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Abstract

The content of this paper is a detailed analysis of possible ways how to quantum implement a
key part of Shor’s factorization algorithm, the modular exponentiation function. This imple-
mentation is a bottleneck for performing quantum factorization with polynomial complexity,
which would make it possible to factorize really large numbers in a reasonable amount of
time. In this paper, not only the general theory is presented, but also the results of successful
factorizations of the numbers 247 and 143 using Shor’s algorithm from a quantum computer
simulator. An interesting fact is that no ancillary qubits were needed in these factorizations.
Based on the content of the paper, the conclusion also suggests possible future work on the
development of this modular exponentiation function implementation.

Keywords Quantum factorization - Shor’s algorithm - Modular exponentiation function -
Breaking RSA - Quantum implementation

1 Introduction

A very widespread system for securing electronic communications, the RSA (Rivest-Shamir-
Adleman) cryptosystem [1], [2] is based on the fact that factorizing a sufficiently large number
(the public key) requires a huge amount of time. Currently, a public key of 2048 bits is
commonly used, which would theoretically take tens of millions of years to factorize even
on today’s supercomputers.

This is because even the fastest classical algorithms perform factorization in sub-
exponential time. However, using Shor’s algorithm with a quantum circuit, this factorization
can theoretically be done in polynomial time.

This algorithm was developed in 1994 by the American mathematician Peter Shor. In
2001, this algorithm was practically verified [3] by a research group at IBM that factored the
number 15 into factors 3 and 5 using an NMR implementation of a 7-qubit quantum com-
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puter. Following this implementation, two independent groups [4] [5] implemented Shor’s
algorithm using photonic qubits, finding that multiple qubits were observed to be entangled
when running a Shor’s algorithm circuit. In 2012, a successful factorization of the number 21
was performed [6] using this algorithm and in 2019 a failed attempt was made [7] to factor
the number 35 on the IBM Q System One.

The principle of Shor’s algorithm [8] has been described many times in the scientific
literature [9] [10] [11] and therefore will be recalled here very briefly. This algorithm can
also be used without a quantum circuit, but only with it can the factorization be done in
polynomial time, as mentioned. The task of the quantum circuit is to find the period of the
modular exponentiation function f(x) = a* mod N. This can involve many calculations of
the function f when using a classical computer, but when using a quantum computer it is
enough to measure the histogram at the output of a quantum circuit.

Simply described, the procedure of Shor’s algorithm is as follows. Let the factorized
number be denoted by N and let some integer a be chosen such that 1 < a < N. Then it
is necessary to somehow find the period r of the modular exponentiation function f(x) =
a* mod N. If the period r is odd, it is necessary to go back and choose a different value for
the a variable. Once a value of a is found for which the period r of the function f is even, it
remains to test whether the inequality a’/2 # —1 mod N holds. If not, it is again necessary
to go back and choose a different value for the integer a. Once the values of a and r that
satisfy the above conditions are found, then the factors p and ¢ of N can be calculated as
ged(a’/? £1, N).

The general shape of the quantum circuit for determining the period of the function f is
based on the quantum phase estimation circuit [12] and is shown in Fig. 1.

The implementation of the inverse quantum Fourier transform (QFT™), Hadamard gates
(H) and gate X is quite seamless. The depth of the QFT (and also QFT") circuit grows
linearly with the number of qubits and even only logarithmically in special implementations
[13]. However, the biggest challenge is the implementation of the oracle U s, which is what
this article deals with. The required dependence between the input and output of the oracle
U s could be described by the following relation

Ur(Ix) ®10...01)) = |x) ® |a* mod N). )
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Fig. 1 General period-finder circuit for Shor’s algorithm
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Thus, it is clear from the above that the key component of the oracle Uy, and thus of
the entire circuit in Fig. 1, is the implementation of the modular exponentiation function
a* mod N. In the following chapters, various ways of this implementation are discussed.

2 Implementation Using Basic Arithmetic Operations

Probably the very first way one can think of is to implement it using a composition of
implementations of basic arithmetic operations. This way of implementation is detailed in
[14]. To give an idea of how complex such a quantum circuit would be, Fig. 2 shows a simple
example of a quantum implementation of a 3-qubit adder.

As can be seen from Fig. 2, to implement such a simple mathematical operation, a quantum
circuit of theoretical depth 10 is required, plus 8 ancillary qubits. If n denotes the number of
bits needed to binary represent a factorized number N, then a quantum circuit with a depth of
40013 — 400n2 4 75n and a total of 7n 4 1 qubits is needed to implement the entire modular
exponentiation function [14].

Today’s quantum computers already have tens of qubits, so they would meet this require-
ment, but running a quantum circuit with that much depth would, due to decoherence of
their qubits [15], lead to measuring completely unusable results. For example, to factorize a
relatively small number N = 247 (n = 8), the depth of the quantum circuit constructed in
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Fig. 2 3-qubit carry-select adder(CSLA) with multiplexer(MUX). The result is s = a + b. Figure adapted
from [14]
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this way would be 179800 and its width 57 qubits. This is way beyond the reach of current
quantum computers.

3 Implementation Utilizing Rotations in the Fourier Domain

Arithmetic operations can also be performed in the Fourier domain by rotating the quantum
states of individual qubits. Since the quantum Fourier transform as well as quantum state
rotation are relatively cheap operations [13] for a quantum computer, this approach makes
some sense.

The quantum Fourier transform [16] converts the input binary combination of quantum
states |0) and |1) into the output combination of phase shifts of superposed quantum states
|+). Various operations can then be performed by additional rotations, see Fig. 3. Once all
operations are complete, the combination of phase shifts can then be converted back to a
binary combination using the inverse quantum Fourier transform, which is also simple to
implement, as is the direct one mentioned above.

As can be seen from the general implementation of the adder in Fig. 3, a quantum circuit
to add two 3-qubit numbers (as in Fig. 2) would have a theoretical depth of only 3 and does
not need any extra ancillary qubits. However, to the depth of this circuit it is necessary to add
the depth of the direct and inverse quantum Fourier transform. But these are only required at
the beginning and at the end of the whole calculation.

To implement the entire modular exponentiation function in this way, a (9n + 2)-qubit
quantum circuit with a depth of only 2000#2 is then required [17]. A 74-qubit quantum circuit
with a depth of 128000 would then need to be run to factorize number N = 247 (n = 8).

Compared to the previous method, this is a slightly simpler circuit, but still not applicable
to today’s quantum computers.
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Fig.3 General implementation of the adder utilizing rotations in the Fourier domain. The result is b + «. The
scheme does not contain a direct nor an inverse quantum Fourier transform. Ry are controlled Z-rotations by
angle 27/ 2k, Figure adapted from [17]
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4 Implementation by Creating a Specially Designed Circuit

Another option is not to create a quantum circuit implementing a general modular exponen-
tiation function, but always to create a special circuit for this function with specific values of
the parameters a and N.

Such a circuit does not necessarily have to implement all possible input/output combi-
nations, but only a few necessary ones that follow each other and start at a certain initial
input value, in this case the number 1. This simplification occurred to me while studying an
interesting paper [18] from 2012 on a similar topic. Interestingly, another paper [19], which
was published during the long review process of this paper, also uses the same principle to
implement the modular exponentiation function. So this is not some revolutionary idea, but
rather just an intuitive approach to simplify this implementation.

Since the function f(x) = a* mod N can be decomposed into a product

a*mod N = (...((a)“’20 mod N) x a*12" mod N) x ...) x a*12""" mod N, (2

where (x,,—1x,—2 ... X2X1X0)2 is the binary representation of the variable x, which means
that
x = %020 + 212" + 0022 4+ 2,127 (0, X1, X2, e X1 € {0, 1)), 3)

then the entire function f(x) = a® mod N can be implemented as shown in Fig. 4. This
figure shows an example circuit for specific values of a and N. The conditions for triggering
each multiplication are the upper qubits that represent the variable x.

The number of these upper qubits determines the accuracy with which the period is
found. A higher number of these qubits would result in a more accurate detection of the
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Fig.4 Specific period-finder circuit for f(x) = 8% mod 247. The upper 7 qubits go — g¢ are used to represent
the variable x and then to measure the period of the function f. The lower 8 qubits g7 — ¢4 are needed to
represent the results of consecutive multiplications, which by definition never exceed N — 1 = 246, so 8 qubits
are sufficient
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period searched, but on the other hand it would also increase the depth of the whole circuit.
It is therefore appropriate to choose the optimum number of them. The numerical results in
Section 5 show that 7 qubits (g9 — ge) are enough to achieve satisfactory accuracy.

Based on the above, it is sufficient to implement the function g(y) = (y x a) mod N and
then implement the composite functions

(v x a®) mod N = (((y x @) mod N) x a) mod N = g(g(»)),
(y x a3) mod N = ((((y x a) mod N) x a) mod N) x a) mod N = g(g(g(y))), )

etc. by simply repeating the circuit implementing the function g in series, as illustrated
by the specific examples in Fig. 5.

Now all that remains is to create a quantum circuit implementing the g function itself. For
the purpose of finding the period of the function f, it is sufficient if this implementation of
the function g works only for one particular input number and also for all other, subsequent
numbers that may arise during its successive multiplication. An illustrative, specific example
of these input/output numbers is shown in Table 1.

The number 1 was chosen as the initial input number in this table, which corresponds to
the circuit in Fig. 4, where this initial input value is set by X-gate on qubit g7. Any initial
input number (except 0) can be chosen here, but for the sake of simpler implementation of
the g function, the number 1 was chosen.

Based on Table 1, the corresponding quantum circuit can then be constructed. One possible
composition of this circuit, which was also used to measure the results presented in Section 5,
is shown in Fig. 6.

The big advantage of this implementation method over the previous two is the much
smaller depth of the resulting circuit and the fact that there is no need for any ancillary
qubits. The depth of the quantum circuit in Fig. 6, implementing the g function, is only
21. The implementation of the entire modular exponentiation function f for this particular
example then leads to a quantum circuit of depth 21 x (14+2+448+4 16432+ 64) = 2667
with a total number of qubits n, which in this case is just 8.

x 8 mod 247

x 8 mod 247

x 82 mod 247

x 8 mod 247
T

x 8 mod 247
T

x 8 mod 247

x 8% mod 247

Fig. 5 An example of how to construct the specific composite functions (y x 82) mod 247 = g(g(y),
(y x 83) mod 247 = g(g(g(y))), etc. from function g(y) = (y x 8) mod 247
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Table 1 Function g(y) = (y x 8) mod 247 truth table for an initial input value of 1

Input

Output

Input

Output

0000 0001 (1)
0000 1000 (8)
0100 0000 (64)
0001 0010 (18)
1001 0000 (144)
1010 0100 (164)

N 2 SN A

0000 1000 (8)
0100 0000 (64)
0001 0010 (18)
1001 0000 (144)
1010 0100 (164)
0100 1101 (77)

0100 1101 (77)
0111 1010 (122)
1110 1011 (235)
1001 0111 (151)
1101 1100 (220)
0001 1111 (31)

Ll

0111 1010 (122)
1110 1011 (235)
1001 0111 (151)
1101 1100 (220)
0001 1111 (31)
0000 0001 (1)

But this is only a theoretical depth, because in the real implementation in the Qiskit
framework [20], there are no 8-qubit, 7-qubit, or 6-qubit gates available. So these gates were
decomposed into several less-qubit gates, see Fig. 7.

The depth of the circuit in Qiskit can be determined using the depth() function, which
found a depth of 34 for this circuit. The total depth of the modular exponentiation function
implemented in this way in Qiskit is then 34 x (1 +2 44 48 4 16 + 32 4 64) = 4318.

For factorization of some other numbers, the implementation of modular exponentiation
function by this method can be even simpler. An example of such a case is number 143.
If the value 21 is chosen as the variable a, then the truth table of the function g(y) =
(y x 21) mod 143 comes out very simply, see Table 2.

This is of course reflected in the relative simplicity of the quantum circuit implementing
this function, which is shown in Fig. 8. Only 7 qubits are needed and as can be seen from
the picture, the theoretical depth of this circuit is just 8. The implementation of the entire
modular exponentiation function f(x) = 21* mod 143 then has a theoretical depth of 8 x
(14+24+4+8+16432464) = 1016.

When implemented in Qiskit, some gates were again broken down into several smaller
gates and the result is shown in Fig. 9. The depth was again determined using the depth()
function, which found a depth of 15 for this circuit. The total depth of the modular expo-
nentiation function implemented in this way in Qiskit then appears to be 15 x (1 + 2 +
4+ 8+ 16 4+ 32 + 64) = 1905, however, an interesting situation has arisen here, because
when serially repeating this circuit, the last gate (X) can be performed simultaneously with
the first gate (CNOT) of another copy of the same circuit. So the total real depth is then
1905-0—-1-3-7—-15-31—-63 =1785.

)y () T

(<[]

b

x 8 mod 247

Fig.6 A quantum circuit assembled according to the required inputs and outputs listed in Table 1
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Fig.7 Quantum circuit from Fig. 6 implemented in Qiskit framework
Table 2 Function
I
2(y) = (y x 21) mod 143 truth P Output
table for an initial input value of 1 )59 0001 (1 001 0101 (21)
001 0101 (21) 000 1100 (12)
000 1100 (12) 110 1101 (109)
110 1101 (109) 000 0001 (1)
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Fig.8 A quantum circuit assembled according to the required inputs and outputs listed in Table 2
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Fig.9 Quantum circuit from Fig. 8 implemented in Qiskit framework
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As for the size of the QFT" circuit, in both cases of factorization its width was 7 qubits
and its depth was 14.

Constructing all these circuits according to the required inputs and outputs from the truth
table can be done in several ways. This vast topic would be worth a separate paper, however
it is at least worth mentioning that recently an interesting idea has emerged to build these
circuits using evolutionary algorithms, see [21], [22].

In general, every modular exponentiation function of the form f(x) = a* mod N is
inherently periodic and bounded. This is due to the modulo operation, which ensures that
f € (I, N — 1) always holds. Thus, the number of values of the function f is finite and
sooner or later it will happen that f(x) = f(x + r). Then with simple adjustments it can be
shown that f(x + 1) = f(x +r + 1) also holds:

fx4+1) =a""" mod N = (a* xa) mod N = ((¢* mod N) x a) mod N
=(f(x)xa)mod N = (f(x +7) xa)mod N = ((a**" mod N) x ) mod N (5)
= (@ xa)ymod N =a"*" mod N = f(x +r+1).

This proves that the function f is always periodic. Therefore, for each possible combina-
tion of @ and N, a circuit that implements such a function f(x) = a* mod N can always be
constructed. Since each such specific circuit covers a much smaller number of possible input
and output states than some universal circuit, a reduction in the number of gates, circuit depth,
and the number of qubits required compared to any universal circuit is always guaranteed.

Compared to the previous two methods that try to create such a universal circuit, both
resulting modular exponentiation function implementations (Figs. 7 and 9) have about two
orders of magnitude less depth, so it could be run on a quantum computer simulator and the
results are presented in the following section.

5 Results

Due to the excessive depth of the circuits resulting from the first two methods, it was only
possible to run the entire quantum circuit constructed by the third method, i.e. where the
modular exponentiation function is implemented by creating a specially designed circuit.
First, it should be mentioned that all histograms of simulated quantum circuits were obtained
using 100,000 shots. The assembled quantum circuit from Fig. 4 was run on IBM quantum
computer simulator ibmq_gasm_simulator and the resulting histogram is shown in Fig. 10.
Initial simulations of this circuit were first run with non-zero quantum noise set, but this was
such a challenging task that results could not be in IBM Quantum Lab [20] obtained in a
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Fig. 10 Resulting histogram of period-finder circuit for f(x) = 8% mod 247 obtained using Qiskit framework
[20] and IBM Quantum simulator ibmq_gasm_simulator without any quantum noise. Number of shots: 100,000
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Fig. 11 Resulting histogram of period-finder circuit for f (x) = 21* mod 143 obtained using Qiskit framework
[20] and IBM Quantum simulator ibmq_gasm_simulator without any quantum noise. Number of shots: 100,000

reasonable amount of time. So the figure presents the resulting histogram obtained in the
simulation without any quantum noise.

The histogram shows the probability distribution of all possible output states that would
be measured on qubits (go — ¢e¢). From this histogram, the period » = 12 can be determined
using continued fractions [12]. In this case, this period can also be easily determined by the
number of peaks in this histogram. Once the period r is known, the factors can simply be
determined as ged(a’/2 4+ 1, N) = ged (8% £ 1, 247) = gcd (262144 + 1, 247), which are the
numbers 13 and 19. By simple multiplication of these two factors found (13 x 19 = 247), it
is easy to ascertain the correctness of the whole factorization.

When factoring the number 143 with a smaller circuit for the function f(x) = 21¥ mod
143, the simulation succeeded not only without any quantum noise, but also with the depo-
larization set to the probability values 0.00005 for a 1-qubit gate, 0.0001 for a 2-qubit gate,
and 0.0002 for a 3-qubit gate. The results are shown in Figs. 11 and 12. From the measured
histograms, the period » = 4 can be determined. Individual factors can then be again easily
calculated from this value r: ged(a’/?> £ 1, N) = ged(212 + 1, 143) = ged(441 + 1, 143),
which are the numbers 11, 13, and since their product is 143, the factors found are correct.

6 Conclusion & Future Work

The main conclusion is that the only way to currently use Shor’s factorization algorithm is
to implement the modular exponentiation function with a specially designed circuit for each
particular case. It was also shown that for each specific factorization such a special circuit can
always be created and thus this factorization can be always performed at least on a simulator.
Unfortunately, the circuits resulting from the first (using basic arithmetic operations) and
second (utilizing rotations in the Fourier domain) method are potentially so large that they
are at the limit of being runnable on a simulator, let alone a real quantum computer. Their

probability
o o e
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S o S oRs 855 SSSSSNSESS
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SRS SRS SE5 SSEESEEESEE ASESEERSSESSSESSESSes

Fig. 12 Resulting histogram of period-finder circuit for f(x) = 21* mod 143 obtained using Qiskit framework
[20] and IBM Quantum simulator ibmg_gasm_simulator with depolarization quantum noise set with error
probability parameters of 0.00005 for a 1-qubit gate, 0.0001 for a 2-qubit gate, and 0.0002 for a 3-qubit gate.
Number of shots: 100,000
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depth ranges in the order of hundreds of thousands, while their required width exceeds 50
qubits.

The important result is that using the third method (with a specially designed circuit), the
quantum period-finder circuits were successfully run on the simulator and thereby factorized
the numbers 247 and 143. The key advantage is that these factorizations did not need any
ancillary qubits. This allows for more efficient use of an eventual real quantum device.

So far, such high numbers have not yet been factorized using Shor’s algorithm on a
quantum computer. Larger numbers have been factored using variational quantum algorithms,
but they proceed iteratively with the help of an optimizer, running on a classical computer.
Thus, compared to a single run of the period-finder circuit in Shor’s factorization, variational
factorization requires multiple runs of the variational quantum circuit during the iterations
and, in addition, optimization of the parameters on a classic computer must take place between
them.

The direction of further work would be experimental simulations with different settings of
quantum noise, so that it would be possible to find out at which parameters of quantum noise
the results of factorization are still sufficiently accurate. The challenge for future work is
also to find some general way of creating specially designed quantum circuits implementing
the modular exponentiation function, and also to reduce the depth of these circuits to the
point where they give usable results when run on a real quantum computer. Today’s quantum
computers are capable of running quantum circuits with depths of at most the order of tens.
Given the rapid development of quantum technologies, which make it possible to run larger
and larger quantum circuits, quantum factorization of even larger numbers should be possible
in the future.
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