values andfirst functional
derivative approaches zero when x , the second term of the above equation vanishes
after performing the integration over . Then, we have

ln 1 ln 1
1

2
1

1

x
x d3x 2

1

2
1

1

x
x d3x 2

Thus, I f is simplified as

I f

N 1

i 0

1

1
ln

ti
1 ti

(D1)

N 1

i 0
2

1

x
x d3x 2 (D2)
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N 1

i 0
2

1

x x
x x d3xd3x (D3)

N 1

i 0
4

t
1

x
2d3x

4

1

x
2d3x dt (D4)

Compared to (C10), the only difference from I f is that there is an additional coefficient ,
i.e., I f I f . The total observability is

I
2

h

S

t

1

2

S

x
2 V x

2

8

1

x
2 d3x dt (D5)

Fixed end point variation of I with respect to S gives the same continuity (10). Variation
with respect to by following the same calculations from (C12) to (C17) in Section 1 leads
to (33). Defined , (33) can be rewritten as

S

t

1

2

S

x
2 V x

2

2R

2R
2 x

d3x (D6)

Equation (D6) is in the same form as (27) except replacing with . Notice that the
continuity equation does not contain the Planck constant. Since the Schrödinger equa-
tion simply combines the continuity equation and (D6) by defining a complex functional

t R t ei S , performing the similar calculations in (C21) and (C24), we obtain
the same form of Schrödinger equation but with replaced by ,

i
t

t

2

2

2

2 x
V x d3x t (D7)

Replacing back in (D7) gives (34).
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