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Abstract
The rotations of rigid bodies in Euclidean space are characterized by their instantaneous
angular velocity and angular momentum. In an arbitrary number of spatial dimensions, these
quantities are represented by bivectors (antisymmetric rank-2 tensors), and they are related
by a rank-4 inertia tensor. Remarkably, this inertia tensor belongs to a well-studied class of
algebraic curvature tensors that have the same index symmetries as the Riemann curvature
tensor field used in general relativity. Any algebraic curvature tensor can be decomposed into
irreducible representations of the orthogonal group via theRicci decomposition. We calculate
the Ricci decomposition of the inertia tensor for a rigid body in any number of dimensions,
and we find that (unlike for the Riemann curvature tensor field) its traceless Weyl tensor is
always zero, so the inertia tensor is completely characterized by its (rank-2) Ricci contraction.
So unlike in general relativity, the traceless Weyl tensor does not cause any qualitatively new
phenomenology for rigid-body dynamics in n ≥ 4 dimensions.

Keywords Rigid-body dynamics · Higher dimensions · Exterior algebra · Algebraic
curvature tensors · Ricci decomposition

1 Introduction

A first course in classical mechanics usually begins by discussing the rotation of rigid plane
figures in two dimensions. In this context, students are taught the familiar equations for the
2D rigid-body rotation about a fixed point

L = I (2D)ω, τ = dL

dt
= I (2D)α, T = 1

2
I (2D)ω2, (1)

where L is the body’s angular momentum, I (2D) = ∫
dm r2 is its moment of inertia about the

point of rotation (dm = σ(r) d2r with σ(r) the areamass density),ω is its angular velocity, τ
is the net external torque

∑
r Fθ applied to it, t is time, α is the body’s angular acceleration,

and T is its rotational kinetic energy. In the 2D context, I (2D) and T are considered to
be nonnegative scalars and L , ω, τ , and α to be signed scalars whose signs represent a
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counterclockwise or clockwise orientation. Students are sometimes vaguely told that similar
formulas often work for 3D rotation about axes with high symmetry and given somewhat
mysterious formulas for the moments of inertia about various axes for various 3D shapes.

A later course will usually cover the rotation of rigid bodies in 3D more systematically.
Students learn that in 3D, Eqs (1) generalize to

L = I (3D)ω, τ = dL
dt

, T = 1

2
ω · I (3D) · ω := 1

2
ωi I

(3D)
i j ω j (2)

(in the inertial “laboratory” frame of reference) [1]. The kinetic energy T remains a scalar
quantity, but L, ω, τ , and α are now considered to be vector quantities. Now L = ∫

r ×
dm v(r) (where now dm = ρ(r)d3r with ρ(r) the volume mass density), ω is oriented
along the axis of rotation with a magnitude equal to the angular speed, τ = ∫

r × dFext(r),
and α = dω/dt . (More precisely, they are all pseudovector quantities that do not change
orientation under a parity inversion.) The scalar moment of inertia I (2D) generalizes to a
symmetric rank-2 inertia tensor, or (more prosaically but concretely) a symmetric 3×3matrix
I (3D). The components of this tensor are determined by the rigid body’s mass distribution:

I (3D)
i j =

∫
dm

(
r2δi j − ri r j

)
. (3)

Since the tensor is represented by a real symmetric matrix, it can always be diagonalized.
Its eigenvectors are referred to as the rigid body’s principal axes and the corresponding
eigenvalues are the principal moments of inertia about those axes. Only for rotations about
the principal axes do the vector Eq. (2) simplify to the scalar Eq. (1).

The tensor I (3D) is no longer necessarily constant in the laboratory frame as its orientation
changes, so the easiest course of action is often to shift to a non-inertial “body” frame of
reference in which I (3D) is constant, even at the expense of the additional complications from
working in a non-inertial reference frame. Any student who has studied rigid-body motion in
3D can testify that the relatively simple Eqs. (2) and (3) can already lead to very complicated
and unintuitive rotational dynamics.

But three dimensions are not the end of the story. What about an arbitrary number of
dimensions n? Rigid-body rotation in higher than three dimensions is admittedly less realistic
than n = 2 or n = 3, but considering the fully general case is still an interesting thought
exercise that will yield unexpected connections to the study of general relativity, which is
naturally formulated in greater than three dimensions.

Although this article will eventually use some advanced tools developed to study general
relativity, most of it should be accessible to someone with a solid understanding of advanced
undergraduate classicalmechanics.We leave some of themore technicalmathematical details
in the footnotes.

2 Mathematical preliminaries

We define a rigid body to be a set of points whose relative distances remain constant. An
extended body can only remain rigid if the causal influence of an external force on one
point is instantly transmitted to all other points, so rigid bodies cannot exist in a relativistic
setting. Moreover, we will require that the body is free to perform unconstrained rotation,
which requires that space be flat. We will therefore work in the Euclidean space R

n endowed
with the usual flat and positive-definite Euclidean inner product (except where indicated
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otherwise).1 We will always work in Cartesian coordinates, in which the metric indices
are given by the Kronecker delta δi j . We will use the Einstein summation convention that
repeated indices are summed from 1 to n, and we will not distinguish between raised and
lowered tensor indices. We will denote the (constant) Euclidean metric tensor by δ and will
only occasionally use g to denote the metric tensor field for an arbitrary (potentially curved)
manifold.

The rest of this section explains in some detail the bivector representation of rotations in
arbitrary dimensions that we will use in later sections. Readers who are already familiar with
that representation can skip the rest of this section, and those who are less interested in the
mathematical details can skim it.

2.1 The exterior algebra

Several ideas from the exterior algebra will be very useful [2]. If k is a natural number, then
a k-vector ormultivector is an element of

∧k
(V ), the kth exterior power of a vector field V .2

At a “physicist’s level of rigor”,
∧k

(V ) is the space of totally antisymmetric rank-k tensors
over V . A p-vector A and a q-vector B can be combined together into a (p+q)-vector using
the wedge product

(A ∧ B)μ1,...,μp+q = (p + q)!
p! q! A[μ1...μp Bμp+1...μp+q ],

where [ ] around tensor indices denotes total antisymmetrization.3 A multivector is simple
(or decomposable or a k-blade) if it can be expressed as a wedge product v1 ∧ · · · ∧ vk of k
rank-1 vectors vi .∧k

(Rn) is a real vector space of dimension
(n
k

)
, since a natural basis is the set of simple

wedge products ei1 ∧· · ·∧eik of k unit vectors within an orthonormal basis forR
n . Moreover,

we can use the inner product on R
n to map any multivector A ∈ ∧k

(V ) to its Hodge
dual multivector 	A ∈ ∧n−k . For Euclidean space, the Hodge dual of a multivector is just
proportional to its contraction with the totally antisymmetric Levi-Civita tensor εμ1...μn :

(	A)μ1...μn−k = 1

k!εμ1...μn−kν1...νk Aν1...νk .

(The formula is more complicated for more general manifolds.) For a Reimannian (i.e.
positive-definite) metric, the double Hodge star of a k-vector A ∈ ∧k

(Rn) is 		A =
1 In this article, the notation R

n always refers to the full Euclidean inner product space, not just the vector
space.
2 We use the terminology convention that “multivectors” must be homogeneous with fixed k. The terms
“multivector”, “bivector”, etc. are often associatedwith the somewhat obscure formalism of geometric algebra,
but this article does not use any concepts from geometric algebra – just the simpler and much more standard
exterior algebra of totally antisymmetric tensors. Some physicists familiar with general relativity might be
more used to referring to totally antisymmetric tensors as “differential forms”. But strictly speaking, differential
forms are smooth multivector fields that are functions of a spacetime manifold. The bivectors discussed in this
article are not local fields but correspond to individual extended objects, so they are just fixed bivectors and
not differential forms.
3 There are two different normalization conventions for the wedge product in common use. In this article, we
use the “geometer’s convention” that is standard in physics rather than the “algebraist’s convention”. See [3]
for a detailed discussion of the pros and cons of each convention.
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(−1)k(n−k)A. The vector space
∧k

(Rn) inherits its own inner product from the Euclidean
inner product. The inner product between simple k-vectors is given by

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 := det M, Mi j := 〈vi , w j 〉,
and it extends to general multivectors by linearity. As a special case, the norm-squared of a
simple k-vector v1∧· · ·∧vk equals theGram determinant of thematrix with entries 〈vi , v j 〉.4

2.2 Rotations in arbitrary dimensions

By definition, a rotation R of n-dimensional Euclidean space preserves angles and distances
between points, andmore generally it preserves the Euclidean inner product between vectors.
It is also straightforward to show that a rotation must be a linear transformation on vectors.
Therefore, for any vectors v and u, δ(v, u) ≡ δ(Rv, Ru). In matrix language, this becomes

(Rv)T δ(Ru) = vT RT δRu = vT δu,

where δ represents the n × n identity matrix. Since this equation must hold for all vectors
u and v, we must have that RT δR = δ. If we only consider proper rotations, which are
connected to the identity operator, then the set of proper rotation operators form the Lie
group SO(n).

Angular velocity and angular momentum correspond to infinitesimal rotations, which
are elements of the Lie algebra so(n). To see what the elements A of (the fundamental
representation of) so(n) look like, we can Taylor expand the rotation operator in equation
RT R = δ to first order in the rotation angle θ : letting R = δ + θ A + o

(
θ2

)
gives

(
δ + θ AT + o

(
θ2

)) (
δ + θ A + o

(
θ2

))

= δ + θ
(
A + AT

)
+ o

(
θ2

)

= δ,

so A + AT = 0 and A must be an n × n antisymmetric matrix. An infinitesimal rotation
generator A ∈ so(n) can be mapped to a rotation R ∈ SO(n) through a non-infinitesimal
angle θ by the exponential map R = exp(θ A).5 For matrix representations like the one that
we are implicitly considering, the exponential map is just the ordinary matrix exponential.

At our level of rigor, antisymmetric matrices are bivectors in
∧2

(Rn). So in general
dimensions, an infinitesimal rotation is not represented by a (pseudo-)vector but by a bivector
[4].6

4 We will use the normalization convention that when calculating the inner product of k-vectors, the combi-
natorial factor 1/k! goes into the index contraction rather than into the antisymmetric tensors that represent
the orthonormal basis vectors êi1 ∧ · · · ∧ êik for

∧k (Rn). That is, the tensors that represent êi1 ∧ · · · ∧ êik
have elements 1, 0, and −1 for all k, while the inner product on the exterior algebra

∧k (Rn) is given by
〈A, B〉∧k (Rn )

= 1
k! AI BI (where I denotes the multi-index (i1, . . . , ik )) instead of by the usual inner product

AI BI on the tensor algebra.
5 In the context of quantum mechanics, physicists usually use the convention that generators are Hermitian
operators and the exponential map is given by A → exp(−i At/�), where t is a continuous real parameter like
time, distance, or angle. In this article, it will be easier to stick to real numbers and use the phase convention
more common among mathematicians.
6 The Lie algebra so(n) is isomorphic to

∧2(Rn) as a vector space, but instead of the wedge product it has a
Lie bracket given by the matrix commutator. We will not need this Lie bracket in this article.
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More concretely, if xi and x j are orthonormal vectors in R
n , then an infinitesimal rotation

in the i- j plane (oriented so that xi rotates into x j ) is generated by the simple bivector xi ∧x j .
More generally, the magnitude of a simple bivector gives the (infinitesimal) angle of rotation,
and its sign (or equivalently, the ordering of the two vectors being wedged together) gives
the orientation of the rotation.7 A simple bivector generates a rotation in a single plane that
leaves all orthogonal directions unchanged. (In n > 3 dimensions, we cannot describe this as
a rotation about a single 1D axis, because there are multiple directions that are all orthogonal
to the plane and to each other.) All bivectors over R

n are simple if n ≤ 3, so all rotations
occur in a single plane. But not all bivectors are simple if n ≥ 4; instead, any bivector in∧2

(Rn) can be decomposed into a sum of at most
⌊ n
2

⌋
orthogonal simple bivectors (where 
 �

denotes the floor function). This decomposition is generically unique, unless multiple simple
bivectors have the same magnitude [4].8 Therefore, not all rotations of higher-dimensional
Euclidean space occur in a single plane; a general rotation of Euclidean space in n dimensions
is generated by orthogonal planes rotating simultaneously (generically at different speeds).

In three dimensions, the usual (pseudo-)vector representations of angular velocity, angular
acceleration, angular momentum, and torque are all derived from the fundamental infinites-
imal pseudovector rotation dθ . These pseudovector representations are the Hodge duals of
the corresponding bivectors. (The fact that they transform as pseudovectors is a clue that a
bivector description is more fundamental, because unlike pseudovectors, bivectors transform
in the natural way under parity inversion [4].) The bivector representations of all of these
quantities are defined in any dimension, but the pseudovector representations only make
sense for n = 3. As expected, for n = 2 the bivector space is one-dimensional, representing
the single scalar degree of freedom for plane rotations. For n = 3, the bivector space is three-
dimensional, corresponding to the usual axis-magnitude representation of a 3D rotation. But
for n = 4, the bivector space is six-dimensional – more than the four degrees of freedom that
we might expect based on our 3D intuition.

3 The inertia tensor in arbitrary dimensions

In three dimensions, the inertia tensor is a linear map that maps an angular velocity
(pseudo-)vector to an angular momentum (pseudo-)vector. But in arbitary dimensions, angu-
lar velocity and angular momentum are represented by bivectors, not vectors. The inertia
tensor therefore generalizes to a rank-4 tensor I : ∧2

(Rn) → ∧2
(Rn) that linearly maps

bivectors to bivectors. In terms of indices, this becomes9

Li j = 1

2
Ii jklωkl . (4)

7 When we say that rotations are “infinitesimal”, we mean that they are small enough that we can neglect
any small non-commutative composition effects and add them together without keeping track of ordering.
The higher-order non-commutative effects are captured by the Lie bracket structure mentioned in a previous
footnote.
8 Inmatrix language, a real antisymmetric n×nmatrix A represents a simple bivector iff there exists a nonzero
vector v ∈ R

n such that A[i jvk] ≡ 0. This is true for all real antisymmetric n × n matrices A if n ≤ 3, but
only for some such matrices if n ≥ 4. Geometrically, it means that the vector v lies in the unique plane in R

n

spanned by the simple bivector A.
9 The factor of 1/2 in (4) is not necessary. We simply include it to match the standard normalization for the
3D rank-2 tensor, and to parallel our conventions for the inner product on

∧k (Rn) and the Hodge star operator
that we normalize a contraction of k totally antisymmetric tensor indices by 1/k!. But the tensor contraction
in (4) does not represent an inner product on

∧k (Rn), so we could also consistently absorb the factor of 1/2
into the normalization of I .
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More abstractly, the inertia tensor can still be thought of as a linear operator on a real inner
product space – but the inner product space is no longer the n-dimensional physical Euclidean
space, but the

(n
2

) = 1
2n(n−1)-dimensional inner product space

∧2
(Rn) of bivectors on R

n .
This linear operator will turn out to be self-adjoint, just like in the 3D case.

After all this setup, it is actually very simple to derive the inertia tensor. In arbitrary
dimensions, we do not have a cross product, so the angular momentum generalizes to a
bivector wedge product of the vectors r and dm v:

L =
∫

r ∧ (dm v).

(dm now represents the arbitrary-dimensional volume form ρ(r) dnr .)10 With our choice of
sign conventions, the 3D rigid-rotation formula v = ω × r (which ultimately derives from
d r = dθ × r) generalizes to v j = rkωk j . So

Li j =
∫

dm
(
2r[iv j]

) =
∫

dm
(
2r[i |rkωk| j]

)

=
∫

dm
(
2r[i |rkδ| j]lωkl

)
. (5)

This equation would seem to suggest that Ii jkl = ∫
dm

(
4r[iδ j]lrk

)
. Strictly speaking, this

formula is correct in the sense that it returns the correct value of L , but it contains unphysical
degrees of freedom. The inertia tensor inputs a bivector angular momentum ω that is always
antisymmetric, so any part of Ii jkl that is symmetric in k and l will vanish by symmetry when
contracted with ωkl , and only the part that is antisymmetric in k and l will affect the output
L . We therefore explicitly antisymmetrize I on k and l to more clearly show which are the
true degrees of freedom that affect the angular momentum:

Ii jkl =
∫

dm
(−4r[i δ j][k r l]

)
(6)

=
∫

dm
(−riδ jkrl + riδ jlrk + r jδikrl − r jδilrk

)
.

In three dimensions, (4) can be reformulated in terms of pseudovector quantities as

L = 	L = 	

(
1

2
Iω

)

= 	

(
1

2
I (	ω)

)

,

or in index notation,

L p = 1

4
εpi j Ii jklεklqωq .

Comparing with the first equation in (2), we see that

I (3D)
pq = 1

4
εpi j Ii jklεklq =

∫
dm

(
r2δpq − rprq

)
,

which agrees with (3).

10 If we define the torque bivector τ := ∫
r ∧ dF = ∫

r ∧ dm dv
dt , then τ = dL

dt in a straightforward
generalization of the 3D case.
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The inertia tensor satisfies several index symmetries:

Ii jkl = −I jikl = −Ii jlk (7a)

Ii jkl = Ikli j (7b)

Ii jkl + Iikl j + Iil jk = 0. (7c)

Remarkably, these are the exact same symmetries satisfied by the Riemann curvature tensor
field in general relativity [5]. But there is one important structural difference between the
inertia tensor and the Riemann curvature tensor field: the inertia tensor is a single fixed tensor,
while the Riemann curvature tensor field is defined over a spacetime manifold.11 The last
section of this article exploits this parallel by using tools from general relativity to study the
inertia tensor for rigid bodies in Euclidean spacetime.

4 The Ricci decomposition of the inertia tensor

4.1 Algebraic curvature tensors

Any rank-4 tensor that satisfies the index symmetries (7), including the inertia tensor I given
by (6), is referred to as an algebraic curvature tensor by analogy with the Riemann curvature
tensor field [7].

Identity (7c) is known as the first or algebraic Bianchi identity.12 It follows from identi-
ties (7a) and (7b) if n = 2 or 3, but is an independent condition if n ≥ 4 [7]. Identity (7a)
simply means that an algebraic curvature tensor can be thought of as a linear operator on∧2

(Rn). Identity (7b) means that this operator is self-adjoint, just as the rank-2 inertia tensor
is in 3D. Therefore, there always exists a complete orthonormal basis of

(n
2

)
eigenbivectors

ω(i) with eigenvalues I (i) (the principal moments of inertia) such that if the rigid body is
rotating with angular velocity ω(i), then its angular momentum L = I (i)ω(i). These eigen-
bivectors are the generalizations of the principal axes in 3D (but in higher dimensions, they
may not be simple and so may not correspond to rotations within a single plane). In general
relativity, this approach (thinking of the Riemann curvature tensor field as a self-adjoint oper-
ator on

∧2
(M) and considering its eigendecomposition) leads to the Petrov classification of

spacetimes [8].

4.2 The Kulkarni-Nomizu product

It will be convenient to introduce the bilinear Kulkarni-Nomizu product of symmetric rank-2
tensors [7]. If A and B are symmetric rank-2 tensors, then their Kulkarni-Nomizu product

11 There is a subtle point here. The integrated tensor I is indeed just a single tensor with no spatial dependence.
But, as mentioned above, the differential dm is technically a true differential volume form onR

n (although the
full machinery of differential forms is somewhat overkill for integrating over Euclidean space). The integrand
in parentheses in (6) explicitly depends on the position r and so is obviously a tensor field that varies over
space. Taken together, the full differential form being integrated in (6) is a tensor-valued volume form [6].
Tensor-valued differential forms cannot be integrated over generic curved spaces, because there is no unique
natural way to parallel-transport the tensor at each point in the manifold to the same base point so that the
tensors can be added together within the same vector space. But tensor-valued differential forms defined on a
flat manifold can be integrated, because the vector spaces at each point are naturally isomorphic.
12 In keeping with Stigler’s law of eponymy, the algebraic Bianchi identity was discovered by Ricci.
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A � B is a rank-4 tensor defined by

(A � B)i jkl := Aik B jl − Ail B jk − A jk Bil + A jl Bik .

Any Kulkarni-Nomizu product is an algebraic curvature tensor that satisfies (7) (although
the converse is not true).13 The Kulkarni-Nomizu product is symmetric: A � B ≡ B � A.

Note that
(A � A)i jkl = 4Ai[k Al] j .

For an arbitrary two-dimensional curved surface, the Riemann curvature tensor field equals
1
4 R g � g, where R is the Ricci scalar field (twice the Gaussian curvature) and g is the
metric tensor field. All space forms – Riemannian manifolds of any dimension with constant
sectional curvature – also have a Riemann curvature tensor field equal to 1

4 R g� g, although
in this case the Ricci scalar field R is constant over the manifold.

Also note that if v is a rank-1 vector, then

(A � (v ⊗ v))i jkl = −4v[i A j][kvl].

Equation (6) therefore simplifies to the compact expression

I = δ �

∫
dm (r ⊗ r). (8)

4.3 The Ricci decomposition

If R is either an algebraic curvature tensor on R
n or an algebraic curvature tensor field on

an arbitrary n-dimensional manifold with metric tensor g, then R has only one independent
single trace: the rank-2 symmetric Ricci-contracted tensor (or tensor field)[7]14

R(2)
jl := Ri jil .

The other five single traces equal ±R jl or 0. The only independent double trace of R is the
Ricci-contracted scalar (or scalar field)

R(0) := R(2)
i i = Ri ji j .

From these, we can form the trace-free Ricci-contracted tensor (or tensor field)

R̂(2) := R(2) − 1

n
R(0)g.

R can be naturally decomposed into a (direct) sum of three irreducible representations of
the orthogonal group O(n):

R = S + E + C . (9)

13 There is a formal similarity between the commutation relations [Jμν, Jρσ ] for the Lie algebra so(3, 1)
(the generators of the (3+1)D Lorentz group) and the formal Kulkarni-Nomizu product −i η� J , where η is
the flat Minkowski metric with signature (−, +,+,+) (and we use the standard physicists’ convention for the
normalization of the generators, rather than the mathematicians’ convention used in the main text) [9]. But the
latter expression is not actually a true Kulkarni-Nomizu product, because the tensor J is antisymmetric rather
than symmetric. The commutator is therefore not an algebraic curvature tensor; it is antisymmetric rather than
symmetric under the simultaneous exchange (μ ↔ ρ, ν ↔ σ), and requirement (7b) is violated.
14 If we consider the linear map from the space of symmetric rank-2 tensors A to the space of algebraic
curvature tensors that is given by A → g � A (where g is an arbitrary inner product on R

n ), then this map
turns out to be exactly the transpose of the Ricci contraction.
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This decomposition is known as theRicci decomposition [7]. Here S, E , andC are themselves
algebraic curvature tensors (or tensor fields) given by

S := R(0)

2n(n − 1)
g � g

E := 1

n − 2
R̂(2)

� g

C := R − S − E .

For n = 2, only the S term is well defined, so the decomposition is trivial. For n = 3, the C
term vanishes identically. For n ≥ 4, all three terms are generically nonzero.

Equation (9) is mathematically trivial by the definition of C , but the Ricci decomposition
is useful because each term lies in a different irreducible representation of the orthogonal
group. Loosely speaking, the S term contains the doubly-contracted degree of freedom in the
algebraic curvature tensor that transforms under rotations as a scalar, the E term contains the
singly-contracted degrees of freedom that transform under rotations as a traceless symmetric
rank-2 tensor, and the C term contains the uncontracted degrees of freedom that transform
under rotations as a rank-4 tensor.

In general relativity, the S + E terms contain the same information as the Ricci tensor
field, which reflects spacetime’s local response to matter, while C is the Weyl tensor field,
which is totally traceless and contains the gravitational degrees of freedom that propagate
through vacuum. We can simplify the former sum to

S + E = A � g, (10)

where the symmetric rank-2 tensor

A := 1

n − 2
R̂(2) + 1

2n(n − 1)
R(0)g

= 1

n − 2

(

R(2) − 1

2(n − 1)
R(0)g

)

is known as the Schouten tensor for the algebraic curvature tensor [10].15 The Schouten
tensor and the Ricci tensor are very closely related, and either can be easily derived from the
other; they are essentially just rescaled and trace-adjusted versions of each other.

For the fixed inertia tensor (6), we have (shifting notation from R to I )

I (2) =
∫

dm
(
(n − 2)r ⊗ r + r2δ

)

I (0) = 2(n − 1)
∫

dm
(
r2

)

Î (2) = (n − 2)
∫

dm

(

r ⊗ r − 1

n
r2δ

)

A =
∫

dm (r ⊗ r). (11)

Combining Eqs. (10), (11), and (8), we see that I = S + E and so C = 0. Unlike for
the Riemann curvature tensor field (for a generic spacetime) in general relativity, the Weyl
component of the inertia tensor for rigid-body rotation vanishes identically in all dimensions.

15 Some sources normalize the Schouten tensor to be twice this expression or to have the opposite sign.
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The inertia tensor I is fully characterized by its Schouten tensor (11) via Eq. (8). For
n ≥ 3 dimensions, the inertia tensor only has the 1

2n(n + 1) independent degrees of freedom
of its Schouten tensor. For n ≥ 4, this is less than the 1

12n
2(n2 − 1) degrees of freedom in a

generic algebraic curvature tensor.
Moreover, the fact that the Weyl part of I vanishes follows directly from Eq. (8) by

rotational symmetry. I depends only on a rank-2 symmetric tensor. So the degrees of freedom
of I must all transform under rotations as rank-2 symmetric tensors, which means that they
must lie in the S ⊕ E representation of the orthogonal group. This implies that I can only
have nonzero S and E components in the Ricci decomposition, and its Weyl component C
must vanish. We therefore could have concluded that C = 0 directly from Eq. (8) without
explicitly working out any of the traces of I or the Schouten tensor (although in this case,
doing so is not difficult).

Equation (8) implies a high redundancy in the components of the inertia tensor I that
simply reflects the fact that much of the “work” that I is doing is simply matching up indices
correctly in the tensor contraction. If an algebraic curvature tensor on R

n has vanishingWeyl
component – or equivalently, if it can be expressed in the form A � δ – then its action (4)
simply maps the bivector ω to twice the antisymmetric part of the matrix product Aω. So
in order to calculate the angular momentum L corresponding to an explicit angular velocity
bivector ω, the most efficient course of action is often to entirely skip calculating I and to
directly use Eq. (5).

In three dimensions, the standard 3D inertia tensor (3) can be expressed in terms of the
Schouten tensor (11) by

I (3D) = Tr(A)δ − A.

The phenomenology of general relativity changes qualitatively between n ≤ 3 and n ≥ 4
spacetime dimensions. If n ≤ 3, then the Weyl tensor field vanishes (or is undefined), so no
gravitational degrees of freedom can propagate locally through a vacuum. But if n ≥ 4, then
the possibility of a nontrivial Weyl tensor field enables much richer phenomenology, such as
gravitational waves. We have shown that in arbitrary dimensions, the inertia tensor for rigid-
body rotation is an algebraic curvature tensor that shares many mathematical similarities
with the Riemann curvature tensor field. From this parallel alone, we might have guessed
(by analogy with general relativity) that the possibility of a nonzero traceless Weyl tensor in
the inerta tensor qualitatively changes the phenomenology of rigid-body dynamics in n ≥ 4
dimensions. But we have shown that this guess is not true, because there is a crucial difference
between the Riemann and the inertia tensors: the latter cannot contain a Weyl tensor even in
n ≥ 4 dimensions.16
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16 Of course, there is a muchmore obvious difference between the Riemann and the inertia tensors: the former
is a tensor field that varies over a spacetime manifold, while the latter is just a fixed tensor. So the analogy is
only rough, and this guess may not have been very plausible in the first place.
Moreover, we are not claiming that there are no qualitative differences between rigid-body dynamics in n ≤ 3
and n ≥ 4 dimensions. There are — most notably, the fact that in n ≥ 4 dimensions there exist non-simple
bivectors, which generate proper rotations that are not confined within a single plane. (In four dimensions,
these are sometimes called double rotations.) We are only making the narrower claim that – in contrast with
general relativity – Weyl tensors do not cause qualitatively new phenomenology in higher dimensions.
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