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Abstract
Weprovide a proof based on transfinite induction that everyweakMarkov kernel is equivalent
to a Markov kernel. We only assume the space where the weak Markov kernel is defined
to be second countable and metrizable. That generalizes some previous results where the
kernel is required to be defined on a standard Borel space (which is second countable and
completely metrizable) and the framework is the theory of stochastic operators. This property
of weak Markov kernels is at the root of the characterization of a commutative POVM as the
fuzzification of a spectral measure through a Markov kernel. As a result, the characterization
of commutative POVMs is also generalized. We then revisit the relationships between weak
Markov kernels, Markov kernels, commutative POVMs and fuzzy observables.
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1 Introduction

Fuzzy observables play a very important role in quantum physics and in the analysis of its
foundations. Moreover, they are connected to fuzzy sets since they can be interpreted as
fuzzification of sharp observables. From the mathematical viewpoint, they are described by
commutative positive operator valued measures (POVMs). A POVM is a map F : B(X) →
L +

s (H ) from theBorel σ -algebra of a topological space X to the space of linear, self-adjoint,
positive operators in the Hilbert space H satisfying the following properties: 1) F(X) = 1
where 1 is the identity operator, 2) for every countable family {Δn} of disjoint sets inB(X),

F
( ∞⋃

n=1

Δn
) =

∞∑

n=1

F(Δn).
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where the series converges in the weak operator topology. It is said to be commutative if[
F(Δ1), F(Δ2)

] = 0 for all Δ1 ,Δ2 ∈ B(X). A POVM such that F(Δ) is a projection
operator for every Δ ∈ B(X) is called a projection valued measure (PVM). In particular, a
real PVM (X = R) is called a spectral measure. As it is well known, spectral measures are in
a one-to-one correspondence with self-adjoint operators, the latter representing standard (or
sharp) quantum observables. By analyzing the process of measurement in quantum physics,
it can be shown [14, 19, 23] that POVMs provide the right mathematical representation for
quantum observable; spectral measures being a too restrictive mathematical tool. Quantum
observables represented by POVMs that are not sharp are called generalised or unsharp
observables.

We recall that 〈ψ, F(Δ)ψ〉 (where 〈·, ·〉 denotes the inner product inH ) is interpreted as
the probability that a measurement of the observable represented by F gives a result in Δ.

Before we proceed with the proof of the main results it is helpful to illustrate the connec-
tions betweenMarkov kernels, POVMs and fuzzy observables.We can consider, for example,
the joint measurement of position andmomentum observables. If the position andmomentum
observables are represented by the spectral measures EQ and EP respectively, the mathe-
matical formalism does not allow us to describe their joint measurement which should be
represented by a joint POVM of which EQ and EP are the marginals. Such a POVM exists
if and only if the spectral measures EQ and EP commute and it is well known that they do
not. On the contrary, there are couples of non commuting POVMs that are the marginals of
a joint POVM. An example is provided by the fuzzification of EQ and EP by means of two
Markov kernels μQ and μP ,

FQ(Δ) =
∫

R

μ
Q
Δ(λ) dEQ

λ = μ
Q
Δ(Q), (1)

FP (Δ) =
∫

R

μP
Δ(λ) dE P

λ = μP
Δ(P).

where μ
Q
(·)(λ) is a probability measure for every λ ∈ R and μ

Q
Δ(·) is measurable for every

Δ and the same is true for μP
(·)(λ) and μP

Δ(·). Those are the conditions defining a Markov
kernel of which we recall the definition below.

Definition 1 Let (Λ,A ) be a measurable space andB(X) the Borel σ -algebra of a topolog-
ical space X . A Markov kernel is a map μ : Λ × B(X) → [0, 1] such that,
1. μΔ(·) is a measurable function for each Δ ∈ B(X),
2. μ(·)(λ) is a probability measure for each λ ∈ Λ.

Going back to the position and momentum POVMs FQ and FP we remark that they
can be interpreted [12, 24] as fuzzification of EQ and EP respectively. Indeed, for every
Δ ∈ B(R), (R, μ

Q
Δ(·)) defines a fuzzy set [29] (see below). A very relevant feature of FQ

and FP is that there is a third POVM F(Δ1 × Δ2) of which FQ and FP are the marginals,
i.e., FQ(Δ1) = F(Δ1 × R), FP (Δ2) = F(R × Δ2). The POVM F represents the joint
measurement of position and momentum [3, 15, 25]. The property that, in some cases, two
not commuting POVMs can have a joint POVM is at the root of the formulation of quantum
mechanics on phase space [10, 11, 25, 26].

Note that FQ and FP are commutative POVMs. Indeed, every operator FQ(Δ) is a func-
tion of the self-adjoint operator Q. As a consequence the family of operators {FQ(Δ)}Δ∈B (R)

is commutative. The same is true for FP . That is true in general, i.e., a POVM which is the
fuzzification of a spectral measure is commutative.
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The fundamental result about commutative POVMs is that all of them are the fuzzification
of a spectralmeasure [2, 4, 18, 20]: let X beHausdorff, second countable, and locally compact.
Every commutative POVM F : B(X) → L +

s (H ) is the fuzzy version of a spectral measure
EF (the sharp version of F) with the fuzzification represented by a Markov kernel μ,

〈ψ, F(Δ)ψ〉 :=
∫

μΔ(λ) d〈ψ, EF
λ ψ〉, Δ ∈ B(X), ψ ∈ H . (2)

The quantity 〈ψ, EF (Δ)ψ〉 can be interpreted as the probability that a perfectly accurate
measurement (sharp measurement) of the observable represented by the spectral measure E
gives a result in Δ. A possible interpretation of (2) is that [1, 2, 4, 25], due to measurement
imprecision1, the outcomes of the measurement of EF are randomized: if the sharp value
of the outcome of the measurement of EF is λ then the apparatus produces with probability
μΔ(λ) a reading inΔ. As a result, the probability of an outcome inΔ is given by 〈ψ, F(Δ)ψ〉
so that F represents an unsharp measurement of E .

In the framework of fuzzy sets theory, (2) can be interpreted as follows (see [12] for more
details). TheMarkov kernelμ provides a family of fuzzy events {(R, μΔ)}Δ∈B (R). For every
ψ ∈ H , the expression

〈ψ, F(Δ)ψ〉 =
∫

R

μΔ(λ) d〈ψ, EF
λ ψ〉

can then be interpreted as the probability of the fuzzy event (R, μΔ) with respect to the
probability measure 〈ψ, EF (·)ψ〉. In other words, the unsharp observable F gives the prob-
abilities of the fuzzy events (R, μΔ) with respect to the probability measures corresponding
to EF (they are 〈ψ, EF (·)ψ〉, ψ ∈ H ).

It is worth remarking that starting from the fuzzy observable F it is possible to obtain the
sharp observable EF of which F is a fuzzy version (see Ref.s [5–8]).

Several proofs of (2) have been provided [2, 4, 18, 20, 21]. All of them are based on the
existence, for every weak Markov kernel γ (see Definition 2 below), of a Markov kernel μ

which is equivalent to γ . In order to illustrate this point, let us consider the von Neumann
algebra A (F) generated by {F(Δ)}Δ∈B (X). It is commutative and then singly generated by
a self-adjoint operator AF with spectral measure EF . Therefore, the commutative POVM
F : B(X) → L +

s (H ) admits an integral representation

〈ψ, F(Δ)ψ〉 =
∫

R

γΔ(λ) d〈ψ, EF
λ ψ〉 (3)

where {γΔ(·)}Δ∈B (X) is a family of measurable functions. Moreover, it is straightforward to
show that the family of functions {γΔ(·)}Δ∈B (X) defines aweakMarkovkernel (seeDefinition
2 below and the proof of Theorem 5) with respect to the measure ν(·) := 〈ψ0, EF (·)ψ0〉
where ψ0 is a separating vector for AW (F).

Definition 2 Let ν be a measure onΛ. A mapμ : (Λ, ν)×B(X) → [0, 1] is a weakMarkov
kernel with respect to ν if:

1. μΔ(·) is a measurable function for each Δ ∈ B(X),
2. for every Δ ∈ B(X), 0 ≤ μΔ(λ) ≤ 1, ν − a.e.,
3. μ∅(λ) = 0,μX (λ) = I ν − a.e.,

1 Which can be thought to be intrinsic to the quantum measurement process and then to be unavoidable
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4. for any sequence {Δi }i∈N, Δi ∩ Δ j = ∅,
∑

i

μΔi (λ) = μ(∪iΔi )(λ), ν − a.e. (4)

In order to prove the integral representation (2) (whereμ is aMarkov kernel), it is necessary
to show that the γ in (3) can be replaced by aMarkov kernelμ. In other words, it is necessary
to show that the weak Markov kernel γ is equivalent to a Markov kernel μ according to the
following equivalence definition.

Definition 3 Two weak Markov kernels γ : (Λ, ν) × B(X) → [0, 1] and β : (Λ, ν) ×
B(X) → [0, 1] are said to be equivalent if, for every Δ ∈ B(X), γΔ(λ) = βΔ(λ), ν − a.e..

As a final remark on the differences between weak Markov kernels and Markov kernels,
we observe that every Markov kernel is a weak Markov kernel with respect to every measure
ν. Note moreover that, in the case of a weak Markov kernel, for every partition Δ = ∪iΔi

(which is a disjoint union), there is a subset Λ{Δ,Δi } ⊂ Λ of measure one such that μΔ(λ) =∑
i μΔi (λ), λ ∈ Λ{Δ,Δi }. That does not ensure that μ(·)(λ) is a probability measure because

of the dependence of Λ{Δ,Δi } on both Δ and its partitions {Δi }i∈N.
Going back to the connections between weak Markov kernels and Markov kernels, an

indirect proof that for every weak Markov kernel there is an equivalent Markov kernel is
provided in [20, 21, 28] where the space X is required to be second countable and completely
metrizable (e.g., a standard Borel space) and the proof is given in the framework of stochastic
operators (see Section 2 below).

In Section 2 we generalize this result to the case of a second countable, metrizable space
(not necessarily completely metrizable) by giving an independent and direct proof which is
based on transfinite recursion. Then, in Section 3, we use this result in order to generalize
the integral representation (2) and some previous results about commutative POVMs.

2 FromWeakMarkov Kernels to Markov Kernels

In the present section we prove that if X is second countable and metrizable, a weak Markov
kernel is equivalent to a Markov kernel. In [21, 28] the equivalence is proved in the more
restrictive case of a standard Borel space X (which is second countable and completely
metrizable). The proof is indirect in the sense that it is derived as a consequence of the fact
that every stochastic operator can be represented by means of a Markov kernel and of the
observation that every weak Markov kernel defines a stochastic operator (see Theorem 6.3
in [21]) for example.

In order to prove the theorem in the more general case of a metrizable space and in order
to give a direct proof, a more fundamental approach is required. As we pointed out in the
comment after Definition 2, in the case of a weak Markov kernel μ, μ(·)(λ) is not, in general,
a probability measure becauseΛ{Δ,Δi } depends both onΔ and {Δi }. Nevertheless, it is worth
observing that: 1) being X second countable, there is a countable basis L for his topology
which generates a countable ring R(L ), 2) given a set Δ ∈ B(X), the family of all its
partitions,Δ = ∪iΔi , has the power of the continuum.All of that rises the following question:
given a weak Markov kernel γ : (Λ, ν) × B(X) → [0, 1], is it possible to use transfinite
recursion in order to show the existence of a subset Λ1 ⊂ Λ, ν(Λ1) = 1, such that the
restriction γ : (Λ1, ν)×R(L ) → [0, 1] is aMarkov kernel? Theorem2 below answers in the
positive.Theproof is basedonLemma1,Corollary 2 andTheorem1 (that in its turn is basedon
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transfinite recursion). Moreover, it is proved (Theorem 3) that γ : (Λ1, ν)×R(L ) → [0, 1]
is the restriction toΛ1 of a Markov kernel α : (Λ, ν)×R(L ) → [0, 1] that can be extended
to a Markov kernel μ : (Λ, ν) × B(X) → [0, 1] which is equivalent to the weak Markov
kernel γ : (Λ, ν) × B(X) → [0, 1].

In what follows,B(X) denotes the Borel σ -algebra of a topological space X ,Λ a compact
subsets of [0, 1], ν a probabilitymeasure onΛ and L∞(Λ, ν) the space of essentially bounded
measurable functions (with two functions identified if they coincide up to ν-null sets). Finally
I denotes a closed subset of [0, 1].
Lemma 1 Let X be a second countable metrizable topological space, S a basis for its
topology and R(S ) the ring generated by S . Let γ : (Λ, ν) × B(X) → [0, 1] be a weak
Markov kernel. Then, there is a weak Markov kernel β : (I , ν0) × B(X) → [0, 1] with βΔ

continuous for every Δ ∈ R(S ), a function g : Λ → I and a set N ⊂ Λ, ν(N ) = 1, such
that, for every Δ ∈ R(S ) and for all x ∈ N, βΔ(g(x)) = γΔ(x).

Proof Without loss of generality, we can assume Λ to be the support of ν. Let Aν be the
von Neumann algebra of multiplication operators in H = L2(Λ, ν) which is isometrically
∗-isomorphic [16] to L∞(Λ, ν). In particular, for every function f ∈ L∞(Λ, ν) there is a
multiplication operator

M f : L2(Λ, ν) → L2(Λ, ν)

[M f (h)](x) = f (x)h(x), h ∈ L2(Λ, ν).

The self-adjoint operator B := Mx , [Bh](x) = [Mx (h)](x) = xh(x), x ∈ Λ generates
Aν . The spectrum of B, σ(B), coincides with the support, Λ, of ν and the spectral measure
corresponding to B is EB(Δ) = MχΔ . Moreover, ν is a scalar-valued spectral measure for
B, i.e., ν and EB are mutually absolutely continuous (see [16], page 133).

Now, we define the commutative POVM,

F(Δ) = MγΔ =
∫

γΔ(x) Mχdx , Δ ∈ B(X). (5)

Let us consider the von Neumann algebraA W (F) generated by {F(Δ)}Δ∈B (X). It coincides
with the von Neumann algebra generated by the set O2 := {F(Δ)}Δ∈R (S ) (see Proposition
1 in Appendix A). We recall that bothS andR(S ) are countable. It can be proved that there
is a generator A of A W (F) with spectrum I ⊂ [0, 1] and scalar valued spectral measure
ν0. Moreover, there is a weak Markov kernel β : (I , ν0) × B(X) → [0, 1] such that, for
every Δ ∈ R(S ), MγΔ = βΔ(A) with βΔ continuous (see Theorem 7 in the appendix for
the details). Since A ∈ A W (F) ⊂ Aν , there must be a measurable function g : Λ → I such
that A = Mg = ∫

Λ
g(x) Mχdx = g(B). Then, the spectral measure E A corresponding to A

is such that E A(D) = EB(g−1(D)) = Mχg−1(D)
, D ∈ B(I ). Hence, ∀Δ ∈ B(X),

∫

Λ

γΔ(λ) Mχdλ
= MγΔ =

∫

I
βΔ(x) E A

dx

=
∫

I
βΔ(x) Mχg−1(dx)

=
∫

Λ

βΔ(g(λ)) Mχdλ

so that, βΔ(g(λ)) = γΔ(λ), ν-a.e.. In particular, beingR(S ) countable, there is a set N ⊂ Λ,
ν(N ) = 1, such that, for every Δ ∈ R(S ) and for all λ ∈ N , βΔ(g(λ)) = γΔ(λ). ��
Theorem 1 Let X be a second countable topological space, S a basis for its topology and
R(S ) the ring generated by S . Let β : (I , ν0) × R(S ) → [0, 1] be a weak Markov
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kernel such that βΔ is continuous. Then there is a subset M ⊂ I , ν0(M) = 1, such that
β : M × R(S ) → [0, 1] is a Markov kernel.

Proof Let Δ ∈ R(S ). A partition, pΔ = {Δi }i∈J , J ⊂ N, of Δ is a collection of disjoint
sets Δi ∈ R(S ) such that Δ = ∪i∈JΔi .

Since β is a weak Markov kernel, to every partition pΔ = {Δi }i∈N there corresponds a
set NpΔ ⊂ I such that ν0(NpΔ) = 1 and

βΔ(λ) −
∑

i

βΔi (λ) = 0, λ ∈ NpΔ. (6)

Consider the collection PΔ of all the partitions of Δ. The power of PΔ is at most c, the
power of the continuum. Let Z be the collection of all countable ordinals. Let PΔ(Z) be a
well ordering of PΔ through Z . Then, PΔ = {pΔ

α }α∈Z , pΔ
α = {Δα

i }i∈Jα , Jα ⊂ N. Now we
use transfinite recursion in order to define a new family of sets. Let NΔ

α := NpΔ
α
denote the

set corresponding to the partition pΔ
α as in (6). Let MΔ

1 = NΔ
1 , MΔ

α+1 = MΔ
α ∩ NΔ

α+1 and
MΔ

η := ∩α<ηMΔ
α if η is a limit ordinal.

Since every η ∈ Z is an enumerable ordinal, ν(MΔ
η ) = 1 for every η ∈ Z . Moreover,

{MΔ
α }α∈Z is non increasing. Now, take the closure MΔ

α of MΔ
α for every α ∈ Z . By the

continuity of βΔ,
βΔ(λ) −

∑

i

βΔα
i
(λ) = 0, λ ∈ MΔ

α . (7)

Since {MΔ
α }α∈Z , is a non-increasing family of closed sets, there must be an index η < ω1 (ω1

denotes the first uncountable ordinal) such that ∩α<ω1M
Δ
α = ∩α<ηMΔ

α = MΔ. Since η is

countable, ν0(MΔ) = ν0(∩α<ηMΔ
α ) = 1. Then, for every partition pΔ

α = {Δα
i }i∈Jα ∈ PΔ.,

βΔ(λ) −
∑

i

βΔα
i
(λ) = 0, ∀λ ∈ MΔ. (8)

Since R(S ) is countable, M := ∩Δ∈R (S )MΔ is such that ν0(M) = 1. Then, for every
Δ ∈ R(S ) and pΔ

α = {Δα
i }i∈Iα ∈ PΔ,

βΔ(λ) −
∑

i

βΔα
i
(λ) = 0, λ ∈ M . (9)

Define

hΔ(λ) =
{

βΔ(λ) λ ∈ M

ϕ(Δ) λ ∈ I/M
(10)

where ϕ is an arbitrary probability measure on R(S ). The map h : Λ × R(S ) → [0, 1] is
a Markov kernel and coincides with β on M . ��

The proof of the previous theorem contains the following Corollary (see equation (10)).

Corollary 1 Let X be a second countable topological space, S a basis for its topology and
R(S ) the ring generated byS . Let β : (I , ν0) ×R(S ) → [0, 1] be a weak Markov kernel
such that βΔ is continuous. Then, there is a set M ⊂ I , ν0(M) = 1, and a Markov kernel
h : I × R(S ) → [0, 1] such that βΔ(λ) = hΔ(λ) for every λ ∈ M. In particular, β and h
are ν0-equivalent.
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Corollary 2 Let X be a second countable metrizable topological space, S a basis for its
topology and R(S ) the ring generated by S . Then, there is a Markov kernel α : Λ ×
R(S ) → [0, 1] and a set Λ1 ⊂ Λ, ν(Λ1) = 1, such that αΔ(λ) = γΔ(λ), λ ∈ Λ1,
Δ ∈ R(S ).

Proof Let γ , g and h be as in Lemma 1 and Theorem 1. Since h : I × R(S ) → [0, 1] is a
Markov kernel, h ◦ g : Λ ×R(S ) → [0, 1] is a Markov kernel as well. Let Λ0 := g−1(M)

where M has been defined in Theorem 1. Then, with the same notation of Lemma 1 and
Theorem 1, EB(Λ0) = EB [g−1(M)] = E A(M) = 1, where 1 denotes the identity operator.
Therefore, ν(Λ0) = 1. Let Λ1 := Λ0 ∩ N where N has been defined in Lemma 1. Note
that ν(Λ1) = 1. By Corollary 1 and Lemma 1, α(λ) := hΔ(g(λ)) = βΔ(g(λ)) = γΔ(λ) for
every Δ ∈ R(S ) and λ ∈ Λ1. ��

The following theorem is a consequence of Lemma 1, Theorem 1 and Corollary 2

Theorem 2 Let X be a second countable metrizable topological space, S a basis for its
topology and R(S ) the ring generated by S . Let γ : (Λ, ν) × B(X) → [0, 1] be a weak
Markov kernel. Then, there is a subsetΛ1 ⊂ Λ, ν(Λ1) = 1, such that γ : (Λ1, ν)×R(S ) →
[0, 1] is a Markov kernel.

Proof By Corollary 2, γΔ(λ) = αΔ(λ), λ ∈ Λ1, ν(Λ1) = 1, Δ ∈ R(S ), where α :
Λ × R(S ) → [0, 1] is a Markov kernel. ��

The proof of the following theorem is based on the use of the Borel hierarchy on X , which
requires the space X to be metrizable since in such case every open set is a Fδ set (see section
3.6 in [27]) or section 30 in [22]).

Theorem 3 The Markov kernel α : Λ × R(S ) → [0, 1] in Corollary 2 can be extended to
a Markov kernel μ : Λ × B(X) → [0, 1] such that, for every Δ ∈ B(X), μΔ(λ) = γΔ(λ),
ν-a.e..

Proof For every λ ∈ Λ, the measure α(·)(λ) : R(S ) → [0, 1] can be extended to the Borel
σ -algebraB(X). Let μ(·)(λ) : B(X) → [0, 1] denotes such an extension. We want to show
that, for each Δ ∈ B(X), μΔ : Λ → [0, 1] is measurable and μΔ = γΔ, ν-a.e.. That can be
proved by using transfinite induction. We start by recalling the definition of Borel Hierarchy
in a second countable metrizable space [22, 27]. Let ω1 be the first uncountable ordinal.
Let K be a family of subsets of X . The Borel classes, B(K ), generated by K are defined
inductively as follows. �0

0 = ∅, �0
1 = K , �0

2 is the class of countable unions of sets in
�0

1 = {X − Δ, Δ ∈ K }, �0
α , 2 < α < ω1, is the class of countable unions of sets in

∪β<α�0
β where �0

β = {X − Δ | Δ ∈ �0
β}. Then B(K ) = ∪α<ω1�

0
α . If K = R(S ) then

∪α<ω1�
0
α = B(X) (see [27], Proposition 3.6.1, page 116).

Let G ∈ R(S ). Then μG = αG is measurable and, by Corollary 2, it is such that
μG(λ) = γG(λ), λ ∈ Λ1. Suppose that for every Δ ∈ �0

β , β < α, the function μΔ is
measurable and such that μΔ = γΔ, ν-a.e.. As a consequence, μΔ is measurable and such
that μΔ = γΔ, ν-a.e. for every Δ ∈ �0

β . Let Δ ∈ �0
α . Then, Δ = ∪∞

i=1Δi , Δi ∈ �0
β . Setting

Δ̃n = ∑n
i=1 Δi , we obtain a non-decreasing family of sets such that Δ̃n ↑ Δ. Note that, due

to the fact that the pi-classes �0
β are closed with respect to finite unions, for every n ∈ N

there is an index β < α such that Δ̃n ∈ �0
β . Hence, μΔ̃n

is measurable and, for every λ ∈ Λ,

μΔ(λ) = lim
n→∞ μΔ̃n

(λ)
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which prove the measurability of μΔ. Hence, μ : Λ × B(X) → [0, 1] is a Markov kernel.
Moreover, by the inductive hypothesis, μΔ̃n

(λ) = γΔ̃n
, ν-a.e.. Then,

∫
γΔ(λ) dEB

λ = F(Δ) = lim
n→∞ F(Δ̃n)

= lim
n→∞

∫

Λ

γΔ̃n
(λ) dEB

λ = lim
n→∞

∫

Λ

μΔ̃n
(λ) dEB

λ =
∫

Λ

μΔ(λ) dEB
λ

so that μΔ(λ) = γΔ(λ), ν-a.e. ��
The following theorem is a straightforward consequence of Lemma 1, Theorem 1, Corol-

lary 2 and Theorem 3.

Theorem 4 Let X be a second countable metrizable topological space. Let γ : (Λ, ν) ×
B(X) → [0, 1] be a weak Markov kernel. Then, there is a Markov kernel μ : Λ ×B(X) →
[0, 1] such that, for every Δ ∈ B(X), μΔ = γΔ, ν-a.e..

3 Fuzzy Observables

In the introductionwe recalled that the connection between commutative POVMsandMarkov
kernels (see equation (2)) is at the root of the interpretation of the former as the fuzzification
of a spectral measure. The result obtained in the previous section can be used to generalize
such a connection to the case of POVMs defined on a second countable metrizable space.

The following theorem gives a characterization of commutative POVMs as fuzzification of
spectral measures with the fuzzification realized bymeans ofMarkov kernels and generalizes
some previous results [2, 4, 20, 21] where complete metrizability is required. The possible
extension of the results connecting Naimark’s operators and sharp reconstructions [5–7, 9,
13] to the case of a metrizable second countable space can be analyzed as well.

In the following, the symbol μ is used to denote both Markov kernels and weak Markov
kernels. The symbol A W (F) denotes the von Neumann algebra generated by the POVM F ,
i.e., the von Neumann algebra generated by the set {F(Δ)}B (X). AnalogouslyA (B) denotes
the von Neumann algebra generated by the self-adjoint operator B.

Definition 4 Whenever F , A, and μ are such that F(Δ) = μΔ(A), Δ ∈ B(X), we say that
(F, A, μ) is a von Neumann triplet.

Theorem 5 Let X be a second countable, metrizable space. A POVM F : B(X) → L +
s (H )

is commutative if and only if, there exists a bounded self-adjoint operator A = ∫
λ dEλ with

spectrum σ(A) ⊂ [0, 1] and a Markov Kernel μ such that:

F(Δ) =
∫

σ(A)

μΔ(λ) dEλ = μΔ(A), Δ ∈ B(X). (11)

Proof If there is an operator A satisfying (11), the operators F(Δ) = μΔ(A), Δ ∈ B(X),
commute since they are functions of the same operator A. In order to prove that commutativity
implies the existence of A, let us consider the commutative von Neumann algebra A W (F).
It is singly generated by a self-adjoint operator A with compact spectrum σ(A) ⊂ [0, 1].
Hence, for every Δ ∈ B(X), there is a measurable function γΔ : σ(A) → [0, 1] such that

F(Δ) =
∫

σ(A)

γΔ(λ) dE A
λ (12)
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where E A is the spectral measure corresponding to A. Let Δ be the disjoint union of the sets
{Δi }i∈N. Then,

∫

σ(A)

γΔ(λ) dE A
λ = F(Δ) =

∞∑

i=1

F(Δi ) =
∞∑

i=1

∫

σ(A)

γΔi (λ) dE A
λ (13)

For each λ ∈ σ(A),
∑n

i=1 γΔi (λ) is an nondecreasing family of measurable functions. Then,
it converges to a measurable function fΔ and, by the Lebesgue convergence theorem,

∫

σ(A)

γΔ(λ) dE A
λ =

∞∑

i=1

∫

σ(A)

γΔi (λ) dE A
λ =

∫

σ(A)

fΔ(λ) dE A
λ (14)

Hence,

γΔ(λ) = fΔ(λ) =
∞∑

i=1

γΔi (λ), E A − a.e.

In other words, γ : (σ (A), νA) × B(X) → [0, 1] is a weak Markov kernel. Here νA(Δ) :=
〈ψ0, E A(·)ψ0〉 where ψ0 is a separating vector for A W (F) = A W (A) and E A(Δ) = 0 if
and only if νA(Δ) = 0.

By Theorem 4 (which requires X to be metrizable) there is a Markov kernel μ : σ(A) ×
B(X) → [0, 1] which is equivalent to γ with respect to νA. Therefore, μ is such that

F(Δ) =
∫

σ(A)

μΔ(λ) dE A
λ . (15)

��

In Ref. [4] it has been proved that if X is Hausdorff, locally compact and second countable
(and then completely metrizable), the Markov kernel μ in (15) can be replaced by a Feller
Markov kernel (Theorem 4.3 in [4]). Thanks to Theorems 4 and to Proposition 1 in the
appendix, the proof can be generalized to the case of an arbitrary POVM defined on a second
countablemetrizable space.We limit ourselves to restate the theorem since the only difference
in the proof is in the use of transfinite induction (see Proposition 1 in the appendix) avoiding
to require that F is regular and in the use of Theorem 4 in order to replace a weak Markov
kernel by an equivalent Markov kernel.

Definition 5 Let E : B(Λ) → L +
s (H ) be a spectralmeasure. Amapμ(·)(·) : Λ×B(X) →

[0, 1] is a strong Markov kernel with respect to E if it is a weak Markov kernel with respect
to E and there exists a set Γ ⊂ Λ, E(Γ ) = 1, such that μ(·)(·) : Γ × B(X) → [0, 1] is a
Markov kernel. A strong Markov kernel is denoted by the symbol (μ, E, Γ ⊂ Λ).

Definition 6 A Feller Markov kernel is a Markov kernel μ(·)(·) : Λ × B(X) → [0, 1] such
that the function

G(λ) =
∫

X
f (x) μdx (λ), λ ∈ Λ

is continuous and bounded whenever f is continuous and bounded.

Theorem 6 Let X be a second countable, metrizable space. Let F : B(X) → L +
s (H ) be a

POVM. Then, F is commutative if and only if, there exists a bounded self-adjoint operatorA =
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∫
λ dEλ with spectrum σ(A) ⊂ [0, 1] and a strong Markov Kernel (μ, E, Γ ⊂ σ(A)) such

that:

1) μΔ(·) : σ(A) → [0, 1] is continuous for each Δ ∈ R(S ),
2) F(Δ) = ∫

Γ
μΔ(λ) dEλ, Δ ∈ B(X).

3) A W (F) = A W (A).
4) μ : Γ × B(X) → [0, 1] is a Feller Markov kernel.

Appendix

The following proposition has been proved in reference [12]. Both Proposition 1 andTheorem
7 below have been used in the proof of Lemma 1.

Proposition 1 ([12]) Let X be second countable and metrizable. Let S be a basis for the
topology of X. LetR(S ) be the ring generated byS . Let F : B(X) → L +

s (H ) be aPOVM.
Then, the von Neumann algebra A W (R(S )) generated by {F(Δ)}Δ∈R (S ) coincides with
the von Neumann algebra A W (F).

The following theorem has been proved in Ref. [4] where the POVM F was required to
be normal. Such an assumption can be relaxed thanks to Proposition 1. The rest of the proof
is unchanged and is repeated here for the readers convenience.

Theorem 7 Let X be second countable and metrizable. Let F : B(X) → L +
s (H ) be a

POVM andA W (F) the von Neumann algebra generated by F. Then, there is a generator A
and a weak Markov kernel β : σ(A) × B(X) → [0, 1] such that

F(Δ) =
∫

σ(A)

βΔ(λ) dE A
λ , Δ ∈ B(X),

and βΔ is continuous for every Δ ∈ R(S ).

Proof By Proposition 1, the von Neumann algebraA W (F) coincides with the von Neumann
algebra generated by the set O2 := {F(Δ)}Δ∈R (S ). We recall that both S and R(S ) are
countable. Now, let {Δi }i∈N be an enumeration of the setR(S ). Let E (i) denote the spectral
measure corresponding to F(Δi ) ∈ O2. We have F(Δi ) = ∫

x dE (i)
x . Therefore, for each

i, k ∈ N there exists a division {Δ(i,k)
j } j=1,...,mi,k of [0, 1] such that

∥∥
mi,k∑

j=1

x (i,k)
j E (i)(Δ

(i,k)
j ) − F(Δi )

∥∥ ≤ 1

k
. (16)

where, x (i,k)
j ∈ Δ

(i,k)
j for any i, k ∈ N and j = 1, . . . ,mi,k .

By the spectral theorem, {E (i)(Δ
i,k
j )} j≤mi,k ⊂ A W (F) for any i, k ∈ N. Therefore, the

von Neumann algebra A W (D) generated by the set D := {E (i)(Δ
i,k
j ), j ≤ mi,k, i, k ∈ N}

is contained in A W (F)

A W (D) ⊂ A W (F) = A W (O2). (17)

Moreover, by (16)
A C (O2) ⊂ A C (D) ⊂ A W (F).

where A C (O2) and A C (D) are the C∗-algebras generated by O2 and D respectively.
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By the double commutant theorem,

A W (F) = [A C (O2)]′′ ⊂ [A C (D)]′′ = A W (D)

so that (see equation (17)),
A W (D) = A W (F). (18)

By Theorem 11, page 871 in Ref. [17], there is a homeomorphism π : Λ → π(Λ) ⊂∏∞
i=1{0, 1} which identifies the spectrum Λ of A C (D) with a closed subset of

∏∞
i=1{0, 1}.

Moreover, the function f : Λ → [0, 1],

f (λ) :=
∞∑

i=1

xi
3i

; (x1, . . . , xn, . . . ) = π(λ)

is continuous and injective and then it distinguishes the points of Λ. Since Λ and [0, 1] are
Hausdorff, f : Λ → f (Λ) is a homeomorphism.

By the Gelfand-Naimark theorem and the spectral theorem for representations of com-
mutative C∗-algebras, there is an isometric ∗-isomorphism between A C (D) and C (Λ)

T : C (Λ) → A C (D) ⊂ B(H ) (19)

g �→ T (g) =
∫

Λ

g(λ)d Ẽλ.

where Ẽ is the spectral measure from B(Λ) to E (H ) corresponding to T .
Since f distinguishes the points of Λ, it generates C (Λ) and then

A =
∫

Λ

f (λ) d Ẽλ

generates both A C (D) and A W (F).
Now, we proceed to the proof of the existence of the weak Markov kernel β.
By (19), for each Δ ∈ R(S ), there exists a continuous function γΔ ∈ C (Λ) such that

F(Δ) =
∫

Λ

γΔ(λ) d Ẽλ.

Let us consider the continuous function

νΔ(t) := (γΔ ◦ f −1)(t), Δ ∈ R(S ).

By the change of measure principle, we have,

F(Δ) =
∫

Λ

γΔ(λ) d Ẽλ =
∫

Λ

γΔ( f −1( f (λ))) d Ẽλ

=
∫

I
γΔ( f −1(t)) dE A

t =
∫

I
νΔ(t) dE A

t = νΔ(A)

where I = f (Λ) and E A is the spectralmeasure corresponding to A and defined by E A(Δ) =
Ẽ( f −1(Δ)), Δ ∈ B(I ). Therefore, for each Δ ∈ R(S ), νΔ( f (λ)) = γΔ(λ), λ ∈ Λ, and
F(Δ) = νΔ(A).

Now, we extend ν to allB(X). Since A is the generator of A W (F), for each Δ ∈ B(X),
there exists a Borel function ωΔ such that.

F(Δ) =
∫

I
ωΔ(t) dE A

t
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Then, we can consider the map β : σ(A) × B(X) → [0, 1] defined as follows

βΔ(λ) =
{

νΔ(λ) i f Δ ∈ R(S )

ωΔ(λ) i f Δ /∈ R(S ).
(20)

which coincides with ν on R(S ) and is such that βΔ(A) = F(Δ). Now, let ψ0 ∈ H
be a separating vector for A W (A) and ν0(·) := 〈ψ0, E A(·)ψ0〉. In order to prove that β :
(I , ν0) × B(X) → [0, 1] is a weak Markov kernel, we proceed as in the proof of Theorem
5 (see equation (14)). Note that ν0(Δ) = 0 if and only if E A(Δ) = 0. ��
Acknowledgements The present work has been realized in the framework of the activities of the INDAM
(Istituto Nazionale di Alta Matematica).

Author Contributions I’m the only author of the manuscript.

Funding Open access funding provided by Università della Calabria within the CRUI-CARE Agreement.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ali, S.T., Emch, G.G.: Fuzzy observables in quantum mechanics. J. Math. Phys. 15, 176 (1974)
2. Beneduci, R.: A geometrical characterizations of commutative positive operator valuedmeasures. J.Math.

Phys. 47, 062104 (2006)
3. Beneduci, R.: Joint measurability through Naimark’s dilation theorem. Rep. Math. Phys. 79, 197–213

(2017)
4. Beneduci, R.: Positive Operator Valued Measures and Feller Markov Kernels. J. Math. Anal. Appl. 442,

50–71 (2016)
5. Beneduci, R.: Unsharpness, Naimark Theorem and Informational Equivalence of Quantum Observables.

Int. J. Theor. Phys. 49, 3030 (2010)
6. Beneduci, R.: Infinite sequences of linear functionals, positive operator-valued measures and Naimark

extension theorem. Bull. Lond. Math. Soc. 42, 441–451 (2010)
7. Beneduci, R.: Stochastic matrices and a property of the infinite sequences of linear functionals. Linear

Algebra Appl. 43, 1224–1239 (2010)
8. Beneduci, R.: On the Relationships Between the Moments of a POVM and the Generator of the von

Neumann Algebra It Generates. Int. J. Theor. Phys. 50, 3724–3736 (2011)
9. Beneduci, R.: Commutative POV-Measures: from the Choquet Representation to the Markov Kernel and

Back. Russ. J. Math. Phys. 25, 158–182 (2018)
10. Beneduci, R., Brooke, J., Curran, R., Schroeck, F.E.: Classical Mechanics in Hilbert Space, part I. Int. J.

Theor. Phys. 50, 3682–3696 (2011)
11. Beneduci, R., Brooke, J., Curran, R., Schroeck, F.: Classical Mechanics in Hilbert Space, part II. Int. J.

Theor. Phys. 50, 3697–3723 (2011)
12. Beneduci, R., Gentile, T.: Fuzzy observables and the universal family of fuzzy events. Fuzzy Sets Syst.

444, 206–221 (2022)

123

 226 Page 12 of 13

http://creativecommons.org/licenses/by/4.0/


International Journal of Theoretical Physics (2023) 62:226

13. Beneduci, R.: Naimark’s operators and sharp reconstructions. Int. J. Geom.MethodsMod. Phys. 3, 1559–
1571 (2006)

14. Busch, P., Grabowski, M., Lahti, P.: Operational quantum physics. Lect. Notes Phys. 31 (1995)
15. Davies, E.B.: Quantum mechanics of Open Systems. Academic Press, London (1976)
16. Dixmier, J.: Von Neumann Algebras. Helsevier North-Holland Inc., New York (1981)
17. Dunford, N., Schwartz, J.T.: Linear Operators, part II. Interscience Publisher, New York (1963)
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