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Abstract
The polynomials in the generators of a unitary representation of the Poincaré group constitute
an algebra which maps the dense subspaceD of smooth, rapidly decreasing wavefunctions to
itself. This mathematical result is highly welcome to physicists, who previously just assumed
their algebraic treatment of unbounded operators be justified. The smoothness, however, has
the side effect that a rough operator R, which does notmap a dense subspace ofD to itself, has
to be shown to allow for some other dense domain which is mapped to itself both by R and all
generators. Otherwise their algebraic product, their concatenation, is not defined. Canonical
quantization of the light cone string postulates operators −iX1 and P− = (P0 − Pz)/2 and
as their commutator the multiplicative operator R = P1/(P0 + Pz). This is not smooth
but rough on the negative z−axis of massless momentum. Using only the commutation
relations of Pm with the generators −iMiz of rotations in the Pi -Pz-plane we show that on
massless states the operator R is inconsistent with a unitary representation of SO(D−1). This
makes the algebraic determination of the critical dimension, D = 26, of the bosonic string
meaningless: if the massless states of the light cone string admit R then they do not admit
a unitary representation of the subgroup SO(D − 1) of the Poincaré group. With analogous
arguments we show: Massless multiplets are inconsistent with a translation group of the
spatial momentum which is generated by a self-adjoint spatial position operator X.

Keywords Domain of generators · Gårding space · Schwartz space · Rough operators ·
Light cone string · Spatial position operator · Massless states

1 Introduction

The seminal calculation [6] of the critical dimension D = 26 of the spacetime, in which the
bosonic quantum light cone string acts, left two nagging doubts.

If, assuming some basic algebraic rules, formally hermitian operators Mmn = −Mnm ,
m, n ∈ {0, 1, . . . D − 1}, satisfy the commutation relations of the Lorentz Lie algebra,1

[−iMmn,−iMrs] = −ηmr (−iMns) + ηms(−iMnr ) + ηnr (−iMms) − ηns(−iMmr ) (1)

1 In an orthonormal basis our metric is η = diag(1, −1, . . . , −1).
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is this also sufficient for the operators to generate a unitary representation of the Lorentz
group? Each finite dimensional matrix ω generates by the exponential map the elements of
a one parameter group,

gt = et ω , t ∈ R , gt gt ′ = gt+t ′ . (2)

By the Baker Campbell Hausdorff formula exponentials of sufficiently small finite dimen-
sional matrices ω generate a corresponding Lie group G, if the matrices ω represent a Lie
algebra g. But which requirements are there for unbounded operators? Is a Lorentz Lie alge-
bra in D = 26 of formally skew-adjoint generators sufficient for the existence of a unitary
representation of the Poincaré group?

Vice versa, if a set of operators does not satisfy the commutation relations of the Lorentz
Lie algebra does this exclude improved operators which do so? In this case D = 26 would
be indicated only as the dimension where an apparent but correctable anomaly vanishes. Is
D = 26 necessary for the Lorentz invariance of the light cone string?

Neither of these questions could be addressed seriously. The cumbersome calculation of
the Lorentz Lie algebra shied away all attempts to exponentiate the generators or to investigate
classes of improvement terms. By common consensus, one neglected the existence problem
of exponentiated generators and adopted D = 10, the critical dimension of the superstring,
as start value for compactification schemes.

We shortly review the main results of the mathematical investigations [13] of operators
which generate in Hilbert space a unitary representation of a finite dimensional Lie group.
They allow us to deduce the results announced in the abstract. Moreover, we point out that the
excitation operators of the light cone string α−l , l ∈ N, which map the tachyon shell and the
massless shell in amomentum local way tomassive shells, cannotmap smoothwavefunctions
of the tachyon shell and the massless shell to smooth wavefunctions of massive shells.

Though similar and even more severe inconsistencies exist with tachyon states, we restrict
our considerations mainly to problems with massless states. They persist even if one could
get rid of the tachyon.

2 Smoothness of Lie Group Transformations

Let Ug : H → H denote a unitary representation UgUg′ = Ug g′ of a Lie group G in a
Hilbert space H for which all maps f[�] : g �→ Ug� from G to H are measurable.

The generators −iMω of one-parameter subgroups Uetω are defined on the subspace of
smooth states � ∈ D ⊂ H on which all Uetω act differentiably,

− iMω� = lim
t→0

Uetω� − �

t
. (3)

By Stone’s theorem each Mω is essentially self-adjoint. It owns a projection valued mea-
sure2 by which it generates Uetω not only in D but in the complete Hilbert space H,

Mω =
∫
dEλ λ , Uet ω =

∫
dEλ e

−i t λ =: e−itMω . (4)

Applied to states in D the products

Ug(t) = Uet1ω1 · · ·Uetnωn , t = (t1, t2, . . . tn) ∈ R
n (5)

2 A projection valued measure Eλ is a parameterized set of projectors, λ ∈ R, with EλEλ′ = Emin{λ.λ′},
limε→0+ Eλ+ε = Eλ, E−∞ = 0 and E∞ = 1.
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are a differentiable function of Rn . So the derivatives

∂t1 . . . ∂tnUg(t1...tn)|t=0
= (−i)nMω1 · · · Mωn (6)

exist on them no matter how large n is. The concatenation of generators, their algebraic
product, is defined in D. It is a domain of the polynomial algebra A of the generators Mω

(which restricted to D are essentially self-adjoint) and invariant also under all Ug, g ∈ G.
The generators represent the corresponding Lie algebra g [13]:

MωMω′ − Mω′Mω − iM[ω,ω′] (7)

is a two-sided ideal which vanishes in the algebra A if multiplied from the left and the right
with arbitrary polynomials Al , Ar ∈ A.

As themaps f[�] : g �→ Ug� aremeasurable for all� and because integrals over measur-
able functions of compact support exist, therefore theGårding spaceG existswhich is spanned
by smoothened states� f which are averaged with a left invariant volume form dμg = dμg′g
and smooth functions f : G → C of compact support

� f =
∫
G
dμg f (g)Ug� . (8)

The smoothened states � f transform smoothly

Ug� f = � f ◦g−1 . (9)

The Gårding space coincides with the space of smooth states, G = D [13]. It is dense in
the Hilbert space H(G) of square integrable functions of G. That G exists and constitutes
the dense and invariant domain of the polynomial algebra of the generators and the group,
justifies in retrospect physicists whomanipulated the unbounded generatorsMω algebraically
not caring about domains.

A mass shell is the Lorentz orbit G/H of some chosen momentum p with p0 > 0

and p2 = m2. Its smooth, rapidly decreasing wavefunctions also span a dense subspace
D ⊂ H(G/H) which is mapped to itself by the unitary representation of the Poincaré group.
Because its states are smooth, differential geometry becomes applicable to quantum physics.

Recall that a Hilbert space of square integrable functions � : p �→ �(p) consists more
precisely of equivalence classes of functions, where functions are equivalent, if the support
of their difference has measure zero.

� = 0 ⇔ 〈�|�〉 =
∫
dp |�(p)|2 = 0 (10)

So the values in a set of measure zero do not count for equivalent functions. A smooth
function, however, is the only smooth function in its equivalence class. It is determined and
smooth everywhere not only ‘almost everywhere’ .

The roughwhich one has to takewith the smooth: If in a relativisticmodel the commutation
relations, which are postulated in canonical quantization, contain a rough operator R, which
does not map all smooth states to smooth states, then one has to check, whether this is
consistent with the unitary representation Ua,	 of the Poincaré group.3

3 Notation: Let Ta : x �→ x + a denote a translation in R
4, T	 : x �→ 	x a Lorentz transformation, and

Ta,	 = TaT	 ∈ P a Poincaré transformation. We denote by Ua,	 its unitary representation with generators

Pm and Mmn , Ua,eω = eiPaeiω
mnMmn/2, in a Hilbert space H1 of one-particle states.
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For this consistency we require R and all its commutators with generators of the Poincaré
group (Ug(t) given by (5))

adMω1
. . . adMωn

R := in
(
∂t1 . . . ∂tn

)
|t=0

Ug(t)R U−1
g(t) = [Mω1 , . . . [Mωn , R] . . . ]] (11)

to exist on all states � ∈ D.
Earlier arguments concerning a rough operator used the assumption that R and its commu-

tators with generators Mω were elements of a common operator algebra, a condition which
underlies implicitly all algebraic calculations and which is postulated explicitly at the very
beginning of the mathematical investigation [13]. There the definition of an operator algebra
postulates the existence of a dense domain on which all operators are defined and which is
left invariant by all operators.

These arguments we criticized objecting that requiring an operator algebra may be a too
strong assumption. Only the operator R and the algebra of the generators Mω on its right and
on its left have to exist. There could be a set of rules, though presently unknown, to justify
the calculation of e.g. D = 26 but rule out the inconsistency which results from assuming
an operator algebra of R and the generators.

Because of these objections we show the inconsistency of the example of the multi-
plicative operator R = P1/(P0 + Pz) based solely on the assumed existence of all repeated
commutators of R with generators of rotations, if applied to massless, smooth states.

3 Momentum Local Maps

Specific to the gauge fixed quantum string are excitation operators α−l , l ∈ N, which excite
states on mass shells m2(N ) = (N − 1) μ2 to states on mass shells m2(N + l) [1, 8]. The
transition is momentum local such that for each momentum with p2 = m2(N ) there is an
excited momentum q = gl(p) with q2 = m2(N + l) and


l(q) := (α−l�)(q) =
√
q0

p0
∣∣det ∂g

−1
l

∂q

∣∣ Ml(p)�(p) , p = g−1
l (q) . (12)

Ml(p) is some matrix, unitary on its image, with indices which we need not depict. We
have made the factor explicit, which relates the measures d̃p ∼ dD−1 /p0 and d̃q , because it
vanishes where gl has no inverse and is a rough multiplicative operator where g−1

l does not
exist. By their commutation relations and the ground state property αl� = 0, αl = (α−l)

�,
l ≥ 2, for massless states �, the operators α−l can be inverted on their image,

�(p) = (αl
l)(p) =
√

p0

q0
∣∣det ∂gl

∂ p

∣∣ Ml(p)
−1
l(q) (no sum over l), q = gl(p) . (13)

These operators are potentially inconsistent with the Poincaré generators. They act on
smooth functions of the massless shell M0 = {p : p = eλ (1,n), n ∈ SD−2, λ ∈ R} or the
tachyon shell MTachyon = {p : p = (E,

√
μ2 + E2 n), n ∈ SD−2, E ∈ R} which have the

topology of SD−2 × R. Each massive shell Mm = {p : p0 = √
m2 + p2,p ∈ R

D−1} has
the topology of RD−1.

For α−l , l ≥ 2, to map the smooth tachyonic and massless wave functions to smooth
massive wave functions, the momentum map gl has to map the tachyon and the massless
shell smoothly and with a smooth inverse g−1

l to massive shells. But the topologies of the
shells are different: there is no diffeomorphism gl of SD−2 × R to R

D−1.
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Fig. 1 Transitions between Mass Shells in the Static Gauge

Hence, in a relativistic theory it is highly questionable whether operators α−l exist which
excite a tachyon or massless particles in a momentum local way to massive particles.

In Fig.1 the failure of invertible transitions between the massive, massless and tachyon
shell is obvious. In the static gauge of the bosonic string [9] they transfer only energy. But
massive states with spatial momentum |p| < μ are not related to tachyon states.

No one can do better: the different topologies exclude any smooth, invertible map between
a massive shell and the massless or the tachyon shell.

4 Lie AlgebraWithout and with Group

Themere fact, that differential operators satisfy a Lie algebra on some space of functions does
not make them generators of a representation of the corresponding group. This is demon-
strated by the following operators Mmn = −Mnm ,(−iM12�

)
N (p) = −(

px∂py − py∂px
)
�N (p) − i h �N (p) ,

(−iM31�
)
N (p) = −(

pz∂px − px∂pz
)
�N (p) − i h

py
|p| + pz

�N (p) ,

(−iM32�
)
N (p) = −(

pz∂py − py∂pz
)
�N (p) + i h

px
|p| + pz

�N (p) ,

(−iM01�
)
N (p) = |p|∂px �N (p) − i h

py
|p| + pz

�N (p) ,

(−iM02�
)
N (p) = |p|∂py�N (p) + i h

px
|p| + pz

�N (p) ,

(−iM03�
)
N (p) = |p|∂pz�N (p) .

(14)

On differentiable functions of the northern coordinate patch UN of the massless shell M0

UN = {p : p0 =
√
p2 , |p| + pz > 0} ⊂ M0 = {p : p0 =

√
p2 > 0} ⊂ R

4 (15)

the operators −iMmn satisfy the Lorentz Lie algebra4 (1) in D = 4 [2, 4, 5, 10]. The angular
momentum in the direction of the momentum, the helicity h,(

(px M23 + py M31 + pz M12)�
)
N (p) = h |p| �N (p) (16)

4 Observe
∑2

i=1 pi pi = |p|2 − (pz)2 = (|p| + pz)(|p| − pz).
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is some real number. The Lorentz Lie algebra does not restrict 2h to be an integer.
The operators are formally skew-adjoint with respect to the Lorentz invariant measure

d̃p = d3 p/|p|, formally only, because the singularities at |p| + pz = 0 need closer investi-
gation.

The operators (14) cannot generate a unitary representation of the Lorentz group because
the domain UN of the differentiable functions is too small: Lorentz generators act on smooth
states, which have to be defined everywhere in the Lorentz orbit M0. The group acts tran-
sitively on the massless shell and contains e.g. for each massless momentum p a rotation
which maps p to the negative z-axis

A− = {p : p0 =
√
p2 , p0 + pz = 0} . (17)

For negative pz and with x = (
∑D−2

i=1 p2i )/p
2
z , pz := pD−1, one has for each D

for pz < 0 : |p| + pz = |p| − |pz | = |pz |(
√
1 + x − 1) ≤ |pz | x

2
, (18)

because the concave function x �→ √
1 + x is bounded by its tangent at x = 0. So

for pz < 0 : 1

|p| + pz
≥ 2|pz |

r2
, r2 =

D−2∑
i=1

p2i > 0 , (19)

diverges in a neighbourhood U of p̂ ∈ A− at least like the inverse square of the axial distance
to A−.

If h �N ( p̂) �= 0 then it must not be differentiable there. Otherwise the multiplicative term
of M31�N dominates near p̂ where it scales as |pz |/r . Its squared modulus integrated with
d3 p/|p| over a sufficiently small U in cylindrical coordinates is bounded from below by a
positive number times an r -integral r/r2 dr which diverges at the lower limit r = 0. The
multiplicative term alone diverges.

Near A− the derivative term D�N = −pz∂px �N in M31�N has to cancel the multi-
plicative singularity M�N up to a function χ , which is smooth. This linear inhomogeneous
condition (D+M)�N = χ is solved by variation of constants�N = f �S where f satisfies
the two homogeneous conditions

|pz |
(
∂px − 2ih

py
p2x + p2y

)
f = 0 , |pz |

(
∂py + 2ih

px
p2x + p2y

)
f = 0 , (20)

for both M31�N and M32�N to exist. They determine f (p) = e−2ihϕ(p) up to a factor.
The function �S is smooth in the southern coordinate patch

US = {p : p0 =
√
p2 , |p| − pz > 0} (21)

and related in UN ∩ US by the transition function f −1 = hSN to �N

�S(p) = hSN (p)�N (p) , hSN (p) = e2i hϕ(p) =
( px + ipy√

p2x + p2y

)2h
. (22)

The transition function e2 i h ϕ(p) is defined and smooth in UN ∩US only if 2h is integer. This
is why the helicity of a massless particle is integer or half integer.

123

271 Page 6 of 13



International Journal of Theoretical Physics (2023) 62:271

Multiplying (14) with hSN one obtains from (22)
(−iM12�

)
S(p) = −(

px∂py − py∂px
)
�S(p) + i h �S(p) ,

(−iM31�
)
S(p) = −(

pz∂px − px∂pz
)
�S(p) − i h

py
|p| − pz

�S(p) ,

(−iM32�
)
S(p) = −(

pz∂py − py∂pz
)
�S(p) + i h

px
|p| − pz

�S(p) ,

(−iM01�
)
S(p) = |p|∂px �S(p) + i h

py
|p| − pz

�S(p) ,

(−iM02�
)
S(p) = |p|∂py�S(p) − i h

px
|p| − pz

�S(p) ,

(−iM03�
)
S(p) = |p|∂pz�S(p) .

(23)

�N and �S are local sections of a bundle over S2 × R with transition function hSN . A
massless quantum state � is a section given locally in UN by �N and in US by �S [3].

All Mmn� are square integrable, rapidly decreasing and smooth in M0 if � is.
For allω in the Lorentz algebra the operators−iMω = −i/2ωmnMmn are by construction

[3] the derivatives of unitary one-parameter groups

− iMω

(
Uetω�

) = ∂t
(
Uetω�

)
, (24)

which act on a dense and invariant domain D of smooth states, where the transformations
Ueω together with all their products represent unitarily the Lorentz group. So −iMω not only
satisfy the Lorentz algebra but they are also skew-adjoint (by Stone’s theorem) and generate
a unitary representation of the Lorentz group.

The singularities of the multiplicative terms in (14) for h �= 0 on the 3-axis do not allow
to conclude that the operators are rough. They can be combined with the partial derivatives
to covariant derivatives

Di = i |p|−1/2 M0i |p|−1/2 = ∂pi + Ai − pi

2|p|2 , (25)

where the connection A

AN (p) = i h

|p|(|p| + pz)

⎛
⎝−py

px
0

⎞
⎠ , AS(p) = −i h

|p|(|p| − pz)

⎛
⎝−py

px
0

⎞
⎠ . (26)

In the intersection of their coordinate patches they are related by the transition function

DS i = e2 i h ϕ(p)DN i e
−2 i h ϕ(p) . (27)

The covariant derivatives Dj and the momenta Pi do not constitute Heisenberg pairs as
the commutators [Di , Dj ] do not vanish but yield the field strength of a momentum space
monopole of charge h at p = 0,

[Pi , P j ] = 0 , [Pi , Dj ] = −δi j , [Di , Dj ] = Fi j = ∂i A j − ∂ j Ai = i h εi jk
Pk

|P|3 . (28)

The geometry of the massless momentum shell of particles with nonvanishing helicity is
noncommutative.
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In terms of the covariant derivative the generators of Lorentz transformations (14, 23) take
the smooth, rotation equivariant form (p �= 0)

− iMi j = −(Pi D j − P j Di ) − i h εi jk
Pk

|P| , −iM0i = −|P|1/2Di |P|1/2 . (29)

They satisfy the Lorentz algebra on account of (28) for arbitrary real h. However, the covariant
derivative D is a skew-adjoint operator only if 2h is integer.

The integrandF = 1
2 d pi d p j Fi j , the first Chern class, is a topological density: integrated

on each surface S which encloses the apex p = 0 of the cone p0 = |p|
1

4π

∫
S
F = i h (30)

it yields a value which depends only on the transition functions of the bundle. The integral
remains constant under smooth changes of the connection A of the covariant derivative as
the Euler derivative of F(A) with respect to A vanishes.

5 Failing Rotational Symmetry of the Light Cone String

Canonical quantizationof the light cone string [1, 8, page23] postulates transverseHeisenberg
pairs Pi , X j , i, j ∈ {1, . . . D − 2}, which commute with P+ = (P0 + Pz) and the level
operator N ,

[Pi , X j ] = −iδi j , [Pi , P j ] = 0 , [Xi , X j ] = 0 , [Xi , P+] = 0 , [Xi , N ] = 0 . (31)

By the mass shell relation

P− = 1

2
(P0 − Pz) = (N − 1)μ2 + ∑D−2

i=1 Pi Pi

2P+ (32)

and the innocent looking relation [X1, P+] = 0 the operator R = P1/(P0 + Pz) is in the
postulated algebra,

− i[X1, P−] = P1

P0 + Pz
. (33)

In D = 3 and D = 4 this operator R diverges on each smooth massless state � which
does not vanish at a point p̂ ∈ A− on the negative z-axis such that in some neighbourhood
U p̂ ot this point

for all p ∈ U p̂ : |�(p)|2 > c > 0 . (34)

If� �= 0 does not satisfy this condition then there is a rotation ρ such thatUρ� does, because
|Uρ�|( p̂) = |�|(ρ−1 p̂) and each p = ρ−1 p̂, where � does not vanish, can be rotated to a
point p̂ on the negative z-axis.

Restrict for definiteness U p̂ to a cylinder with 0 < a < −pz < b and 0 < r < r̄ , where r
denotes the axial distance to the z-axis.

Proof: to determine the contribution of U p̂ to |R�|2 we remark that in cylindrical coor-
dinates in D = 3 the operator P1 multiplies with r or −r , in D = 4 it multiplies
�(r cos θ, r sin θ, pz) with r cos θ . In U p̂ the function 1/(p0 + pz) is larger than 2|pz |/r2
(19). So in Up̂ the function |(p1/(p0 + pz)

)
�(p)|2 is larger in D = 3 than 4c|pz |2(r/r2)2

and in D = 4 larger than 4c|pz |2(r/r2)2 cos2 θ .
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The integral of this function in D = 4 over the angle θ is a positive function of r and (pz)2,
as the integrand vanishes as a function of the angle only in a set of spherical measure zero.
Then the integral over pz from a to b leaves a positive constant (the factor 1/p0 of the Lorentz
invariant volume element d̃p is larger than 1/

√
b2 + r̄2) times a linearly divergent integral∫ r̄

0 d r/r2 in D = 3, where d2 p = d r d pz , or in D = 4 a logarithmically divergent integral∫ r̄
0 d r r/r2 because d3 p ∼ r d r d pz d θ . ��
Consider the generators −iMiz of rotations in the Pi -Pz-plane. They commute with P j ,

[−iMiz, P j ] = 0 if j �= i and j �= z and satisfy

[−iMiz, P
i ] = Pz (no sum over i) , [−iMiz, P

z] = −Pi . (35)

To ease our subsequent discussion note that by the chain rule (valid outside A−)

[−iM1z,− ln(P0 + Pz)] = P1

P0 + Pz
(36)

the rough operator P1/(P0 + Pz) is the commutator of −iM1z with ln(P0 + Pz) which is
less rough. Commutation with −iMiz increases roughness! Consider the n-fold commutator
of M1z, M2z, . . . , Mnz with − ln(P0 + Pz) applied to � (n ≤ D − 2)

�n = (−i)n[Mnz, . . . [M2z, [M1z,− ln(P0 + Pz)]] . . . ]� = (n − 1)! P1 . . . Pn

(P0 + Pz)n
� (37)

By (19,34) |�n |2(p) is in U p̂ larger than

|�n |2(p) > c((n − 1)!)2
(
rn(2|pz |)n

r2n

)2

| f |2 (38)

where f is a function of the coordinates of the sphere SD−3 of directions of the transverse
momentum and vanishes on the sphere only in a set of spherical measure zero (the coordinate
planes). So the integral of |�n |2(p) on SD−3 gives a positive number. The factor 1/p0 of the
Lorentz invariant measure is larger than 1/

√
b2 + r̄2, the integral of −pz from a to b over

this lower bound yields just a positive number. The contribution of U p̂ to the norm squared
of �n is therefore bounded from below by a positive number times an integral

lim
ε→0

∫ r̄

ε

d r
r D−3

r2n
. (39)

It diverges linearly for D = 2n + 1 and logarithmically for D = 2n + 2. For each D > 2
there is an n, such that the (n − 1)-fold commutator of the generators M2z, M3z, . . . Mnz ,
with R = P1/(P0 + Pz) or the n-fold commutator of M1z, M2z, . . . Mnz , with ln(P0 + Pz)

cannot be applied to massless states � which satisfy (34). But for each � �= 0 there is a
rotation ρ such that Uρ� satisfies (34) and is not in the domain of the n-fold commutator.

The commutation relation, postulated by the canonical quantization of the string in the
lightcone gauge are inconsistent with the existence of a massless unitary representation of
the Poincaré group. It is irrelevant that the operators, which are postulated in the canonical
quantization of the lightcone string, are shown in an algebraic calculation to satisfy in D = 26
a Lorentz Lie algebra [6] and to contain massless states. The operator R = P1/(P0 + Pz),
which is postulated in the canonical quantization, and the generators of rotations have no
common, massless domain.

Equally unimportant and possibly misleading is the observation [5, 14] that the measure
of the setA− vanishes where p1/(p0+ pz) diverges. Essential is that |�n(p)|2 (38) becomes
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so large in U p̂ that in D = 2n + 2 or D = 2n + 1 this function is not in the Hilbert space of
square integrable states.

Though we have not worked out the details, analogous arguments should also exclude
the excitation operators α−l of Section 3. They map massless states to massive states but
cannot do so smoothly. They multiply with a determinantal factor R (12,13) which diverges
at least in a point p̂ of one of the involved mass shells. The Poincaré algebra always contains
(D−1−d) independent generators−iMω which act like a derivative along some line through
the d-dimensional manifold of points p̂, where R becomes singular. Applied to a state, which
does not vanish in U p̂ , we expect these derivatives to increase the order of the divergency
until the nth commutator applied to � gives a function �n which is not square integrable on
U p̂ . The virtue of this arguments is, that it does not need R to be in an algebra but considers
only objects linear in R as seems appropriate. After all, such a singularity R occurs in the
action of α−l and αl , l ≥ 2, only once when they make the transition between the massive
and massless shells.

6 No Position Operator for Massless Particles

Similar arguments exclude a position operator X which generates the group of translations
of spatial momentum of massless particles(

eib·X�
)
(p) = �(p − b) ,b ∈ R

D−1 . (40)

which is unitary relative to the measure dD−1 p.5 It enlarges the algebra of the Poincaré
generators by Heisenberg partners X j of the spatial momenta,

[Pi , P j ] = 0 = [Xi , X j ] , [Pi , X j ] = −i δi j , i, j ∈ {1, . . . D − 1} . (41)

The Hamiltonian H = P0 = √
P2 is rough with respect to the translation group. Consider

a state � which in a ball U0 = {p : p2 < r̄2} around 0 does not vanish

for all p ∈ U0 : |�(p)|2 > c > 0 (42)

and apply to it the n + 1-fold commutator, n < (D − 2),

�n(p) = (−i)n+1[Xn+1, . . . , [X2, [X1,
√
P2]] . . . ]�(p) = cn

p1 p2 . . . pn+1

√
p2

2n+1 �(p) (43)

where cn is a non-vanishing combinatorial factor. Its modulus squared is the product of a
non-negative function f of the spherical angles, which vanishes on the sphere only in a set
of vanishing spherical measure. So integrated over the sphere one is left as U0’s contribution
to the norm squared of �n with a positive constant times an integral

lim
ε→0

∫ r̄

ε

d r
r D−2

r2n
. (44)

To confirm this elementarily: each commutator with Xi decreases for dimensional reasons the
degree in P by one. We started with r = √

p2 of degree 1 and obtain after n+1 commutators
degree −n, its modulus squared has degree −2n. In spherical coordinates dD−1 p is of the
form r D−2 d r d�D−2.

5 In this section we absorb a factor 1/
√
p0 in the wavefunction and deal with the translation invariant measure

dD−1 p.
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Analogous to the case of the rough operator P1/(P0+Pz)weconclude, that the relativistic
massless Hamiltonian H = √

p2 is incompatible with a Heisenberg algebra of (D−1) spatial
self-adjoint Heisenberg pairs.

The transverse position operators for massless particles exclude also the light cone string
in D ≥ 5. It contains besides other operators (D − 2) spatial, transversal Heisenberg pairs
acting on massless states. In D = 5 the wavefunction

[−iX3, [−iX2, [−iX1,
√
P2]]]�(p) = 3

p1 p2 p3√
p2

5
�(p) (45)

has r -degree −2, if �(p) satisfies (42). Its modulus squared behaves like 1/r4. Integrated
on U0 in sperical coordinates with d4 p ∼ r3 d r d�3 the r -integral diverges at r = 0
logarithmically. For each � �= 0 there is an eib·X�, b ∈ R

D−1, which satisfies (42).
All attempts [7, 11, 12, 15] to construct position operators X for massless particles failed.
Different frommassive particles the momentum spectrum (not the Lorentz orbit) of mass-

less particles contains a Lorentz fixed point, p = 0. There the function p0 = √
p2 of RD−1

is only continuous but not smooth. This single, distinguished point is sufficient to spoil the
translation invariance of spatial momentum. It prevents spatial translations eib·X to enlarge
on massless states the unitary action of the Poincaré group. Repeated commutators of its
generators X with the Hamiltonian P0 = √

P2 diverge on states �, which satisfy (42).
The proposal, to use the Fourier transformed (with respect to the spatial momentum)

momentum wave function as position wave function, does not work because � is a section
(22). The Fourier transformation of the local section �N is not locally related to the one of
�S .

That there is no position operator for massless particles disappoints expectations, because
we see the world and reconstruct the position of all objects by light which we receive as flow
of massless quanta. But we do not see a distant photon. Rather we see massive objects by the
currents of photons which they emit or scatter and which are annihilated in our retina.

Even if there is no position operator of massless particles we find the visual perception
of the world sufficiently explained by the fact, that the luminosity L of intersecting beams is
roughly proportional to the spacetime overlap

L =
√

(p1 · p2)2 − m2
1m

2
2

p01 p
0
2

∫
d 4x |�̃1(t, x)|2 |�̃2(t, x)|2 (46)

of the colliding wave packets �̃1(x) and �̃2(x) [3].

7 Conclusions

Our investigation does not depend on this or thatmethod of quantization but studies the result-
ing quantum theory. We exploit the smoothness of Lie groups. Their generators constitute
an algebra, which leaves invariant a common domain, the smooth, rapidly decreasing wave-
functions. Smoothness and rapid decrease are properties which in bracket notation |p, i〉 are
usually disregarded as it indicates not the state � : (p, i) �→ � i (p) but only its arguments.

Canonical quantization of the light cone string postulates the operator P1/(P0 + Pz). On
massless states it is not smooth but diverges near the negative z-axis. Repeated commutators
of this operator with the generators of rotations in the Pi -Pz planes, i = 2, . . . n < D − 1,
are shown to diverge on states which do not vanish on the negative z-axis.

123

Page 11 of 13 271



International Journal of Theoretical Physics (2023) 62:271

Consequently the domain of P1/(P0 + Pz) does not contain all smooth states and is
incompatible with a unitary representation of rotations.

Therefore the algebraic confirmation that in D = 26 canonically quantized generators of
the classical light cone string satisfy the Lorentz algebra is meaningless. In no dimension is
P1/(P0 + Pz) defined on a complete Poincaré multiplet of massless states.

A related argument excludes on each massless multiplet a position operator Xi , which
generates translations of the spatial momentum P j , i, j ∈ {1, . . . , D − 1}. The Hamiltonian
P0 = √

P2 is continuous but not continuously differentiable at p = 0. This momentum is
not in the orbit of p = (1, 0 . . . , 1) but only a boundary point of the momentum spectrum.
But it is rough enough to exclude a cohabitation on massless multiplets of the Poincaré group
and the group of spatial translations of momentum.

The operators αl which perform momentum local transitions between massless and mas-
sive states cannot map the natural domains of the Lorentz generators (the Schwartz spaces of
their mass shells) to each other, as the topologies of the shells differ. Our analysis of rough
multiplicative operators suggests that such operators cannot exist in relativistic theories.

On the other hand, the Lorentz generators acting on massless wavefunctions with non-
vanishing helicity (14) show that roughmultiplicative operators can combinewith differential
operators to smooth operators, the covariant derivatives (25).
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