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Abstract
In this work we find solutions of the (n + 2)-dimensional Einstein Field Equations (EFE)
with n commuting Killing vectors in vacuum. In the presence of n Killing vectors, the EFE
can be separated into blocks of equations. The main part can be summarized in the chiral
equation (αg,z̄ g−1),z + (αg,zg−1),z̄ = 0 with g ∈ SL(n,R). The other block reduces to the
differential equation (ln f α1−1/n),z = 1/2α tr(g,zg−1)2 and its complex conjugate. We use
the ansatz g = g(ξ), where ξ satisfies a generalized Laplace equation, so the chiral equation
reduces to a matrix equation that can be solved using algebraic methods, turning the problem
of obtaining exact solutions for these complicated differential equations into an algebraic
problem. The different EFE solutions can be chosen with desired physical properties in a
simple way.

Keywords Chiral equations · Special linear group · Linear algebra approach to Einstein
equations

1 Introduction

The Einstein Field Equations (EFE) are one of the most interesting field equations in physics
and from a mathematical point of view, the search for methods to obtain solutions has led
to a large number of mathematical results. The first exact solution was obtained by Karl
Schwarzschild in 1916, but his study has been a long debate over the meaning of the solution.
We now know that the Schwarzschild solution represents a static black hole. His generaliza-
tion for a stationary solution had to wait more than 40 years to be found by Roy Kerr. These
solutions have been the cornerstone of the theory of general relativity and its interpretation
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and represent a stationary black hole. After the finding of Kerr’s solution, the exact solutions
area of the EFE has been very active, see for example [10]. Several mathematical methods
have been developed with great success to find exact solutions of EFEs. One of the most
successful has been the method of subspaces and subgroups, which is capable of generating
exact solutions on demand. It is possible to decide the exact physical content of the solution
from the beginning. That is why in this work we will adopt this solution method.

On the other hand, interest in higher dimensional theories began in 1919 with Theodor
Kaluza’s proposal for a five-dimensional space-time that unified gravitation with electromag-
netism. Kaluza proposes that the metric of a five-dimensional spacetime can be separated as
g5μν = g4μν + I 2AμAν , for μ, ν = 1, · · · , 4, g55μ = I Aμ and g555 = I 2, where Aμ is the
tetraelectromagnetic potential and I is related to a scalar field, called dilaton, see for example
[8]. This theory has evolved to the unification of all interactions; electromagnetic, strong and
weak interactions with gravity. However, the theory includes quantum interactions, but it is
not renormalizable, nor is it quantizable. So people propose string and superstring theory to
have a quantizable renormalizable higher dimensional theory, see for example [2]. The price
they have to pay is that the extra dimensions must be singular. In this paper we propose that
the extra dimensions form an n-dimensional space with n − 2 Killing vectors that may be
singular and interesting enough to be studied.

In this work we pretend to find exact solutions of the EFE from the mathematical point
of view, using the method of space and subgroups which seems very successful to obtain a
great amount of exact solutions.

We start with an (n+2)-dimensional space and are interested in 4-dimensional spacetimes
that are stationary and axially symmetric. This means that the 4-dimensional spacetime
contains twocommutingKillingvectorswhose extra dimensional space is (n−2)-dimensional
with n−2 commuting Killing vectors, so that the n-dimensional space contains n commuting
Killing vectors. Thus, in this case we can work in a coordinate system where the metric
depends only on two variables x1 and x2, so that the metric tensor has the form

ĝ = f (dx1 ⊗ dx1 + dx2 ⊗ dx2) + gμνdx
μ ⊗ dxν (1)

where the components of ĝ, f and g, for μ, ν = 3, . . . , n + 2, depend on two variables x1

and x2. In the following, we will denote the uppercase indices as A, B = 1, . . . , n + 2 and
the Greek indices as μ, ν = 3, . . . , n + 2.

Throughout this paper, the set of matrices of size m × n with entries in R is denoted by
Mm×n , we write Mm if m = n. The identity matrix and the zero matrix are denoted by In
and 0n , respectively, and, Symn is the subset of symmetric matrices in Mn .

This work is organized as follows. In Section 2 we follow [6] to write the main field
equations, obtaining the Ricci tensor for an (n + 2)-dimensional space with n commutative
Killing vectors. Section 4 presents the algebraic basis of the matrices used in this work. In
Section 5 we express these matrices by their Jordan normal form in order to solve the final
algebraic equation. In Section 8, using the Jordan form of matrices we obtain the solutions
of the algebraic equations. Finally, Section 9 contains some conclusions.

2 Field Equations

In this sectionwe derive themain field equations for an (n+2)-dimensional Riemannian space
with n commuting Killing vectors. The metric components depend only on the coordinates
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ĝAB = ĝAB(x1, x2). In this case, the Christoffel symbols are given as

�C
AB ≡ 1

2
ĝCD (ĝDA,B + ĝDB,A − ĝAB,D) . (2)

For the metric (1) we have

�1
11 = 1

2 (ln f ),1 , �1
12 = 1

2 (ln f ),2 , �1
22 = − 1

2 (ln f ),1 , �
μ
νi = 1

2 g
μωgων,i ,

�2
22 = 1

2 (ln f ),2 , �2
12 = 1

2 (ln f ),1 , �2
11 = − 1

2 (ln f ),2 , �i
μν = − 1

2 g
,i
μν,

(3)

the remaining components are zero.
In order to compute the Ricci tensor with our metric,

RAB = �C
AB,C − �C

AC,B + �C
DC�D

AB − �C
DB�D

AC , (4)

it is convenient to use the variables z = x1 + i x2 and its complex conjugate, z̄. Hence, the
non-zero components of the Ricci tensor are as follows:

R11 = −2(ln f α),zz̄ − 1

2
gμαgαν,zg

νβgβμ,z̄ − (ln α),zz + (ln α),z(ln f ),z (5)

−1

4
gμαgαν,zg

νβgβμ,z − (ln α),z̄ z̄ + (ln α),z̄(ln f ),z̄ − 1

4
gμαgαν,z̄ g

νβgβμ,z̄ (6)

R22 = −2(ln f α),zz̄ − 1

2
gμαgαν,zg

νβgβμ,z̄ + (ln α),zz − (ln α),z(ln f ),z (7)

+1

4
gμαgαν,zg

νβgβμ,z + (ln α),z̄ z̄ − (ln α),z̄(ln f ),z̄ + 1

4
gμαgαν,z̄ g

νβgβμ,z̄ (8)

R12 = i [(ln α),z̄ z̄−(ln α),z̄(ln f ),z̄+ 1

4
gαβ,z̄ g

βγ gγ δ,z̄ g
δα−(ln α),zz+(ln α),z(ln f ),z (9)

−1

4
gαβ,zg

βγ gγ δ,zg
δα] (10)

Rν
μ = − 1

f α
[ (αgμω,z̄ g

ων),z + (αgμω,zg
ων),z̄] (11)

where det gμν = −α2.
We will use matrix notation, let us define the matrix g from the components of the metric

tensor gμν as follows:
(g)μν = gμν . (12)

Note that the matrix g is real and symmetric, that is, denoting by T transpose of a matrix,

det g = −α2 (13)

ḡ = g (14)

gT = g (15)

The vacuum Einstein equations are given by

RAB = 0 . (16)

From Rν
μ = 0 we obtain the chiral equations

(αg,z̄ g
−1),z + (αg,zg

−1),z̄ = 0 . (17)

Its trace gives a differential equation for α:

α,zz̄ = 0 . (18)
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From now on, the index Z will take the values z and z̄. Using R11 − R22 ± 2i R12 = 0 we
find

(ln f α),Z = α,Z Z

α,Z
+ tr(g,Z g−1)2

4(ln α),Z
. (19)

Both Equations (for z and z̄) satisfy

(ln f α),zz̄ = −1

4
tr(g,zg

−1g,z̄ g
−1) . (20)

Using the transformation
g → −α−2/ng (21)

we normalize g, i.e., det g = (−1)n+1. Therefore, g is a symmetric matrix in SL(n,R).
The chiral equation (17) does not change under the transformation (21), whereas (19)

takes the form

(ln f α1−1/n),Z = α,Z Z

α,Z
+ tr(g,Z g−1)2

4(ln α),Z
. (22)

The chiral equation (17) is invariant under transformations

g → CgCT (23)

where C ∈ SL(n,R) is a constant matrix. The general solution of the differential (18) for α

is given as
α(z, z̄) = αz(z) + αz̄(z̄) (24)

where αz and αz̄ are arbitrary functions. Chosing Weyl coordinates, i.e.,

α = z + z̄

2
, (25)

Equations (22) are reduced to

(ln f α1−1/n),Z = 1

2
α tr(g,Z g

−1)2 . (26)

The next sectionswill introduce important quantities to transform the differential equations
(17).

3 One-Dimensional Subspaces

Suppose that g depends on parameters ξ which are arbitrary functions of the variables z and
z̄. Then, the chiral equation (17) changes to

2α (g,ξ g
−1),ξ ξ,zξ,z̄ + g,ξ g

−1 ((αξ,z),z̄ + (αξ,z̄),z) = 0 . (27)

Now we assume that the parameter ξ satisfies the Laplace equation

(αξ,z),z̄ + (αξ,z̄),z = 0 , (28)

then g,ξ g−1 = A is a constant matrix. Note that each new solution of the Laplace equation
gives another solution for g. From the properties of the matrix g we obtain

Ā = A (29)

trA = 0 (30)

Ag = gAT (31)
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Equations (29) and (30) imply that A belongs to the Lie algebra sl(n,R), the Lie algebra
corresponding to the group SL(n,R). The matrix A varies as

A → CAC−1 (32)

under the transformation (23). The relation (32) separates the set of matrices A into equiva-
lence classes. We will work with a representative matrix of each class.

4 The Subspace I(A)
It is possible to find the general form of g given A if we consider the property (15), together
with the intertwining relation (31) satisfied for the matrix A. To do so, let us define the
following set.

Definition 1 For any non-zero matrix A ∈ Mn , define the set I(A) as

I(A) = {g ∈ Symn : Ag = gAT } . (33)

Observe that g ∈ I(A). Thus, the problem of finding the form of g has been transformed
into a linear algebra problem. First, let us derive the following useful properties.

Theorem 1 For any non-zero matrix A ∈ Mn, I(A) is a subspace of the vector spaceMn.

Proof Let α ∈ R and let X , Y ∈ I(A). We have (αX)T = αXT = αX and (X + Y )T =
XT + Y T = X + Y . Then, A(αX) = α(AX) = α(X AT ) = (αX)AT and A(X + Y ) =
AX + AY = X AT + Y AT = (X + Y )AT , so that αX ∈ I(A) and X + Y ∈ I(A). ��
Definition 2 For any non-zero matrix A ∈ Mn and ξ ∈ R, define

eξ A =
∞∑

k=0

ξ k

k! A
k . (34)

For more information on the exponential matrix, see, for example, [3, 11]. The following
lemmas are corollaries of the above.

Lemma 1 Let A, g ∈ Mn be non-zero matrices and ξ ∈ R. Then eξ Ag = geξ AT
if and only

if Ag = gAT .

Proof Wedefine thematrix function F(ξ) = eξ Age−ξ AT
. Its derivative is F ′(ξ) = eξ A (Ag−

gAT )e−ξ AT
. If g ∈ I(A), then F ′(ξ) = 0, so that F(ξ) = F(0). Therefore, eξ Ag = geξ AT

.
Now, if eξ Ag = geξ AT

, then F(ξ) = F(0). Its derivative at ξ = 0 gives Ag = gAT . ��
It is convenient to reduce the matrices we work with to simple matrices using the equiva-

lence relation (23). In particular, to facilitate the computation of the matrix exponentials, we
will use the Jordan matrices introduced in the next section.

5 JordanMatrices

The invariance (23) allows to use normal forms for the matrix A which then is used to
determine the matrix g. In this work we choose the real Jordan form of a matrix, because
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of its simplicity, and, since in this representation the matrix A is always real even if it has
complex conjugate eigenvalues. For an example of using the natural normal form of matrices
instead of the Jordan form, see [5], where the group SL(3,R) was discussed. Here we are
going to focus on the group SL(5,R) in its Jordan representations. For more information on
the Jordan form, see, for example, [1, 4, 9].

It is well-known that any real squarematrixmay have real and complex eigenvalues, where
for each complex eigenvalue α + βi , also its complex conjugate α − βi is an eigenvalue. To
avoid to include the complex values explicitly in the Jordan matrix, it is possible to include
each such pair α ± βi as represented by a real 2x2-matrix


 =
[

α −β

β α

]
. (35)

Therefore, we will consider Jordan blocks of two kinds, one for the real eigenvalues and
another type for the pairs of complex conjugate eigenvalues. Furthermore, it is convenient
for our work to represent the Jordan matrices as decomposed into blocks which make visible
the type of eigenvalues. In consequence, we introduce several types of Jordan blocks and
matrices, more general as the standard notions from the common literature, as follows.

Definition 3 For λ ∈ R, a Jordan cell Jn(λ) ∈ Mn is an upper triangular matrix of the form

Jn(λ) =

⎡

⎢⎢⎢⎢⎢⎣

λ 1 0 · · · 0
λ 1 · · · 0

. . .
. . .

...

λ 1
λ

⎤

⎥⎥⎥⎥⎥⎦
(36)

Definition 4 Suppose


 =
[

α −β

β α

]
∈ M2 , with β > 0 . (37)

A Jordan 
-block of the first kind Jn(
) ∈ M2n is a block upper triangular matrix of the
form

Jn(
) =

⎡

⎢⎢⎢⎢⎢⎣


 I2 02 · · · 02

 I2 · · · 02

. . .
. . .

...


 I2



⎤

⎥⎥⎥⎥⎥⎦
. (38)

In the remainder of the article, 
 if not specified, is supposed to have the form in (37) .

Definition 5 Let λ ∈ R and n1, . . . , nm be positive integers such that n = n1 + . . . + nm . A
Jordan matrix Jn1,...,nm (λ) ∈ Mn is a block diagonal matrix

Jn1,...,nm (λ) = diag
[
Jn1(λ), . . . , Jnm (λ)

]
(39)

where Jni (λ) are Jordan cells for all i = 1, . . . ,m.
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Definition 6 Let n1, . . . , nm be positive integers such that n = n1 + . . . + nm . A Jordan

-block of the second kind Jn1,...,nm (
) ∈ M2n is a block diagonal matrix

Jn1,...,nm (
) = diag
[
Jn1(
), . . . , Jnm (
)

]
(40)

where Jni (
) are Jordan 
-blocks of the first kind for all i = 1, . . . ,m.

Definition 7 Let λi ∈ R, i ∈ {1, 2, · · · , p} and


k =
[

αk −βk

βk αk

]
∈ M2, k ∈ {1, 2, · · · , q} (41)

with βk > 0, such that all scalars and matrices are distinct. Let mi
1, . . . ,m

i
ri and n

k
1, . . . , n

k
sk

be positive integers such thatmi = mi
1 + . . .+mi

ri , n
k = nk1 + . . .+nkrk ,m = m1 + . . .+mp

and n = n1 + . . . + nq . A generalized Jordan matrix J ∈ Mm+2n is defined as a block
diagonal matrix of the form

J = diag
[
Jm1

1,...,m
1
r1

(λ1), . . . , Jmp
1 ,...,mp

rp
(λp), Jn11,...,n1s1

(
1), . . . , Jnq1 ,...,nqsq
(
q)

]
(42)

where Jmi
1,...,m

i
ri
(λi ) are Jordan matrices for all λi , and Jnk1,...,nksk

(
k) are Jordan 
-blocks

of the second kind for all i ∈ {1, . . . , p} and k ∈ {1, . . . , q}.
Theorem 2 (from [4])Each A ∈ Mn is similar via a real similarity transformation matrix, to
a generalized Jordan matrix of the form given inDefinition 7 in which the scalars λ1, . . . , λp

are real eigenvalues of A, and its complex conjugate eigenvalues αk ± iβk are represented
by the matrices 
k for all k ∈ {1, . . . , q}.
Theorem 3 Let λ ∈ R and Jn(λ) be a Jordan cell. Then I(Jn(λ)) coincides with the set of
all real square matrices of order n which are of the form

⎡

⎢⎢⎢⎣

x1 x2 · · · xn
x2 x3 · · · 0
...

...
. . .

...

xn 0 · · · 0

⎤

⎥⎥⎥⎦ . (43)

Proof Let be

X =
⎡

⎢⎣
x11 · · · x1n
...

. . .
...

x1n · · · xnn

⎤

⎥⎦ ∈ Mn (44)

The intertwining relation Jn(λ)X = X JTn (λ) implies the following:

xi+1, j = xi, j+1 for i, j ∈ {1, . . . , n − 1}, xkn = 0 for k ∈ {2, . . . , n}. (45)

Equations (45) mean that all entries of any antidiagonal of X , are equal, and, that all antidi-
agonals below the main antidiagonal are zero. ��
Lemma 2 Let m and n be two positive integers such that m < n and let X ∈ Mm×n. Then
any Jordan cells Jm, Jn satisfy that

Jm(λ)X = X JTn (λ) ⇐⇒ X = [
Y 0

]
, Y ∈ I(Jm(λ)) . (46)
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Proof Let p be a positive integer such that m ≤ p ≤ n − 1. If Jm(λ)X = X JTn (λ), then
Jm(0)X = X JTn (0), so that J p

m (0)X = X(J p
n (0))T . Therefore X(J p

n (0))T = 0. If p = n−1,
then xin = 0 for each i ∈ {1, . . . ,m}. Proceeding analogously in decreasing order to p = m
we obtain

X =
⎡

⎢⎣
x11 · · · x1m 0 · · · 0
...

. . .
...

...
. . .

...

xm1 · · · xmm 0 · · · 0

⎤

⎥⎦ (47)

Hence, we can write X = [
Y 0

]
, where Y ∈ Mm . If we partition Jn(λ) as

Jn(λ) =
[
Jm(λ) Em,1

0 Jn−m(λ)

]
(48)

where

Em,1 =

⎡

⎢⎢⎢⎣

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
1 0 · · · 0

⎤

⎥⎥⎥⎦ ∈ Mm×(n−m) (49)

then the intertwining relation Jm(0)X = X JTn (0) implies Jm(λ)Y = Y JTm (λ), so that Y ∈
I(Jm(λ)).

Now, let X = [
Y 0

] ∈ Mm×n and let Y ∈ Mm . If Y ∈ I(Jm(λ)), then Jm(λ)Y =
Y JTm (λ), which implies that Jm(λ)X = X JTn (λ). ��
Lemma 3 Let m and n be two positive integers such that m > n and let X ∈ Mm×n. Then
any Jordan cells Jm, Jn satisfy that

Jm(λ)X = X JTn (λ) ⇐⇒ X =
[
Y
0

]
, Y ∈ I(Jn(λ)) . (50)

Proof We rewrite Jm(λ)X = X JTn (λ) as Jn(λ)XT = XT J Tm (λ). By Lemma 2 we have

XT = [
Y 0

]
with Y ∈ I(Jn(λ)), hence X =

[
Y
0

]
. ��

Theorem 4 Let n1, . . . , nm be positive integers such that n = n1 + . . . + nm, λ ∈ R, and
let Jn1,...,nm (λ) ∈ Mn be a Jordan matrix. Then every matrix X ∈ I(Jn1,...,nm (λ)) is a block
matrix of the form

X =
⎡

⎢⎣
X11 · · · X1m
...

. . .
...

Xm1 · · · Xmm

⎤

⎥⎦ (51)

where for each i, j ∈ {1, . . . ,m}, Xi j ∈ Mni×n j satisfies X
T
i j = X ji and are of the following

form:

(i) If ni = n j then Xi j ∈ I(Jni (λ)).
(ii) If ni < n j then Xi j = [

Yi j 0
]
with Yi j ∈ I(Jni (λ)).

(iii) If ni > n j then Xi j =
[
Yi j
0

]
with Yi j ∈ I(Jn j (λ)).

Proof Let i, j ∈ {1, . . . ,m}. If X ∈ I(Jn1,...,nm (λ)) then Jn1,...,nm (λ)X = X JTn1,...,nm (λ) and
XT = X , so that Jni (λ)Xi j = Xi j J Tn j

(λ) and X ji = XT
i j . If ni = n j then Xi j is symmetric,
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so that Xi j ∈ I(Jni (λ)). By Lemma 2 we have that Xi j = [
Yi j 0

]
with Yi j ∈ I(Jni (λ)) for

ni < n j . For ni > n j , by Lemma 3 we find Xi j =
[
Yi j
0

]
with Yi j ∈ I(Jn j (λ)). ��

Lemma 4 For any 
 =
[

α −β

β α

]
∈ M2 with β > 0, I(
) coincides with the set of all real

symmetric 2x2- matrices of the form [
a b
b −a

]
(52)

Proof For any

X =
[
x1 x2
x3 x4

]
∈ M2 , (53)

from the intertwining relation 
X = X
T together with β > 0 we get x3 = x2 x4 = −x1.��

Lemma 5 Let X ∈ M2, 
 =
[

α −β

β α

]
∈ M2 with β > 0. Any Y ∈ I(
) satisfies that


X = X
T + Y ⇐⇒ X ∈ I(
), Y = 0 . (54)

Proof Let X =
[
x y
z t

]
∈ M2. If Y ∈ I(
), then Y =

[
a b
b −a

]
∈ M2. The relation


X = X
T + Y together with β > 0 implies a = b = 0, z = y and t = −x . On the other
hand, if X ∈ I(
) then 
X = X
T , hence Y = 0. ��
Theorem 5 Let Jn(
) be a Jordan 
-block of the first kind with complex conjugate eigen-

values represented by 
 =
[

α −β

β α

]
. Then

I(Jn(
)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢⎢⎢⎣

X1 X2 · · · Xn

X2 X3 · · · 02
...

...
. . .

...

Xn 02 · · · 02

⎤

⎥⎥⎥⎦ ∈ Mn : Xi ∈ I(
) for i ∈ {1, . . . , n}

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(55)

Proof For n = 1 see Lemma 4. For n = 2, let

X =
[
X Y
Z T

]
∈ M4 (56)

where X , Y , Z , T ∈ M2. The intertwining relation J2(
)X = XJ T2 (
) implies


T = T
T


Z = Z
T + T


Y + T = Y
T


X + Z = X
T + Y

(57)

The first one of the (57) implies that T ∈ I(
). Applying Lemma 5 to the second and third
ones of (57), we obtain Y , Z ∈ I(
) and T = 0. Using Lemma 5 in the last one of (57) we
find that X ∈ I(
) and Z = Y . Thus

I(J2(
)) =
{[

X Y
Y 0

]
: X , Y ∈ I(
)

}
. (58)
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Now, assume that the property is true for n and let us prove that it is satisfied for n + 1.
Jn+1(
) can be partitioned as follows:

Jn+1(
) =
[


 E1

0 Jn(
)

]
(59)

where E1 = [
I2 0 · · · 0 ] ∈ M2×2n . Let

X =
[
T Y
Z X

]
∈ M2(n+1) (60)

where X ∈ M2n , Y = [
Y1 · · · Yn

]
, ZT = [

ZT
1 · · · ZT

n

]
, and all matrices T , Y1, . . . , Yn,

Z1, . . . , Zn belong to M2.
If Jn+1(
)X = XJ Tn+1(
) then

Jn(
)X = J Tn (
)

Jn(
)Z = 
Y + E1X

Z
T + XET
1 = Y JTn (
)


T + E1Z = T
T + Y ET
1

(61)

From the one of the (61) we obtain X ∈ I(Jn(
)). By the induction hypothesis we can write

X =

⎡

⎢⎢⎢⎣

X1 X2 · · · Xn

X2 X3 · · · 0
...

...
. . .

...

Xn 0 · · · 0

⎤

⎥⎥⎥⎦ (62)

The second and third one of (61) imply that


Zn = Zn

T + Xn , 
Yn + Xn = Yn


T


Zn−1 + Zn = Zn−1

T + Xn−1 , 
Yn−1 + Xn−1 = Yn−1


T + Yn
...


Z2 + Z3 = Z2

T + X2 , 
Y2 + X2 = Y2


T + Y3


Z1 + Z2 = Z1

T + X1 , 
Y1 + X1 = Y1


T + Y2 .

(63)

Using Lemma 5 for (63), one obtains Xn = 0, Zn = Yn = Xn−1, . . . , Z3 = Y3 = X2, Z2 =
Y2 = X1 and Z1, Y1 ∈ I(
). Then, applying Lemma 5 in the last one of (61) gives Z1 = Y1.
Therefore,

X =

⎡

⎢⎢⎢⎢⎢⎣

T Y1 X1 · · · Xn−1

Y1 X1 X2 · · · 0
X1 X2 X3 · · · 0
...

...
...

. . .
...

Xn−1 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎦
. (64)

Finally, it is obvious that XT = X. ��
Lemma 6 Let m and n be two positive integers such that m < n, and let X ∈ M2m×2n. Then

Jm(
)X = X JTn (
) if and only if X = [
Y 0

]
, Y ∈ I(Jm(
)) (65)
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Proof Let

X =
⎡

⎢⎣
X11 · · · X1n
...

. . .
...

Xm1 · · · Xmn

⎤

⎥⎦ ∈ M2m×2n (66)

where Xi j ∈ M2 for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. The intertwining relation
Jm(
)X = XJ Tn (
) implies the equations


Xmn = Xmn

T


Xin + Xi+1,n = Xin

T


Xmj = Xmj

T + Xm, j+1


Xi j + Xi+1, j = Xi j

T + Xi, j+1

(67)

for each i ∈ {1, . . . ,m − 1} and j ∈ {1, . . . , n − 1}. The first one of the (67) implies
Xmn ∈ I(
). Moreover, applying Lemma 5 to the second and third ones of (67), one obtains
that X1n ∈ I(
), X2n = · · · = Xmn = 0 and Xm1 ∈ I(
), Xm2 = · · · = Xmn = 0,
respectively. Now, we will only use the last one of (67). Let us write Xn instead of X1n . For
j = n − 1, taking into account Lemma 5, we get X1,n−1 ∈ I(
), X2,n−1 = Xn, X3,n−1 =
· · · = Xm,n−1 = 0. Also, let us write Xn−1 instead of X1,n−1. Proceeding analogously as
before, it turns out that

X =
⎡

⎢⎣
X1 · · · Xn−m+1 Xn−m+2 · · · Xn
...

. . .
...

...
. . .

...

Xm · · · Xn 0 · · · 0

⎤

⎥⎦ (68)

where Xi+ j−1 = Xi j with i + j ≤ n + 1. However, we had found that only Xm is non-zero
in the last row. Then, Xm+1 = · · · = Xn = 0, so that

X =
⎡

⎢⎣
X1 · · · Xm 0 · · · 0
...

. . .
...

...
. . .

...

Xm · · · 0 0 · · · 0

⎤

⎥⎦ . (69)

On the other hand, we may partition Jn(
) as

Jn(
) =
[
Jm(
) Em,1

0 Jn−m(
)

]
(70)

where

Em,1 =

⎡

⎢⎢⎢⎣

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
I2 0 · · · 0

⎤

⎥⎥⎥⎦ ∈ M2m×2(n−m). (71)

Let X ∈ M2m and X = [
X 0

] ∈ M2m×2n . If X ∈ I(Jm(
)) then Jm(
)X = X JTm (
),
hence Jm(
)X = XJ Tn (
). ��
Lemma 7 Letm and n be two positive integer numbers such thatm > n, and let X ∈ M2m×2n.
Then

Jm(
)X = X JTn (
) ⇐⇒ X =
[
Y
0

]
, Y ∈ I(Jn(
)) . (72)
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Proof This can be proved in a similar way to the proof of Lemma 6. ��
Theorem 6 Let n1, . . . , nm be positive integers such that n = n1 + . . . + nm, and let
Jn1,...,nm (
) ∈ M2n be a Jordan matrix with complex conjugate eigenvalues represented

by 
 =
[

α −β

β α

]
. Then every matrix X ∈ I(Jn1,...,nm (
)) is a block matrix of the form

X =
⎡

⎢⎣
X11 · · · X1m
...

. . .
. . .

Xm1 · · · Xmm

⎤

⎥⎦ (73)

where for each i, j ∈ {1, . . . ,m}, Xi j ∈ M2ni×2n j and X ji = XT
i j which are of the following

form:

(i) If ni = n j , then Xi j ∈ I(Jni (
)).
(ii) If ni < n j , then Xi j = [

Yi j 0
]
with Yi j ∈ I(Jni (
)).

(iii) If ni > n j , then Xi j =
[
Yi j
0

]
with Yi j ∈ I(Jn j (
)).

Proof Let i, j ∈ {1, . . . ,m}. If X ∈ I(Jn1,...,nm (
)) then Jn1,...,nm (
)X = X JTn1,...,nm (
)

and XT = X , hence Jni (
)Xi j = Xi j J Tn j
(
) and X ji = XT

i j . It is obvious that Xi j ∈
I(Jni (
)) for ni = n j . If ni < n j , by Lemma 6 we have Xi j = [

Yi j 0
]
with Yi j ∈

I(Jni (
)). Using Lemma 7 we find that Xi j =
[
Yi j
0

]
with Yi j ∈ I(Jn j (
)) for ni > n j . ��

Theorem 7 Let J be a generalized Jordan matrix due to Definition 7. Then I(J ) is the
set of all matrices diag

[
X1, . . . , X p, Y1, . . . , Yq

]
such that Xi ∈ I(Jmi

1,...,m
i
ri
(λi )) for all

i ∈ {1, . . . , p} , and Y j ∈ I(J
n j
1 ,...,n

j
s j

(
 j )) for all j ∈ {1, . . . , q}.
Proof Let i, j ∈ {1, . . . , p} and k, l ∈ {1, . . . , q}. Let

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11 · · · X1p Z11 · · · Z1q
...

. . .
...

...
. . .

...

X p1 · · · X pp Z p1 · · · Z pq

T11 · · · T1p Y11 · · · Y1q
...

. . .
...

...
. . .

...

Tq1 · · · Tqp Yq1 · · · Yqq

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Mm+2n (74)

where Xi j ∈ Mmi×m j , Ykl ∈ M2nk×2nl , Zil ∈ Mmi×2nl and Tkj ∈ M2nk×m j . If JX = XJ T ,
then

Jmi
1,...,m

i
ri
(λi )Xi j = Xi j J

T
m j
1 ,...,m

j
r j

(λ j ) (75)

Jnk1,...,nksk
(
k)Ykl = Ykl J

T
nl1,...,n

l
sl

(
l) (76)

Jmi
1,...,m

i
ri
(λi )Zik = Zik J

T
nk1,...,n

k
sk

(
k) (77)

Since the Jordan matrices do not have common eigenvalues, by the Sylvester’s theorem on
linear matrix equations [1, 4] we have Xi j = 0 for i = j , Ykl = 0 for k = l, Zil = 0
and Tkj = 0. Furthermore, if X is symmetric, Xii and Ykk are also symmetric, so that
Xii ∈ I(Jmi

1,...,m
i
ri
(λi )) and Ykk ∈ I(Jnk1,...,nksk

(
k)). ��
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Theorem 8 For any xi ∈ R, i ∈ {1, . . . , n}, the following determinant formula holds:

∣∣∣∣∣∣∣∣∣

x1 x2 · · · xn
x2 x3 · · · 0
...

...
. . .

...

xn 0 · · · 0

∣∣∣∣∣∣∣∣∣

= (−)n(n−1)/2 · xnn (78)

Proof Let

Kn =
⎡

⎣
1

· · ·
1

⎤

⎦ ∈ Mn (79)

be the exchange matrix. Using that det Kn = (−)n(n−1)/2 we find

∣∣∣∣∣∣∣∣∣

x1 x2 · · · xn
x2 x3 · · · 0
...

...
. . .

...

xn 0 · · · 0

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

xn xn−1 · · · x1
0 xn · · · x2
...

...
. . .

...

0 0 · · · xn

∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣

1
1

· · ·
1

∣∣∣∣∣∣∣∣
= (−)n(n−1)/2 · xnn (80)

��

Theorem 9 Let Xi ∈ I(Z) for i ∈ {1, . . . , n}. The following determinant formula holds:

∣∣∣∣∣∣∣∣∣

X1 X2 · · · Xn

X2 X3 · · · 0
...

...
. . .

...

Xn 0 · · · 0

∣∣∣∣∣∣∣∣∣

= |Xn |n (81)

Proof By means of the properties of the determinants we have
∣∣∣∣∣∣

I2
· · ·

I2

∣∣∣∣∣∣
= (−1)n

∣∣∣∣∣∣

K2

· · ·
K2

∣∣∣∣∣∣
= (−1)n det K2n = 1 (82)

Then, ∣∣∣∣∣∣∣∣∣

X1 X2 · · · Xn

X2 X3 · · · 0
...

...
. . .

...

Xn 0 · · · 0

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

Xn Xn−1 · · · X1

0 Xn · · · X2
...

...
. . .

...

0 0 · · · Xn

∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣

I2
I2

· · ·
I2

∣∣∣∣∣∣∣∣
= |Xn |n (83)

��

6 Computing One-Dimensional Subspaces

Now we will apply the properties of Jordan matrices deduced in the last section, to obtain
knowledge about the matrix g.
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Theorem 10 Let λ ∈ R, and let Jn(λ) be a Jordan cell. Suppose g ∈ Symn as a matrix
function such that g,ξ = Jn(λ)g. Then

gn(λ) =

⎡

⎢⎢⎢⎣

X1 X2 · · · Xn

X2 X3 · · · 0
...

...
. . .

...

Xn 0 · · · 0

⎤

⎥⎥⎥⎦ (84)

where

Xi (ξ) = eλξ
n−i∑

j=0

ξ j

j ! Ci+ j (85)

and Ci is constant for each i = 1, . . . , n.

Proof Applying g = gT to g,ξ = Jn(λ)g we get Jn(λ)g = gJ Tn (λ), then g ∈ I(Jn(λ)). By
Theorem 3, g has the form given in (84). From g,ξ = Jn(λ)g we obtain

Xn,ξ = λXn

Xn−1,ξ = λXn−1 + Xn

...

X1,ξ = λX1 + X2

(86)

Integrating successively we get (85). ��
Theorem 11 Let n1, . . . , nm be positive integers such that n = n1 + . . . + nm. Let λ ∈ R,
and let Jn1,...,nm (λ) ∈ Mn be a Jordan matrix. If g ∈ Symn is a matrix function such that
g,ξ = Jn1,...,nm (λ)g, then

gn1,...,nm (λ) =
⎡

⎢⎣
X11 · · · X1m
...

. . .
. . .

Xm1 · · · Xmm

⎤

⎥⎦ (87)

where for each i, j ∈ {1, . . . ,m}, the matrix Xi j satisfies XT
i j = X ji and is defined as

follows:

(i) if ni = n j then Xi j = gni (λ),
(ii) if ni < n j then Xi j = [

gni (λ) 0
]
,

(iii) if ni > n j then Xi j =
[
gn j (λ)

0

]
,

where gni (λ) is defined as in Theorem 10.

Proof Let i, j ∈ {1, . . . ,m}. Applying g = gT to g,ξ = Jn1,...,nm (λ)gweget Jn1,...,nm (λ)g =
gJ Tn1,...,nm (λ)), then g ∈ I(Jn1,...,nm (λ)). By Theorem 4,

g(ξ) =
⎡

⎢⎣
X11(ξ) · · · X1m(ξ)

...
. . .

. . .

Xm1(ξ) · · · Xmm(ξ)

⎤

⎥⎦ (88)

where Xi j ∈ Mni×n j satisfies X ji = XT
i j and is of the following form:

(i) If ni = n j then Xi j ∈ I(Jni (λ)).
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(ii) If ni < n j then Xi j = [
Yni 0

]
with Yni ∈ I(Jni (λ)).

(iii) If ni > n j then Xi j =
[
Yn j

0

]
with Yn j ∈ I(Jn j (λ)).

From g,ξ = Jn1,...,nm (λ)g we have Xi j,ξ = Jni (λ)Xi j . Observe that X ji,ξ = (Jni Xi j )
T =

X ji J Tni (λ) = Jn j (λ)X ji . By Theorem 10 we obtain

(i) If ni = n j , then Xi j = gni (λ).
(ii) If ni < n j , then Xi j,ξ = Jni (λ)Xi j implies Yni ,ξ = Jni (λ)Yni , so that Yni = gni (λ).

Therefore Xi j = [
gni (λ) 0

]
.

(iii) If ni > n j , then Xi j,ξ = Jni (λ)Xi j = Xi j J Tn j
(λ) implies Yn j ,ξ = Yn j J

T
n j

(λ) =
Jn j (λ)Yn j , so that Yn j = gn j (λ). Hence Xi j =

[
gn j (λ)

0

]
.

��
Theorem 12 For any Jordan 
-block of the first kind Jn(
), if g ∈ Sym2n is a matrix
function such that g,ξ = Jn(
)g, then

gn(
) =

⎡

⎢⎢⎢⎣

Z1 Z2 · · · Zn

Z2 Z3 · · · 0
...

...
. . .

...

Zn 0 · · · 0

⎤

⎥⎥⎥⎦ (89)

where

Zl =
[
Xl Yl
Yl −Xl

]

Xl(ξ) = eαξ cosβξ

n−l∑

k=0

ξ k

k! Ck+l − eαξ sin βξ

n−l∑

k=0

ξ k

k! Dk+l

Yl(ξ) = eαξ cosβξ

n−l∑

k=0

ξ k

k! Dk+l + eαξ sin βξ

n−l∑

k=0

ξ k

k! Ck+l

(90)

and Cl , Dl are constant for l = 1, . . . , n.

Proof Let i, j ∈ {1, . . . , n}. Applying g = gT to g,ξ = Jn(
)g we get Jn(
)g = gJ Tn (
),
then g ∈ I(Jn(
)). By Theorem 5 we can express

g(ξ) =

⎡

⎢⎢⎢⎣

Z1(ξ) Z2(ξ) · · · Zn(ξ)

Z2(ξ) Z3(ξ) · · · 0
...

...
. . .

...

Zn(ξ) 0 · · · 0

⎤

⎥⎥⎥⎦ (91)

where

Zi (ξ) =
[
Xi (ξ) Yi (ξ)

Yi (ξ) −Xi (ξ)

]
. (92)

From g,ξ = Jn(
)g we have
Zn,ξ = λZn

Zn−1,ξ = λZn−1 + Zn

...

Z1,ξ = λZ1 + Z2

(93)
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Integrating successively we get

Zi (ξ) = eξ

n−i∑

j=0

ξ j

j ! Ci+ j , Ci =
[
Ci Di

Di −Ci

]
. (94)

Using

eξ
 = eαξ

[
cosβξ − sin βξ

sin βξ cosβξ

]
(95)

we obtain (90). ��
Theorem 13 Let n1, . . . , nm be positive integers such that n = n1 + . . . + nm, and let
Jn1,...,nm (
) ∈ M2n be a Jordan 
-block of the second kind. If g ∈ Sym2n is a matrix
function such that g,ξ = Jn1,...,nm (
)g, then

gn1,...,nm (
) =
⎡

⎢⎣
X11 · · · X1m
...

. . .
. . .

Xm1 · · · Xmm

⎤

⎥⎦ . (96)

The matrices Xi j satisfy XT
i j = X ji and are defined as follows:

(i) if ni = n j , then Xi j = gni (
),
(ii) if ni < n j , then Xi j = [

gni (
) 0
]
,

(iii) if ni > n j , then Xi j =
[
gn j (
)

0

]
,

where for each i, j ∈ {1, . . . ,m}, gni (
) is defined as in Theorem 12.

Proof The proof is similar to that of Theorem 11. ��
Theorem 14 Let J be a generalized Jordan matrix due to Definition 7 and g ∈ Symm+2n a
matrix function such that g,ξ = Jg. Then

g = diag
[
gm1

1,...,m
1
r1

(λ1), . . . , gmp
1 ,...,mp

rp
(λp), gn11,...,n1s1

(
1), . . . , gnq1 ,...,nq sq
(
q)

]
(97)

where gmi
1,...,m

i
ri
(λi ) and gnk1,...,nksk

(
k) are the functions defined as in Theorems 11 and 13,

respectively, for each i, j ∈ {1, . . . , p} and k, l ∈ {1, . . . , q}.
Proof Applying g = gT to g,ξ = Jg we get Jg = gJ T , then g ∈ I(J ). By Theo-
rem 7 we have g = diag

[
X1(ξ), . . . , X p(ξ), Y1(ξ), . . . , Yq(ξ)

]
, where Xi (ξ) ∈ Mmi and

Yk(ξ) ∈ Mnk are matrix functions for i ∈ {1, . . . , p} and k ∈ {1, . . . , q}. The linear differ-
ential equation g,ξ = Jg implies Xi,ξ = Jmi

1,...,m
i
ri
(λi )Xi and Yk,ξ = Jnk1,...,nksk

(
k)Yk . By

Theorems 11 and 13 we get Xi = gmi
1,...,m

i
ri
(λi ) and Yk = gnk1,...,nksk

(
k), respectively, for

each i ∈ {1, . . . , p} and k ∈ {1, . . . , q}. ��

7 Equivalence Classes for theMatrix A

In this section we resume some facts from linear algebra which permit to describe the simi-
larity equivalence classes for the matrix A ∈ SL(n,R) from Section 2, recall that A is a real
traceless matrix which satisfies that Ag = gAT .
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Definition 8 A real square matrix is non-derogatory if its minimal polynomial and charac-
teristic polynomial are equal.

Definition 9 Let
p(λ) = λn + an−1λ

n−1 + . . . + a1λ + a0 (98)

be a polynomial and ai ∈ R for i = {1, . . . , n}. The matrix
⎡

⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎤

⎥⎥⎥⎥⎥⎦
(99)

is the companion matrix of the polynomial p(λ). The matrices of the form (99) are called
natural normal cells.

Theorem 15 (from [4]) Let A be a real square matrix with characteristic polynomial p(λ).
If A is non-derogatory, then A is similar to the companion matrix of p(λ).

Definition 10 Let n1, . . . , nm be positive integers such that n = n1 + . . . + nm . A matrix of
the form

A = diag [A1, . . . , Am] ∈ Mn (100)

is called natural normal form if

(i) Ai ∈ Mni are natural normal cellwith characteristic polynomial pi (λ) for i ∈ {1, . . . ,m},
(ii) for every j ∈ {1, . . . ,m − 1}, the polynomial p j (λ) is a divisor of p j+1(λ).

Theorem 16 (from [1]) Every real square matrix is similar to a unique natural normal form.

Definition 11 Let

P =
⎡

⎢⎣
p11(λ) · · · p1n(λ)

...
. . .

...

pn1(λ) · · · pnn(λ)

⎤

⎥⎦ ∈ Mn (101)

be a polynomial matrix and Dk(λ) the greatest common divisor of all minors of order k in P
for k ∈ {1, . . . , n}. The invariant factors of P are defined as follows:

d1(λ) = D1(λ), d2(λ) = D2(λ)

D1(λ)
, · · · , dr (λ) = Dr (λ)

Dr−1(λ)
, dr+1(λ) = 0, · · · , dn(λ) = 0. (102)

If all minors of order k are equal to zero, then Dk(λ) = 0.

Lemma 8 (from [5]) Let A ∈ Mn be the companion matrix of the polynomial p(λ). The
invariant factors of the matrix A are equal to 1, . . . , 1, p(λ), where the number of the 1’s
equals (n − 1).

Lemma 9 (from [5]) Let A be the matrix of Definition 10. The invariant factors of the matrix
A, are equal to 1, . . . , 1, p1(λ), . . . , pm(λ), where the number of the 1’s is given by (n−m).

Theorem 17 (from [1]) Two real square matrices are similar if and only if they have the
same invariant factors.
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Definition 12 Let n and m be positive integers such that 1 < m ≤ n.

Nm,n = {(n1, . . . , nm) ∈ Z
m : 0 < n1 ≤ · · · ≤ nm, n = n1 + . . . + nm} (103)

Theorem 18 Let n and m be positive integers such that 1 < m < n. The equivalence classes
of the matrix A ∈ sl(n,R) are as follows:

[A]1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 0

⎤

⎥⎥⎥⎥⎥⎦
∈ Mn

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

and [A](n1,...,nm ), which is the set of matrices diag [A1, . . . , Am], where the matrices
A1, . . . , Am satisfy the following:

– Ai ∈ Mni are natural normal cells for i = {1, . . . ,m},
– (n1, . . . , nm) ∈ Nn,m,
– pA j (λ) is a divisor of pA j+1(λ) for j = {1, . . . ,m − 1},
– trA1 + . . . + trAm = 0 .

Proof Let X ∈ sl(n,R). By the Theorems 15 and 16 we have that if X is non-derogatory,
then X is similar to a natural normal cell, or, is similar to a natural normal form. Suppose
that X is similar to A.

First case, A has the form (99). Since that trX = 0, then trA = 0, so that an−1 = 0.
Second case, there exist an integer m ∈ {2, . . . , n} such that A has the form

diag [A1, . . . , Am], where Ai are natural normal cell with characteristic polynomial pAi (λ)

of degree equal to ni for i = {1, . . . ,m} and n = n1+ . . .+nm . Since that pA j (λ) is a divisor
of pA j+1(λ), then n j ≤ n j+1 for each j ∈ {1, . . . ,m − 1}, so that (n1, . . . , nm) ∈ Nm,n .
Using the properties of the trace of a matrix we get trA1 + . . . + trAm = 0, then for m = n,
we have A = 0n .

By the Theorem 17 we find that X has the same invariant factors that A. This means
that the equivalence classes are determined by the invariant factors of A. Therefore, A is a
representation of the equivalence class where X belongs. ��

8 Example: One-Dimensional SL(5,R)-Subspaces

As an example to illustrate our results we will find the solutions for g considering A as
member of the Lie algebra sl(5,R). For this, the following steps must be performed:

(i) compute the sets Nm,n ,
(ii) find the equivalence classes for A,
(iii) obtain the real Jordan forms for every equivalence classes,
(iv) determine g for each real Jordan form.

The method can be used for n ≥ 2. It is easy to find the sets

N2,5 = {(1, 4), (2, 3)} (104)

N3,5 = {(1, 1, 3), (1, 2, 2)} (105)

N4,5 = {(1, 1, 1, 2)} (106)
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Hence, we have six equivalence classes: A = [A]1, B = [A](2,3), C = [A](1,4), D =
[A](1,2,2), E = [A](1,1,3) and F = [A](1,1,1,2).

In what follows, we will explain in detail how to determineB. The other five equivalence
classes can be obtained in a similar way, all classes are shown in Table 1. Let A ∈ B, then
A has the form diag [A1, A2], where A1 ∈ M2 and A2 ∈ M3 are natural normal cells. By
Lemma 9 the invariant factors of the matrix A are given as 1, 1, 1, pA1(λ), pA2(λ), where
pA1(λ) and pA2(λ) are characteristic polynomials of A1 and A2, respectively. Note that the
degree of the polynomials pA1(λ) and pA2(λ) are 2 and 3, respectively. Now, assume that
pA1(λ) = λ2 − bλ − a, where a, b ∈ R. Since pA1(λ) is a divisor of pA2(λ), we can
suppose, without loss of generality, that pA2(λ) = (λ − c)pA1(λ). From the characteristic
polynomial of A, pA(λ) = pA1(λ)pA2(λ), we find trA = −2b − c = 0, then pA2(λ) =
(λ + 2b)(λ2 − bλ − a). The matrices A1 and A2 are also the companion matrices of pA1(λ)

and pA2(λ) = λ3 + bλ2 − cλ − 2ab, respectively, hence

A1 =
[
0 1
a b

]
, A2 =

⎡

⎣
0 1 0
0 0 1

2ab c −b

⎤

⎦ (107)

Table 1 Equivalence classes for the matrix A ∈ sl(5,R)

Class Matrices Invariant factors

A

⎡

⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
a b c d 0

⎤

⎥⎥⎥⎦ 1, 1, 1, 1, λ5 − dλ3 − cλ2 − bλ − a

B

⎡

⎢⎢⎢⎣

0 1
a b

0 1 0
0 0 1

2ab c −b

⎤

⎥⎥⎥⎦ 1, 1, 1, λ2 − bλ − a, (λ + 2b)(λ2 − bλ − a);
c = a + 2b2

C

⎡

⎢⎢⎢⎣

q
0 1 0 0
0 0 1 0
0 0 0 1
aq c d −q

⎤

⎥⎥⎥⎦ 1, 1, 1, λ − q, (λ − q)(λ3 + 2qλ2 + bλ + a);
c = (bq − a), d = 2q2 − b

D

⎡

⎢⎢⎢⎢⎣

q
0 1

3q2/2 −q/2
0 1

3q2/2 −q/2

⎤

⎥⎥⎥⎥⎦
1, 1, λ − q, (λ − q)(λ + 3q/2), (λ − q)(λ +
3q/2)

E

⎡

⎢⎢⎢⎣

q
q

0 1 0
0 0 1
aq b −2q

⎤

⎥⎥⎥⎦ 1, 1, λ − q, λ − q, (λ − q)(λ2 + 3qλ + a);
b = 3q2 − a

F

⎡

⎢⎢⎢⎣

q
q
q

0 1
4q −3q

⎤

⎥⎥⎥⎦ 1, λ − q, λ − q, λ − q, (λ − q)(λ + 4q)
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where c = a + 2b2.
In order to obtain the real Jordan forms of B, we consider the fact that a quadratic equation

with real coefficients can have either one or two distinct real roots, or a pair of complex
conjugate roots. Hence we can rewrite

(i) pA1(λ) = (λ − r1)(λ − r2), pA2(λ) = (λ − r1)(λ − r2)2, where r1 = r2
(ii) pA1(λ) = (λ − r1)(λ − r2), pA2(λ) = (λ − r1)(λ − r2)(λ − r3), where r1 = r2 = r3
(iii) pA1(λ) = (λ − r1)2, pA2(λ) = (λ − r1)3.
(iv) pA1(λ) = (λ − r1)2, pA2(λ) = (λ − r1)2(λ − r2), where r1 = r2.
(v) pA1(λ) = (λ − r1)2 + θ2, pA2(λ) = ((λ − r1)2 + θ2)(λ − r2), where θ > 0

so that A1 and A2 are similar to

(i) diag [J1(r1), J1(r2)] and diag [J1(r1), J2(r2)]
(ii) diag [J1(r1), J1(r2)] and diag [J1(r1), J1(r2), J1(r3)]
(iii) J2(r1) and J3(r1)
(iv) J2(r1) and diag [J2(r1), J1(r2)]

(v) J1

[
r1 −θ

θ r1

]
and diag

[
J1

[
r1 −θ

θ r1

]
, J1(r2)

]

respectively. Therefore, A is similar to

(i) diag
[
J1,1(r1), J1,2(r2)

]

(ii) diag
[
J1,1(r1), J1,1(r2), J1(r3)

]

(iii) J2,3(r1)
(iv) diag

[
J2,2(r1), J1(r2)

]

(v) diag

[
J1,1

[
r1 −θ

θ r1

]
, J1(r2)

]

Applying the condition trA1 + trA2 = 0 we get

(i) r1 = −3q/2, r2 = q, q = 0
(ii) 2r1 + 2r2 + r3 = 0
(iii) r1 = 0
(iv) r1 = q, r2 = −4q, q = 0
(v) r1 = q, r2 = −4q, q = 0

The real Jordan forms for every equivalence class of A is presented in the Tables 2, 3, 4, 5, 6
and 7. Note that q is a real constant, also r and θ , with or without indices, are real numbers.

Finally, we determine g for J2,3(0). By Theorem 11 we obtain g =
[
g11 g12
gT12 g22

]
, where

g12 = [
h 0

] ∈ M2×3; g11, h ∈ M2 and g22 ∈ M3 arematrix functions given byTheorem 10.
Thus

g11 =
[
A1 + A2ξ A2

A2 0

]
, (108)

g22 =
⎡

⎣
B1 + B2ξ + B3ξ

2/2 B2 + B3ξ B3

B2 + B3ξ B3 0
B3 0 0

⎤

⎦ , (109)

g12 =
[
C1 + C2ξ C2 0

C2 0 0

]
(110)

The Tables 2, 3, 4, 5, 6 and 7 show the other solutions. Note that all letters A, B,C, D, E ,
with and without indices, are real constants.
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Table 2 Solutions for g considering A ∈ A

A g

⎡

⎢⎢⎢⎣

r1
r2

r3
r4

r5

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 0 0 0 0
0 X2 0 0 0
0 0 X3 0 0
0 0 0 X4 0
0 0 0 0 X5

⎤

⎥⎥⎥⎦ Xi = Ai e
ri ξ for i = 1, . . . , 5

r1 + r2 + r3 + r4 + r5 = 0
r1 = r2 = r3 = r4 = r5

⎡

⎢⎢⎢⎣

r1
r2

r3
r4 1

r4

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 0 0 0 0
0 X2 0 0 0
0 0 X3 0 0
0 0 0 Y1 Y2
0 0 0 Y2 0

⎤

⎥⎥⎥⎦ Xi = Ai e
ri ξ for i = 1, 2, 3

Y1 = (B1 + B2ξ)er4ξ

Y2 = B2e
r4ξ

r1 + r2 + r3 + 2r4 = 0
r1 = r2 = r3 = r4

⎡

⎢⎢⎢⎣

r1
r2

r3 1 0
r3 1

r3

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 0 0 0 0
0 X2 0 0 0
0 0 Y1 Y2 Y3
0 0 Y2 Y3 0
0 0 Y3 0 0

⎤

⎥⎥⎥⎦ Xi = Ai e
ri ξ for i = 1, 2

Y1 = (B1 + B2ξ + B3
ξ2

2 )er3ξ

Y2 = (B2 + B3ξ)er3ξ

Y3 = B3e
r3ξ

r1 + r2 + 3r3 = 0
r1 = r2 = r3

⎡

⎢⎢⎢⎣

r1
r2 1

r2
r3 1

r3

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X 0 0 0 0
0 Y1 Y2 0 0
0 Y2 0 0 0
0 0 0 Z1 Z2
0 0 0 Z2 0

⎤

⎥⎥⎥⎦ X = Aer1ξ

Y1 = (B1 + B2ξ)er2ξ

Y2 = B2e
r2ξ

Z1 = (C1 + C2ξ)er3ξ

Z2 = C2e
r3ξ

r1 + 2r2 + 2r3 = 0
r1 = r2 = r3

⎡

⎢⎢⎢⎣

−4q
q 1 0 0
q 1 0
q 1
q

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X 0 0 0 0
0 Y1 Y2 Y3 Y4
0 Y2 Y3 Y4 0
0 Y3 Y4 0 0
0 Y4 0 0 0

⎤

⎥⎥⎥⎦ X = Ae−4qξ

Y1 = (B1 + B2ξ + B3
ξ2

2 +
B4

ξ3

3 )eqξ

Y2 = (B2 + B3ξ + B4
ξ2

2 )eqξ

Y3 = (B3 + B4ξ)eqξ

Y4 = B4e
qξ

q = 0

⎡

⎢⎢⎢⎢⎣

q 1 0
q 1
q

− 3
2q 1

− 3
2q

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 X3 0 0
X2 X3 0 0 0
X3 0 0 0 0
0 0 0 Y1 Y2
0 0 0 Y2 0

⎤

⎥⎥⎥⎦ X1 = (A1 + A2ξ + A3
ξ2

2 )eqξ

X2 = (A2 + A3ξ)eqξ

X3 = A4e
qξ

Y1 = (B1 + B2ξ)e−
3qξ
2

Y2 = B2e
− 3qξ

2

q = 0
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Table 2 continued

A g

⎡

⎢⎢⎢⎣

0 1 0 0 0
0 1 0 0
0 1 0
0 1
0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 X3 X4 X5
X2 X3 X4 X5 0
X3 X4 X5 0 0
X4 X5 0 0 0
X5 0 0 0 0

⎤

⎥⎥⎥⎦ X1 = A1+A2ξ +A3
ξ2

2 +A4
ξ3

6 +A5
ξ4

24

X2 = A2 + A3ξ + A4
ξ2

2 + A5
ξ3

6

X3 = A3 + A4ξ + A5
ξ2

2
X4 = A4 + A5ξ
X5 = A5

⎡

⎢⎢⎢⎣

r1
r2

r3
r4 −θ4
θ4 r4

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 0 0 0 0
0 X2 0 0 0
0 0 X3 0 0
0 0 0 U V
0 0 0 V −U

⎤

⎥⎥⎥⎦ Xi = Ai e
ri ξ for i = 1, 2, 3

U = er4ξ (B cos θ4ξ −C sin θ4ξ)

V = er4ξ (C cos θ4ξ + B sin θ4ξ)

r1 + r2 + r3 + 2r4 = 0
r1 = r2 = r3
θ4 > 0

⎡

⎢⎢⎢⎣

r1
r2 1

r2
r3 −θ3
θ3 r3

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X 0 0 0 0
0 Y1 Y2 0 0
0 Y2 0 0 0
0 0 0 U V
0 0 0 V −U

⎤

⎥⎥⎥⎦ X = Aer1ξ

Y1 = (B1 + B2ξ)er2ξ

Y2 = B2e
r2ξ

U = er3ξ (C cos θ4ξ − D sin θ4ξ)

V = er3ξ (D cos θ4ξ + C sin θ4ξ)

r1 + 2r2 + 2r3 = 0
r1 = r2
θ3 > 0

⎡

⎢⎢⎢⎢⎣

q 1 0
q 1
q

− 3
2q −θ

θ − 3
2q

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 X3 0 0
X2 X3 0 0 0
X3 0 0 0 0
0 0 0 U V
0 0 0 V −U

⎤

⎥⎥⎥⎦ X1 = (A1 + A2ξ + A3
ξ2

2 )eqξ

X2 = (A2 + A3ξ)eqξ

X3 = A3e
qξ

U = e−
3qξ
2 (C cos θξ − D sin θξ)

V = e−
3qξ
2 (D cos θξ + C sin θξ)

θ > 0

⎡

⎢⎢⎢⎣

q
r1 −θ1
θ1 r1

r2 −θ2
θ2 r2

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X 0 0 0 0
0 U1 V1 0 0
0 V1 −U1 0 0
0 0 0 U2 V2
0 0 0 V2 −U2

⎤

⎥⎥⎥⎦ X = Aeqξ

Ui = eri ξ (Bi cos θi ξ − Ci sin θi ξ)

Vi = eri ξ (Ci cos θi ξ + Bi sin θi ξ)

q + 2r1 + 2r2 = 0
r1 + iθ1 = r2 + iθ2

⎡

⎢⎢⎢⎣

−4q
q −θ 1 0
θ q 0 1

q −θ

θ q

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X 0 0 0 0
0 U1 V1 U2 V2
0 V1 −U1 V2 −V2
0 U2 V2 0 0
0 V2 −U2 0 0

⎤

⎥⎥⎥⎦ X = Ae−4qξ

U1 = eqξ ((B1+ B2ξ) cos θξ − (C1+C2ξ) sin θξ))

V1 = eqξ ((C1 +C2ξ) cos θξ + (B1 + B2ξ) sin θξ)

U2 = eqξ (D cos θξ − E sin θξ)

V2 = eqξ (E cos θξ + D sin θξ)
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Table 3 Solutions for g considering A ∈ B

A g

⎡

⎢⎢⎢⎣

0 1
0
0 1 0
0 1
0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 Z1 Z2 0
X1 0 Z2 0 0
Z1 Z2 Y1 Y2 Y3
Z2 0 Y2 Y3 0
0 0 Y3 0 0

⎤

⎥⎥⎥⎦ X1 = A1 + A2ξ
X2 = A2

Y1 = B1 + B2ξ + B3
ξ2

2
Y2 = B2 + B3ξ
Y3 = B3
Z1 = C1 + C2ξ
Z2 = C2

⎡

⎢⎢⎢⎣

r1
r1

r2
r2

r3

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 0 0 0
X2 X3 0 0 0
0 0 Y1 Y2 0
0 0 Y2 Y3 0
0 0 0 0 Z

⎤

⎥⎥⎥⎦ Xi = Ai e
ξr1 for i = 1, 2, 3

Y j = Bi e
ξr2 for j = 1, 2, 3

Z = Ce−2bξ

2r1 + 2r2 + r3 = 0
r1 = r2 = r3

⎡

⎢⎢⎢⎣

−4q
q 1
q
q 1
q

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X 0 0 0 0
0 Y1 Y2 T1 T2
0 Y2 0 T2 0
0 T1 T2 Z1 Z2
0 T2 0 Z2 0

⎤

⎥⎥⎥⎦ X = Ae−4qξ

Y1 = (B1 + B2ξ)eqξ

Y2 = B2e
qξ

Z1 = (C1 + C2ξ)eqξ

Z2 = C2e
qξ

T1 = (D1 + D2ξ)eqξ

T2 = D2e
qξ

q = 0

⎡

⎢⎢⎢⎢⎣

q
q 1
q

− 3
2q

− 3
2q

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 0 0 0
X2 Y1 Y2 0 0
0 Y2 0 0 0
0 0 0 Z1 Z2
0 0 0 Z2 Z3

⎤

⎥⎥⎥⎦ Xi = Ai e
qξ for i = 1, 2

Y1 = (B1 + B2ξ)eqξ

Y2 = B2e
qξ

Z j = C j e
− 3qξ

2 for j = 1, 2, 3
q = 0

⎡

⎢⎢⎢⎣

−4q
q −θ

θ q
q −θ

θ q

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X 0 0 0 0
0 U1 V1 U2 V2
0 V1 −U1 V2 −U2
0 U2 V2 U3 V3
0 V2 −U2 V3 −U3

⎤

⎥⎥⎥⎦ X = Ae−4qξ

Ui = eqξ (Bi cos θξ − Ci sin θξ)

Vi = eqξ (Ci cos θξ + Di sin θξ) for i = 1, 2, 3
θ = 0

In general relativity, the Boyer-Lindquist coordinates are very important. They are defined
asρ = √

r2 − 2mr + σ 2 sin θ and ζ = (r−m) cos θ , wherem andσ are constant parameters.
The Laplace equation (28) is transform to

((r2 − 2mr + σ 2)ξ,r ),r + 1

sin θ
(ξ,θ sin θ),θ = 0 , (111)
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Table 4 Solutions for g considering A ∈ C

A g

⎡

⎢⎢⎢⎣

0
0 1 0 0
0 1 0
0 1
0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

A B 0 0 0
B X1 X2 X3 X4
0 X2 X3 X4 0
0 X3 X4 0 0
0 X4 0 0 0

⎤

⎥⎥⎥⎦ X1 = C1 +C2ξ +C3
ξ2

2 +C4
ξ3

6

X2 = C2 + C3ξ + C4
ξ2

2
X3 = C3 + C4ξ
X4 = C4

⎡

⎢⎢⎢⎣

−4q
q
q 1 0
q 1
q

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X 0 0 0 0
0 Y1 Y2 0 0
0 Y2 Z1 Z2 Z3
0 0 Z2 Z3 0
0 0 Z3 0 0

⎤

⎥⎥⎥⎦ X = Ae−4qξ

Yi = Bi e
qξ for i = 1, 2

Z1 = (C1 + C2ξ + C3
ξ2

2 )eqξ

Z2 = (C2 + C3ξ)eqξ

Z3 = C3e
qξ

q = 0

⎡

⎢⎢⎢⎢⎣

q 1 0
q 1
q

− 3
2q

− 3
2q

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 X3 0 0
X2 X3 0 0 0
X3 0 0 0 0
0 0 0 Y1 Y2
0 0 0 Y2 Y3

⎤

⎥⎥⎥⎦ X1 = (A1 + A2ξ + A3
ξ2

2 )eqξ

X2 = (A2 + A3ξ)eqξ

X3 = A3e
qξ

Yi = Bi e
− 3qξ

2 for i = 1, 2, 3
q = 0

⎡

⎢⎢⎢⎢⎣

q
q 1
q

− 3
2q 1

− 3
2q

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 0 0 0
X2 Y1 Y2 0 0
0 Y2 0 0 0
0 0 0 Z1 Z2
0 0 0 Z2 0

⎤

⎥⎥⎥⎦ Xi = Ai e
qξ for i = 1, 2

Y1 = (B1 + B2ξ)eqξ

Y2 = B2e
qξ

Z1 = (C1 + C2ξ)e−
3qξ
2

Z2 = C2e
− 3qξ

2

q = 0

⎡

⎢⎢⎢⎣

q
q 1
q
r1

r2

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 0 0 0
X2 Y1 Y2 0 0
0 Y2 0 0 0
0 0 0 Z1 0
0 0 0 0 Z2

⎤

⎥⎥⎥⎦ Xi = Ai e
qξ for i = 1, 2

Y1 = (B1 + B2ξ)eqξ

Y2 = B2e
qξ

Zi = Ci e
ri ξ for i = 1, 2

3q + r1 + r2 = 0
q = r1 = r2

⎡

⎢⎢⎢⎢⎣

q
q 1
q

− 3
2q −θ

θ − 3
2q

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 0 0 0
X2 Y1 Y2 0 0
0 Y2 0 0 0
0 0 0 U V
0 0 0 V −U

⎤

⎥⎥⎥⎦ Xi = Ai e
qξ for i = 1, 2

Y1 = (B1 + B2ξ)eqξ

Y2 = B2e
qξ

U = e−
3qξ
2 (C cos θξ−D sin θξ)

V = e−
3qξ
2 (D cos θξ+C sin θξ)

θ > 0
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Table 4 continued

A g

⎡

⎢⎢⎢⎣

q
q
r1

r2
r3

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 0 0 0
X2 X3 0 0 0
0 0 Y1 0 0
0 0 0 Y2 0
0 0 0 0 Y3

⎤

⎥⎥⎥⎦ Xi = Ai e
qξ for i = 1, 2

Y j = B j e
r j ξ for j = 1, 2, 3

2q + r1 + r2 + r3 = 0
q = r1 = r2 = r3

⎡

⎢⎢⎢⎣

q
q
r1

r2 1
r2

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 0 0 0
X2 X3 0 0 0
0 0 Y 0 0
0 0 0 Z1 Z2
0 0 0 Z2 0

⎤

⎥⎥⎥⎦ Xi = Ai e
qξ for i = 1, 2

Y = Ber1ξ

Z1 = (C1 + C2ξ)er2ξ

Z2 = C2e
r2ξ

2q + r1 + 2r2 = 0
q = r1 = r2

⎡

⎢⎢⎢⎣

q
q
r1

r2 −θ2
θ2 r2

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 0 0 0
X2 X3 0 0 0
0 0 Y 0 0
0 0 0 U V
0 0 0 V −U

⎤

⎥⎥⎥⎦ Xi = Ai e
qξ for i = 1, 2

Y = Ber1ξ

U = er2ξ (C cos θξ − D sin θξ)

V = er2ξ (D cos θξ + C sin θξ)

2q + r1 + 2r2 = 0
q = r1
θ2 > 0

Some solutions of (111) can be found in [7]. As an example we consider that the parameter
ξ depends only on r and σ = 0, then

ξ = γ

2m
ln

(
1 − 2m

r

)
+ δ (112)

Table 5 Solutions for g considering A ∈ D

A g

⎡

⎢⎢⎢⎣

0
0 1
0
0 1
0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

A1 A2 0 A3 0
A2 Y1 Y2 T1 T2
0 Y2 0 T2 0
A3 T1 T2 Z1 Z2
0 T2 0 Z2 0

⎤

⎥⎥⎥⎦ Y1 = B1 + B2ξ
Y2 = B2
Z1 = C1 + C2ξ
Z2 = C2
T1 = D1 + D2ξ
T2 = D2⎡

⎢⎢⎢⎢⎣

q
q
q

− 3
2q

− 3
2q

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 X3 0 0
X2 X4 X5 0 0
X3 X5 X6 0 0
0 0 0 Y1 Y2
0 0 0 Y2 Y3

⎤

⎥⎥⎥⎦ Xi = Ai e
qξ for i = 1, . . . , 6

Y j = B j e
− 3q

2 ξ for j = 1, 2, 3
q = 0
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Table 6 Solutions for g considering A ∈ E

A g

⎡

⎢⎢⎢⎣

0
0
0 1 0
0 1
0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

A1 A2 B1 0 0
A2 A3 B2 0 0
B1 B2 X1 X2 X3
0 0 X2 X3 0
0 0 X3 0 0

⎤

⎥⎥⎥⎦ X1 = C1 + C2ξ + C3
ξ2

2
X2 = C2 + C3ξ
X3 = C3

⎡

⎢⎢⎢⎣

−4q
q
q
q 1
q

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X 0 0 0 0
0 Y1 Y2 Y4 0
0 Y2 Y3 Y5 0
0 Y4 Y5 Z1 Z2
0 0 0 Z2 0

⎤

⎥⎥⎥⎦ X = Ae−4qξ

Yi = Bi e
qξ for i = 1, . . . , 5

Z1 = (C1 + C2ξ)eqξ

Z2 = C2e
qξ

q = 0

⎡

⎢⎢⎢⎣

q
q
q
r1

r2

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 X3 0 0
X2 X4 X5 0 0
X3 X5 X6 0 0
0 0 0 Y1 0
0 0 0 0 Y2

⎤

⎥⎥⎥⎦ Xi = Ai e
qξ for i = 1, . . . , 6

Y j = B j e
r j ξ for i = 1, 2

3q + r1 + r2 = 0
q = r1 = r2

⎡

⎢⎢⎢⎢⎣

q
q
q

− 3
2q 1

− 3
2q

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 X3 0 0
X2 X4 X5 0 0
X3 X5 X6 0 0
0 0 0 Z1 Z2
0 0 0 Z2 0

⎤

⎥⎥⎥⎦ Xi = Ai e
qξ for i = 1, . . . , 6

Z1 = (C1 + C2ξ)e−
3qξ
2

Z2 = C2e
− 3qξ

2

q = 0

⎡

⎢⎢⎢⎢⎣

q
q
q

− 3
2q −θ

θ − 3
2q

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1 X2 X3 0 0
X2 X4 X5 0 0
X3 X5 X6 0 0
0 0 0 U V
0 0 0 V −U

⎤

⎥⎥⎥⎦ Xi = Ai e
qξ for i = 1, . . . , 6

U = e−
3qξ
2 (B cos θξ −C sin θξ)

V = e−
3qξ
2 (C cos θξ +B sin θξ)

θ > 0

Table 7 Solutions for g considering A ∈ F

A g

⎡

⎢⎢⎢⎣

0
0
0
0 1
0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

A1 A2 A3 B1 0
A2 A4 A5 B2 0
A3 A5 A6 B3 0
B1 B2 B3 X1 X2
0 0 0 X2 0

⎤

⎥⎥⎥⎦ X1 = C1 + C2ξ
X2 = C2

⎡

⎢⎢⎢⎣

−4q
q
q
q
q

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X 0 0 0 0
0 Y1 Y2 Y3 Y4
0 Y2 Y5 Y6 Y7
0 Y3 Y6 Y8 Y9
0 Y4 Y7 Y9 Y10

⎤

⎥⎥⎥⎦ X = Ae−4qξ

Yi = Bi e
qξ for i = 1, . . . , 10

q = 0
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where γ and δ are real constant. For n = 2, we choose A = diag [λ,−λ], then its
corresponding matrix g is diag

[
εeλξ ,−e−λξ /ε

]
, where λ and ε are real constant. Thus,

g = diag
[
−C

(
1 − 2m

r

)−p
,
(
1 − 2m

r

)p
/C

]
, where p = − λγ

2m and C is a real constant.

Also, the differential equations for the function f (26) are transform to

(
ln f

√
ρ
)
,r = 2m2 p2 sin2 θ

r2 − 2mr + m2 sin2 θ

r − m

r2 − 2mr
(113)

(
ln f

√
ρ
)
,θ

= − 2m2 p2 sin θ cos θ

r2 − 2mr + m2 sin2 θ
(114)

Solving them, we get

f = D�−p2

√
ρ

(115)

where D is a constant and

� = 1 + m2 sin2 θ

r2 − 2mr
(116)

Therefore, a exact solution to EFE is

ĝ = D�1−p2

√
ρ

(
dr ⊗ dr + (r2 − 2mr)dθ ⊗ dθ

)

− ρ

C

(
1 − 2m

r

)p

dt ⊗ dt + Cρ

(
1 − 2m

r

)−p

dx4 ⊗ dx4
(117)

9 Conclusions

EFE are one of themost interesting and complicated equations to solve in physics. Techniques
to solve them have been developed for 4-dimensions in the past. One of the most successful
techniques relies on subspaces and subgroups. This method helps to generate solutions of
the 4-dimensional EFE on demand, such that the Laplace equation gives the solutions for
monopoles, dipoles, etc. In this work we used this technique to solve the (n+2)-dimensional
EFE in vacuum, reducing the final matrix equation to its normal Jordan form, which permits
to solve the equations with some facility. We obtained a great amount of solutions of the
EFE in terms of the Laplace parameter, such that for each solution of the Laplace equations,
we may get a different solution of the EFE. One can play with the different combinations of
solutions to obtain even more solutions.
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