Skip to main content
Log in

Regular Black Holes: A Short Topic Review

  • Review
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The essential singularity in Einstein’s gravity can be avoidable if the preconditions of Penrose’s theorem can be bypassed, i.e., if the strong energy condition is broken in the vicinity of a black hole center. The singularity mentioned here includes two aspects: (i) the divergence of curvature invariants, and (ii) the incompleteness of geodesics. Both aspects are now taken into account in order to determine whether a black hole contains essential singularities. In this sense, black holes without essential singularities are dubbed regular (non-singular) black holes. The regular black holes have some intriguing phenomena that are different from those of singular black holes, and such phenomena have inspired numerous studies. In this review, we summarize the current topics that are associated with regular black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The curvature invariants are a set of independent scalars that are constructed by a Riemann tensor and a metric [4], for instance, the Ricci curvature \(R=g^{\mu \nu }R_{\mu \nu }\), the contraction of two Ricci tensors \(R_{\mu \nu }R^{\mu \nu }\), and the Kretschmann scalar \(R_{\mu \nu \alpha \beta }R^{\mu \nu \alpha \beta }\).

  2. According to this strategy, a spacetime is regular if its null and timelike geodesics are complete, i.e., the affine parameter of a test particle will not terminate at any finite value [11, 12].

  3. For certain cases, these two conditions are equivalent, e.g., for spherically symmetric BHs with one shape function, i.e., \(\textrm{d}s^2=-f(r)\textrm{d}t^2 +f^{-1}(r) \textrm{d}r^2+r^2\textrm{d}\Omega ^2\).

  4. This number comes from 20 independent components of a Riemann tensor plus 10 independent components of a metric but minus 16 constraints imposed by the general coordinate transformation.

  5. Alternatively, K and \(R_2\) are replaced by \(W\equiv C_{\mu \nu \alpha \beta }C^{\mu \nu \alpha \beta }\), the contraction of two Weyl tensors, and \(\mathcal {S}\equiv \mathcal {S}_{\mu \nu }\mathcal {S}^{\mu \nu }\), where \(\mathcal {S}_{\mu \nu }\equiv R_{\mu \nu }-g_{\mu \nu } R/4\) [7].

  6. As in Ref. [18], we do not distinguish between time and space components by a comma.

  7. According to Ref. [155] the energy conditions can be divided into two categories: One restricts average behaviors across regions of spacetime, and the other restricts behaviors at specific points. Here the “impressionist SEC” means the former, and the “pointillist SEC” means the latter.

  8. Extra terms indicate additional terms for a parameter, e.g., for mass M in (108), \(K_M \textrm{d}M\) is an extra term, while for charge q, \(K_q\textrm{d}q\) is an extra term.

References

  1. Dymnikova, I.: Vacuum nonsingular black hole. Gen. Rel. Grav. 24, 235–242 (1992). https://doi.org/10.1007/BF00760226

    Article  ADS  MathSciNet  Google Scholar 

  2. Ayon-Beato, E., Garcia, A.: Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 80, 5056–5059 (1998). https://doi.org/10.1103/PhysRevLett.80.5056. arXiv:gr-qc/9911046

  3. Bronnikov, K.A.: Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 63, 044005 (2001). https://doi.org/10.1103/PhysRevD.63.044005. arXiv:gr-qc/0006014

  4. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley and Sons, New York (1972)

    Google Scholar 

  5. Markov, M.A.: Limiting density of matter as a universal law of nature. JETP Lett. 36, 266 (1982). http://jetpletters.ru/ps/1334/article_20160.pdf

  6. Frolov, V.P., Markov, M.A., Mukhanov, V.F.: Black Holes as Possible Sources of Closed and Semiclosed Worlds. Phys. Rev. D 41, 383 (1990). https://doi.org/10.1103/PhysRevD.41.383

    Article  ADS  MathSciNet  Google Scholar 

  7. Frolov, V.P.: Notes on nonsingular models of black holes. Phys. Rev. D 94(10), 104056 (2016). https://doi.org/10.1103/PhysRevD.94.104056arXiv:1609.01758

  8. Chamseddine, A.H., Mukhanov, V.: Nonsingular Black Hole. Eur. Phys. J. C 77(3), 183 (2017). https://doi.org/10.1140/epjc/s10052-017-4759-z. arXiv:1612.05861

  9. Misner, C.W., Taub, A.H.: A Singularity-free Empty Universe. Sov. Phys. JETP 28, 122 (1969). http://www.jetp.ras.ru/cgi-bin/dn/e_028_01_0122.pdf

  10. Kagramanova, V., Kunz, J., Hackmann, E., Lammerzahl, C.: Analytic treatment of complete and incomplete geodesics in Taub-NUT space-times. Phys. Rev. D 81, 124044 (2010). https://doi.org/10.1103/PhysRevD.81.124044. arXiv:1002.4342

  11. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2, (2011). https://doi.org/10.1017/CBO9780511524646

  12. Wald, R.M.: General Relativity. Chicago Univ. Pr., Chicago, USA, (1984). https://doi.org/10.7208/chicago/9780226870373.001.0001

  13. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: “Geodesically complete black holes.” Phys. Rev. D 101, 084047 (2020). https://doi.org/10.1103/PhysRevD.101.084047. arXiv:1911.11200

  14. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: Geodesically complete black holes in Lorentz-violating gravity. JHEP 02, 122 (2022). https://doi.org/10.1007/JHEP02(2022)122. arXiv:2111.03113

  15. Geroch, R.P.: What is a singularity in general relativity? Annals Phys. 48, 526–540 (1968). https://doi.org/10.1016/0003-4916(68)90144-9

    Article  ADS  MATH  Google Scholar 

  16. Olmo, G.J., Rubiera-Garcia, D., Sanchez-Puente, A.: Geodesic completeness in a wormhole spacetime with horizons. Phys. Rev. D 92(4), 044047 (2015). https://doi.org/10.1103/PhysRevD.92.044047. arXiv:1508.03272

  17. Sakharov, A.D.: The initial stage of an expanding Universe and the appearance of a nonuniform distribution of matter. Sov. Phys. JETP 22, 241 (1966)

    ADS  Google Scholar 

  18. Gliner, E.B.: Algebraic Properties of the Energy-momentum Tensor and Vacuum-like States of Matter. Sov. Phys. JETP 22, 378 (1966)

    ADS  Google Scholar 

  19. Gliner, E.B., Dymnikova, I.G.: A nonsingular Friedmann cosmology. Soviet Astronomy Letters 19(3) (1975)

  20. Gurevich, L.E.: On the origin of the metagalaxy. Astrophysics and Space Science 38, 67–78 (1975). https://doi.org/10.1007/BF00646099

  21. Starobinsky, A.A.: Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682–685 (1979)

  22. Silbergleit, A.S., Chernin, A.D.: Why Does the Universe Expand? (A Tribute to E.B. Gliner). pp. 59–70. Springer International Publishing, Cham, (2017). https://doi.org/10.1007/978-3-319-57538-4_6. https://doi.org/10.1007/978-3-319-57538-4_6

  23. Ansoldi, S.: “Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources.” in Conference on Black Holes and Naked Singularities. 2, (2008). arXiv:0802.0330

  24. Bardeen, J.M.: “Non-singular general-relativistic gravitational collapse.” in Proceedings of the International Conference GR5, Tbilisi, USSR, p. 174. Tbilisi University Press, (1968)

  25. Ayon-Beato, E., Garcia, A.: The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 493, 149–152 (2000). https://doi.org/10.1016/S0370-2693(00)01125-4. arXiv:gr-qc/0009077

  26. Fan, Z.Y., Wang, X.: Construction of Regular Black Holes in General Relativity. Phys. Rev. D 94(12), 124027 (2016). https://doi.org/10.1103/PhysRevD.94.124027. arXiv:1610.02636

  27. Bronnikov, K.A., Fabris, J.C.: Regular phantom black holes. Phys. Rev. Lett. 96, 251101 (2006). https://doi.org/10.1103/PhysRevLett.96.251101. arXiv:gr-qc/0511109

  28. Bronnikov, K.A., Walia, R.K.: Field sources for Simpson-Visser spacetimes. Phys. Rev. D 105(4), 044039 (2022). https://doi.org/10.1103/PhysRevD.105.044039. arXiv:2112.13198

  29. Bokulić, A., Smolić, I., Jurić, T.: Constraints on singularity resolution by nonlinear electrodynamics. Phys. Rev. D 106(6), 064020 (2022). https://doi.org/10.1103/PhysRevD.106.064020. arXiv:2206.07064

  30. Cañate, P., Perez Bergliaffa, S.E.: “Transforming singular black holes into regular black holes sourced by nonlinear electrodynamics.” Annals Phys. 454, 169358 (2023) https://doi.org/10.1016/j.aop.2023.169358. arXiv:2203.03088

  31. Cisterna, A., Giribet, G., Oliva, J., Pallikaris K.: Quasitopological electromagnetism and black holes. Phys. Rev. D 10112, 124041 (2020). https://doi.org/10.1103/PhysRevD.101.124041. arXiv:2004.05474

  32. Babichev, E., Charmousis, C., Cisterna, A., Hassaine, M.: Regular black holes via the Kerr-Schild construction in DHOST theories. JCAP 06, 049 (2020). https://doi.org/10.1088/1475-7516/2020/06/049. arXiv:2004.00597

  33. Chew, X.Y., Yeom, D.-H., Blázquez-Salcedo, J.L.: “Properties of Scalar Hairy Black Holes and Scalarons with Asymmetric Potential.” arXiv:2210.01313

  34. Barrientos, J., Cisterna, A., Mora, N., Viganò, A.: AdS-Taub-NUT spacetimes and exact black bounces with scalar hair. Phys. Rev. D 1062, 024038 (2022). https://doi.org/10.1103/PhysRevD.106.024038. arXiv:2202.06706

  35. Nicolini, P., Smailagic, A., Spallucci, E.: Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B 632, 547–551 (2006). https://doi.org/10.1016/j.physletb.2005.11.004. arXiv:gr-qc/0510112

  36. Nicolini, P.: Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review. Int. J. Mod. Phys. A 24, 1229–1308 (2009). https://doi.org/10.1142/S0217751X09043353. arXiv:0807.1939

  37. Spallucci, E., Smailagic, A., Nicolini, P.: Non-commutative geometry inspired higher-dimensional charged black holes. Phys. Lett. B 670, 449–454 (2009). https://doi.org/10.1016/j.physletb.2008.11.030. arXiv:0801.3519

  38. Nicolini, P., Spallucci, E.: Noncommutative geometry inspired wormholes and dirty black holes. Class. Quant. Grav. 27, 015010 (2010). https://doi.org/10.1088/0264-9381/27/1/015010. arXiv:0902.4654

  39. Balakin, A.B., Zayats, A.E.: Non-minimal Wu-Yang monopole. Phys. Lett. B 644, 294–298 (2007). https://doi.org/10.1016/j.physletb.2006.12.002. arXiv:gr-qc/0612019

  40. A. B. Balakin, J. P. S. Lemos, and A. E. Zayats, “Magnetic black holes and monopoles in a nonminimal Einstein-Yang-Mills theory with a cosmological constant: Exact solutions,” Phys. Rev. D 93 (8), 084004(2016) https://doi.org/10.1103/PhysRevD.93.084004. arXiv:1603.02676

  41. Roupas, Z.: Detectable universes inside regular black holes. Eur. Phys. J. C 82(3), 255 (2022). https://doi.org/10.1140/epjc/s10052-022-10202-6. arXiv:2203.13295

  42. Bonanno, A., Reuter, M.: “Renormalization group improved black hole space-times.” Phys. Rev. D 62, 043008 (2000) https://doi.org/10.1103/PhysRevD.62.043008. arXiv:hep-th/0002196

  43. Modesto, L.: Disappearance of black hole singularity in quantum gravity. Phys. Rev. D 70, 124009 (2004). https://doi.org/10.1103/PhysRevD.70.124009. arXiv:gr-qc/0407097

  44. Gambini, R., Pullin, J.: Black holes in loop quantum gravity: The Complete space-time. Phys. Rev. Lett. 101, 161301 (2008). https://doi.org/10.1103/PhysRevLett.101.161301. arXiv:0805.1187

  45. Koch, B., Saueressig, F.: Black holes within Asymptotic Safety. Int. J. Mod. Phys. A 29(8), 1430011 (2014). https://doi.org/10.1142/S0217751X14300117. arXiv:1401.4452

  46. Perez, A.: “Black Holes in Loop Quantum Gravity.” Rept. Prog. Phys. 80(12), 126901 (2017) https://doi.org/10.1088/1361-6633/aa7e14. arXiv:1703.09149

  47. Bodendorfer, N., Mele, F.M., Münch, J.: Mass and Horizon Dirac Observables in Effective Models of Quantum Black-to-White Hole Transition. Class. Quant. Grav. 38(9), 095002 (2021). https://doi.org/10.1088/1361-6382/abe05d. arXiv:1912.00774

  48. Bodendorfer, N., Mele, F.M., Münch, J.: (b, v)-type variables for black to white hole transitions in effective loop quantum gravity. Phys. Lett. B 819, 136390 (2021). https://doi.org/10.1016/j.physletb.2021.136390. arXiv:1911.12646

  49. Bojowald, M.: Black-Hole Models in Loop Quantum Gravity. Universe 6(8), 125 (2020). https://doi.org/10.3390/universe6080125. arXiv:2009.13565

  50. Brahma, S., Chen, C.-Y., Yeom, D.-H.: Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes. Phys. Rev. Lett. 126(18), 181301 (2021). https://doi.org/10.1103/PhysRevLett.126.181301. arXiv:2012.08785

  51. Borde, A.: Regular black holes and topology change. Phys. Rev. D 55, 7615–7617 (1997). https://doi.org/10.1103/PhysRevD.55.7615. arXiv:gr-qc/9612057

  52. Bronnikov, K.A., Melnikov, V.N., Dehnen, H.: Regular black holes and black universes. Gen. Rel. Grav. 39, 973–987 (2007). https://doi.org/10.1007/s10714-007-0430-6. arXiv:gr-qc/0611022

  53. Zaslavskii, O.B.: Regular black holes and energy conditions. Phys. Lett. B 688, 278–280 (2010). https://doi.org/10.1016/j.physletb.2010.04.031. arXiv:1004.2362

  54. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Pacilio, C., Visser, M.: On the viability of regular black holes. JHEP 07, 023 (2018). https://doi.org/10.1007/JHEP07(2018)023. arXiv:1805.02675

  55. Bonanno, A., Khosravi, A.-P., Saueressig, F.: Regular black holes with stable cores. Phys. Rev. D 103(12), 124027 (2021). https://doi.org/10.1103/PhysRevD.103.124027. arXiv:2010.04226

  56. Li, Y., Miao, Y.-G.: The generalized holographic c-function for regular AdS black holes. Eur. Phys. J. C 82(6), 503 (2022). https://doi.org/10.1140/epjc/s10052-022-10458-y. arXiv:2110.14201

  57. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Pacilio, C., Visser, M.: Inner horizon instability and the unstable cores of regular black holes. JHEP 05, 132 (2021). https://doi.org/10.1007/JHEP05(2021)132. arXiv:2101.05006

  58. Giacchini, B.L., Netto, T.D.P., Modesto, L.: Action principle selection of regular black holes. Phys. Rev. D 104(8), 084072 (2021). https://doi.org/10.1103/PhysRevD.104.084072. arXiv:2105.00300

  59. Fan, Z.-Y.: Critical phenomena of regular black holes in anti-de Sitter space-time. Eur. Phys. J. C 77(4), 266 (2017). https://doi.org/10.1140/epjc/s10052-017-4830-9. arXiv:1609.04489

  60. Lan, C., Miao, Y.-G., Yang, H.: Quasinormal modes and phase transitions of regular black holes. Nucl. Phys. B 971, 115539 (2021). https://doi.org/10.1016/j.nuclphysb.2021.115539. arXiv:2008.04609

  61. Bouhmadi-López, M., Chen, C.-Y., Chew, X.Y., Ong, Y.C., Yeom, D.-H.: Regular Black Hole Interior Spacetime Supported by Three-Form Field. Eur. Phys. J. C 81(4), 278 (2021). https://doi.org/10.1140/epjc/s10052-021-09080-1. arXiv:2005.13260

  62. Guo, Y., Miao, Y.-G.: Weinhold geometry and thermodynamics of Bardeen AdS black holes. Nucl. Phys. B 980, 115839 (2022). https://doi.org/10.1016/j.nuclphysb.2022.115839. arXiv:2107.01866

  63. Flachi, A., Lemos, J.P.S.: Quasinormal modes of regular black holes. Phys. Rev. D 87(2), 024034 (2013). https://doi.org/10.1103/PhysRevD.87.024034. arXiv:1211.6212

  64. Cai, X.-C., Miao, Y.-G.: Quasinormal modes of the generalized Ayón-Beato-García black hole in scalar-tensor-vector gravity. Phys. Rev. D 102(8), 084061 (2020). https://doi.org/10.1103/PhysRevD.102.084061. arXiv:2008.04576

  65. Li, Y., Miao, Y.-G.: Distinct thermodynamic and dynamic effects produced by scale factors in conformally related Einstein-power-Yang-Mills black holes. Phys. Rev. D 104(2), 024002 (2021). https://doi.org/10.1103/PhysRevD.104.024002. arXiv:2102.12292

  66. Cai, X.-C., Miao, Y.-G.: Quasinormal modes and shadows of a new family of Ayón-Beato-García black holes. Phys. Rev. D 103(12), 124050 (2021). https://doi.org/10.1103/PhysRevD.103.124050. arXiv:2104.09725

  67. Li, Y., Miao, Y.-G.: Absorption cross section of regular black holes in scalar-tensor conformal gravity. Phys. Rev. D 105(4), 044031 (2022). https://doi.org/10.1103/PhysRevD.105.044031. arXiv:2108.06470

  68. Guo, Y., Miao, Y.-G.: “Bounce corrections to gravitational lensing, quasinormal spectral stability and gray-body factors of Reissner-Nordström black holes,” arXiv:2201.02971

  69. Li, Z., Bambi, C.: Measuring the Kerr spin parameter of regular black holes from their shadow. JCAP 01, 041 (2014). https://doi.org/10.1088/1475-7516/2014/01/041. arXiv:1309.1606

  70. Abdujabbarov, A., Amir, M., Ahmedov, B., Ghosh, S.G.: Shadow of rotating regular black holes. Phys. Rev. D 93(10), 104004 (2016). https://doi.org/10.1103/PhysRevD.93.104004. arXiv:1604.03809

  71. Tsukamoto, N.: Black hole shadow in an asymptotically-flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes. Phys. Rev. D 97(6), 064021 (2018). https://doi.org/10.1103/PhysRevD.97.064021. arXiv:1708.07427

  72. Dymnikova, I., Kraav, K.: Identification of a Regular Black Hole by Its Shadow. Universe 5(7), 163 (2019). https://doi.org/10.3390/universe5070163

    Article  ADS  Google Scholar 

  73. Kumar, R., Ghosh, S.G., Wang, A.: Shadow cast and deflection of light by charged rotating regular black holes. Phys. Rev. D 100(12), 124024 (2019). https://doi.org/10.1103/PhysRevD.100.124024. arXiv:1912.05154

  74. Ghosh, S.G., Amir, M., Maharaj, S.D.: Ergosphere and shadow of a rotating regular black hole. Nucl. Phys. B 957, 115088 (2020). https://doi.org/10.1016/j.nuclphysb.2020.115088. arXiv:2006.07570

  75. Jusufi, K., Azreg-Aïnou, M., Jamil, M., Wei, S.-W., Wu, Q., Wang, A.: Quasinormal modes, quasiperiodic oscillations, and the shadow of rotating regular black holes in nonminimally coupled Einstein-Yang-Mills theory. Phys. Rev. D 103(2), 024013 (2021). https://doi.org/10.1103/PhysRevD.103.024013. arXiv:2008.08450

  76. Guo, Y., Miao, Y.-G.: Charged black-bounce spacetimes: Photon rings, shadows and observational appearances. Nucl. Phys. B 983, 115938 (2022). https://doi.org/10.1016/j.nuclphysb.2022.115938. arXiv:2112.01747

  77. Ling, Y., Wu, M.-H.: The shadow of regular black holes with asymptotically Minkowski core. Symmetry 14, 2415 (2022). https://doi.org/10.3390/sym14112415. arXiv:2205.08919

  78. Walia, R.K., Ghosh, S.G., Maharaj, S.D.: Testing Rotating Regular Metrics with EHT Results of Sgr A*. Astrophys. J. 939(2), 77 (2022). https://doi.org/10.3847/1538-4357/ac9623. arXiv:2207.00078

  79. Bronnikov, K.A., Konoplya, R.A., Zhidenko, A.: Instabilities of wormholes and regular black holes supported by a phantom scalar field. Phys. Rev. D 86, 024028 (2012). https://doi.org/10.1103/PhysRevD.86.024028. arXiv:1205.2224

  80. Li, J., Hong, M., Lin, K.: Dirac quasinormal modes in spherically symmetric regular black holes. Phys. Rev. D 88, 064001 (2013). https://doi.org/10.1103/PhysRevD.88.064001. arXiv:1308.6499

  81. Fernando, S., Correa, J.: Quasinormal Modes of Bardeen Black Hole: Scalar Perturbations. Phys. Rev. D 86, 064039 (2012). https://doi.org/10.1103/PhysRevD.86.064039. arXiv:1208.5442

  82. Toshmatov, B., Abdujabbarov, A., Stuchlík, Z., Ahmedov, B.: Quasinormal modes of test fields around regular black holes. Phys. Rev. D 91(8), 083008 (2015). https://doi.org/10.1103/PhysRevD.91.083008. arXiv:1503.05737

  83. Toshmatov, B., Bambi, C., Ahmedov, B., Stuchlík, Z., Schee, J.: Scalar perturbations of nonsingular nonrotating black holes in conformal gravity. Phys. Rev. D 96, 064028 (2017). https://doi.org/10.1103/PhysRevD.96.06402. arXiv:1705.03654

  84. Toshmatov, B., Stuchlík, Z., Schee, J., Ahmedov, B.: Electromagnetic perturbations of black holes in general relativity coupled to nonlinear electrodynamics. Phys. Rev. D 97(8), 084058 (2018). https://doi.org/10.1103/PhysRevD.97.084058. arXiv:1805.00240

  85. Toshmatov, B., Stuchlík, Z., Ahmedov, B.: Electromagnetic perturbations of black holes in general relativity coupled to nonlinear electrodynamics: Polar perturbations. Phys. Rev. D 98(8), 085021 (2018). https://doi.org/10.1103/PhysRevD.98.085021. arXiv:1810.06383

  86. Konoplya, R.A., Zinhailo, A.F., Kunz, J., Stuchlik, Z., Zhidenko, A.: Quasinormal ringing of regular black holes in asymptotically safe gravity: the importance of overtones. JCAP 10, 091 (2022). https://doi.org/10.1088/1475-7516/2022/10/091. arXiv:2206.14714

  87. Lan, C., Wang, Y.-F.: “Singularities of regular black holes and the art of monodromy method for asymptotic quasinormal modes.” arXiv:2205.05935

  88. Konoplya, R.A., Stuchlik, Z., Zhidenko, A., Zinhailo, A.F.: Quasinormal modes of renormalization group improved Dymnikova regular black holes. Phys. Rev. D 107(10), 104050 (2023). https://doi.org/10.1103/PhysRevD.107.104050. arXiv:2303.01987

  89. Yang, H., Miao, Y.-G.: “Superradiance of massive scalar particles around rotating regular black holes.” arXiv:2211.15130

  90. Liu, X., Chen, S., Jing, J.: Polarization distribution in the image of a synchrotron emitting ring around a regular black hole. Sci. China Phys. Mech. Astron. 65(12), 120411 (2022). https://doi.org/10.1007/s11433-022-1946-2. arXiv:2205.00391

  91. Riaz, S., Shashank, S., Roy, R., Abdikamalov, A.B., Ayzenberg, D., Bambi, C., Zhang, Z., Zhou, M.: Testing regular black holes with X-ray and GW data. JCAP 10, 040 (2022). https://doi.org/10.1088/1475-7516/2022/10/040. arXiv:2206.03729

  92. Riaz, S., Abdikamalov, A.B., Bambi, C.: “Testing Regular Black Holes with X-ray data of GX 339–4.” arXiv:2306.09673

  93. Torres, R.: “Regular Rotating Black Holes: A Review.” arXiv:2208.12713

  94. Zakhary, E., Mcintosh, C.B.G.: A complete set of riemann invariants. General Relativity and Gravitation 29, 539–581 (1997). https://doi.org/10.1023/A:1018851201784

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Overduin, J., Coplan, M., Wilcomb, K., Henry, R.C.: Curvature invariants for charged and rotating black holes. Universe 6(2), 22 (2020). https://doi.org/10.3390/universe6020022. https://www.mdpi.com/2218-1997/6/2/22

  96. Balart, L., Vagenas, E.C.: Regular black holes with a nonlinear electrodynamics source. Phys. Rev. D 90(12), 124045 (2014). https://doi.org/10.1103/PhysRevD.90.124045. arXiv:1408.0306

  97. Lan, C., Miao, Y.-G.: Gliner vacuum, self-consistent theory of Ruppeiner geometry for regular black holes. Eur. Phys. J. C 82(12), 1152 (2022). https://doi.org/10.1140/epjc/s10052-022-11123-0. arXiv:2103.14413

  98. Simpson, A., Visser, M.: Black-bounce to traversable wormhole. JCAP 02, 042 (2019). https://doi.org/10.1088/1475-7516/2019/02/042. arXiv:1812.07114

  99. Boos, J.: “Non-singular ”Gauss” black hole from non-locality: a simple model with a de Sitter core, mass gap, and no inner horizon.” arXiv:2104.00555

  100. Carroll, S.M.: Spacetime and Geometry. Cambridge University Press, 7, (2019)

  101. d’Inverno, R., James, V.: Introducing Einstein’s relativity. Oxford University Press, Oxford, (2022). https://doi.org/10.1093/oso/9780198862024.001.0001

  102. Carminati, J., McLenaghan, R.G.: Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space. Journal of Mathematical Physics 32(11), 3135–3140 (1991). https://doi.org/10.1063/1.529470. https://pubs.aip.org/aip/jmp/article-pdf/32/11/3135/8160517/3135_1_online.pdf

  103. Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C., Herlt, E.: Exact solutions of Einstein’s field equations. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511535185

  104. Torres, R., Fayos, F.: On regular rotating black holes. Gen. Rel. Grav. 49(1), 2 (2017). https://doi.org/10.1007/s10714-016-2166-7. arXiv:1611.03654

  105. Hu, H.-W., Lan, C., Miao, Y.-G.: “A regular black hole as the final state of evolution of a singular black hole.” arXiv:2303.03931

  106. Griffiths, J.B., Podolsky, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, (2009). https://doi.org/10.1017/CBO9780511635397

  107. Huang, Y.-T., Kol, U., O’Connell, D.: Double copy of electric-magnetic duality. Phys. Rev. D 102(4), 046005 (2020). https://doi.org/10.1103/PhysRevD.102.046005. arXiv:1911.06318

  108. Emond, W.T., Huang, Y.-T., Kol, U., Moynihan, N., O’Connell, D.: Amplitudes from Coulomb to Kerr-Taub-NUT. JHEP 05, 055 (2022). https://doi.org/10.1007/JHEP05(2022)055. arXiv:2010.07861

  109. Misner, C.W.: The Flatter regions of Newman, Unti and Tamburino’s generalized Schwarzschild space. J. Math. Phys. 4, 924–938 (1963). https://doi.org/10.1063/1.1704019

    Article  ADS  MathSciNet  Google Scholar 

  110. Newman, A.I.J.E.T.: Note on the Kerr Spinning-Particle Metric. J. Math. Phys. 6, 915 (1965). https://doi.org/10.1063/1.1704350

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Metin Gürses, F.G.: Lorentz covariant treatment of the Kerr-Schild geometry. J. Math. Phys. 16, 2385 (1975). https://doi.org/10.1063/1.522480

    Article  ADS  MathSciNet  Google Scholar 

  112. Drake, S.P., Szekeres, P.: Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen. Rel. Grav. 32, 445–458 (2000). https://doi.org/10.1023/A:1001920232180. arXiv:gr-qc/9807001

  113. Smailagic, A., Spallucci, E.: “‘Kerrr’ black hole: the Lord of the String.” Phys. Lett. B 688, 82–87 (2010). https://doi.org/10.1016/j.physletb.2010.03.075. arXiv:1003.3918

  114. Modesto, L., Nicolini, P.: Charged rotating noncommutative black holes. Phys. Rev. D 82, 104035 (2010). https://doi.org/10.1103/PhysRevD.82.104035. arXiv:1005.5605

  115. Modesto, L.: Semiclassical loop quantum black hole. Int. J. Theor. Phys. 49, 1649–1683 (2010). https://doi.org/10.1007/s10773-010-0346-x. arXiv:0811.2196

  116. Caravelli, F., Modesto, L.: Spinning Loop Black Holes. Class. Quant. Grav. 27, 245022 (2010). https://doi.org/10.1088/0264-9381/27/24/245022. arXiv:1006.0232

  117. Bambi, C., Modesto, L.: Rotating regular black holes. Phys. Lett. B 721, 329–334 (2013). https://doi.org/10.1016/j.physletb.2013.03.025. arXiv:1302.6075

  118. S. A. Hayward, “Formation and evaporation of regular black holes,” Phys. Rev. Lett. 96, 031103 (2006) https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126

  119. Kamenshchik, A., Petriakova, P.: “Regular rotating black hole: to Kerr or not to Kerr?.” arXiv:2305.04697

  120. Azreg-Aïnou, M.: From static to rotating to conformal static solutions: Rotating imperfect fluid wormholes with(out) electric or magnetic field. Eur. Phys. J. C 74(5), 2865 (2014). https://doi.org/10.1140/epjc/s10052-014-2865-8. arXiv:1401.4292

  121. Azreg-Aïnou, M.: Generating rotating regular black hole solutions without complexification. Phys. Rev. D 90(6), 064041 (2014). https://doi.org/10.1103/PhysRevD.90.064041. arXiv:1405.2569

  122. Azreg-Ainou, M.: Comment on ‘Spinning loop black holes’ [arXiv:1006.0232]. Class. Quant. Grav. 28, 148001 (2011). https://doi.org/10.1088/0264-9381/28/14/148001. arXiv:1106.0970

  123. Franzin, E., Liberati, S., Mazza, J., Simpson, A., Visser, M.: Charged black-bounce spacetimes. JCAP 07, 036 (2021). https://doi.org/10.1088/1475-7516/2021/07/036. arXiv:2104.11376

  124. Mazza, J., Franzin, E., Liberati, S.: A novel family of rotating black hole mimickers. JCAP 04, 082 (2021). https://doi.org/10.1088/1475-7516/2021/04/082. arXiv:2102.01105

  125. Kumar, J., Islam, S.U., Ghosh, S.G.: Loop Quantum Gravity motivated multihorizon rotating black holes. JCAP 11, 032 (2022). https://doi.org/10.1088/1475-7516/2022/11/032. arXiv:2209.13562

  126. Zhou, T., Modesto, L.: Geodesic incompleteness of some popular regular black holes. Phys. Rev. D 107(4), 044016 (2023). https://doi.org/10.1103/PhysRevD.107.044016. arXiv:2208.02557

  127. Hayward, S.A.: Gravitational energy in spherical symmetry. Phys. Rev. D 53, 1938–1949 (1996). https://doi.org/10.1103/PhysRevD.53.1938. arXiv:gr-qc/9408002

  128. Petrov, A.Z.: Einstein spacetime. Fizmatlit, Moscow (1961). (in Russian)

  129. Elizalde, E., Hildebrandt, S.R.: The Family of regular interiors for nonrotating black holes with T0(0)=T1(1). Phys. Rev. D 65, 124024 (2002). https://doi.org/10.1103/PhysRevD.65.124024. arXiv:gr-qc/0202102

  130. Starobinsky, A.A.: A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 91, 99–102 (1980). https://doi.org/10.1016/0370-2693(80)90670-X

    Article  ADS  MATH  Google Scholar 

  131. Vilenkin, A.: Classical and Quantum Cosmology of the Starobinsky Inflationary Model. Phys. Rev. D 32, 2511 (1985). https://doi.org/10.1103/PhysRevD.32.2511

    Article  ADS  MathSciNet  Google Scholar 

  132. Olmo, G.J., Rubiera-Garcia, D.: Nonsingular Black Holes in \(f(R)\) Theories. Universe 1(2), 173–185 (2015). https://doi.org/10.3390/universe1020173. arXiv:1509.02430

  133. Bambi, C., Modesto, L., Rachwał, L.: Spacetime completeness of non-singular black holes in conformal gravity. JCAP 05, 003 (2017). https://doi.org/10.1088/1475-7516/2017/05/003. arXiv:1611.00865

  134. Beltracchi, P., Gondolo, P.: “Physical interpretation of Newman-Janis rotating systems. I. A unique family of Kerr-Schild systems,” Phys. Rev. D 104(12), 124066 (2021) https://doi.org/10.1103/PhysRevD.104.124066. arXiv:2104.02255

  135. Dymnikova, I., Galaktionov, E.: Basic Generic Properties of Regular Rotating Black Holes and Solitons. Adv. Math. Phys. 2017, 1035381 (2017). https://doi.org/10.1155/2017/1035381

  136. Dymnikova, I., Galaktionov, E.: Regular rotating electrically charged black holes and solitons in non-linear electrodynamics minimally coupled to gravity. Class. Quant. Grav. 32(16), 165015 (2015). https://doi.org/10.1088/0264-9381/32/16/165015. arXiv:1510.01353

  137. Benavides-Gallego, C.A., Abdujabbarov, A.A., Bambi, C.: Rotating and nonlinear magnetic-charged black hole surrounded by quintessence. Phys. Rev. D 101(4), 044038 (2020). https://doi.org/10.1103/PhysRevD.101.044038. arXiv:1811.01562

  138. Bretón, N., Lämmerzahl, C., Macías, A.: Rotating black holes in the Einstein-Euler-Heisenberg theory. Class. Quant. Grav. 36(23), 235022 (2019). https://doi.org/10.1088/1361-6382/ab5169

  139. Toshmatov, B., Stuchlík, Z., Ahmedov, B.: Generic rotating regular black holes in general relativity coupled to nonlinear electrodynamics. Phys. Rev. D 95(8), 084037 (2017). https://doi.org/10.1103/PhysRevD.95.084037. arXiv:1704.07300

  140. Erbin, H.: Janis-Newman algorithm: simplifications and gauge field transformation. Gen. Rel. Grav. 47, 19 (2015). https://doi.org/10.1007/s10714-015-1860-1. arXiv:1410.2602

  141. Rodrigues, M.E., Junior, E.L.B.: “Comment on “Generic rotating regular black holes in general relativity coupled to non-linear electrodynamics.”,” Phys. Rev. D 96(12), 128502 (2017). https://doi.org/10.1103/PhysRevD.96.128502. arXiv:1712.03592

  142. Bronnikov, K.A.: Black bounces, wormholes, and partly phantom scalar fields. Phys. Rev. D 106(6), 064029 (2022). https://doi.org/10.1103/PhysRevD.106.064029. arXiv:2206.09227

  143. Herdeiro, C.A.R., Radu, E.: Asymptotically flat black holes with scalar hair: a review. Int. J. Mod. Phys. D 24(09), 1542014 (2015). https://doi.org/10.1142/S0218271815420146. arXiv:1504.08209

  144. Khlopov, M., Malomed, B.A., Zeldovich, I.B.: Gravitational instability of scalar fields and formation of primordial black holes. Mon. Not. Roy. Astron. Soc. 215, 575–589 (1985)

    Article  ADS  Google Scholar 

  145. Karakasis, T., Mavromatos, N.E., Papantonopoulos, E.: “Regular Compact Objects with Scalar Hair.” arXiv:2305.00058

  146. Lan, C., Miao, Y.-G.: “Entropy and Topology of Regular Black Holes.” arXiv:2105.00218

  147. Dymnikova, I., Khlopov, M.: Regular black hole remnants and graviatoms with de Sitter interior as heavy dark matter candidates probing inhomogeneity of early universe. Int. J. Mod. Phys. D 24(13), 1545002 (2015). https://doi.org/10.1142/S0218271815450029. arXiv:1510.01351

  148. Poisson, E.: A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, 12, (2009). https://doi.org/10.1017/CBO9780511606601

  149. Balakin, A.B., Lemos, J.P.S., Zayats, A.E.: Regular nonminimal magnetic black holes in spacetimes with a cosmological constant. Phys. Rev. D 93(2), 024008 (2016). https://doi.org/10.1103/PhysRevD.93.024008. arXiv:1512.02653

  150. Simpson, A., Visser, M.: Regular black holes with asymptotically Minkowski cores. Universe 6(1), 8 (2019). https://doi.org/10.3390/universe6010008. arXiv:1911.01020

  151. Ling, Y., Wu, M.-H.: Regular black holes with sub-Planckian curvature. Class. Quant. Grav. 40(7), 075009 (2023). https://doi.org/10.1088/1361-6382/acc0c9. arXiv:2109.05974

  152. Culetu, H.: On a regular charged black hole with a nonlinear electric source. Int. J. Theor. Phys. 54(8), 2855–2863 (2015). https://doi.org/10.1007/s10773-015-2521-6. arXiv:1408.3334

  153. Tolman, R.C.: Relativity, thermodynamics, and cosmology. Courier Corporation, (1987)

  154. Abreu, G., Visser, M.: Tolman mass, generalized surface gravity, and entropy bounds. Phys. Rev. Lett. 105, 041302 (2010). https://doi.org/10.1103/PhysRevLett.105.041302. arXiv:1005.1132

  155. Curiel, E.: A Primer on Energy Conditions. Einstein Stud. 13, 43–104 (2017). https://doi.org/10.1007/978-1-4939-3210-8_3. arXiv:1405.0403

  156. Zhang, Y., Zhu, Y., Modesto, L., Bambi, C.: Can static regular black holes form from gravitational collapse? Eur. Phys. J. C 75(2), 96 (2015). https://doi.org/10.1140/epjc/s10052-015-3311-2. arXiv:1404.4770

  157. Mars, M., Martín-Prats, M.M., Senovilla, J.M.: Models of regular Schwarzschild black holes satisfying weak energy conditions. Class. Quant. Grav. 13(5), L51–L58 (1996). https://doi.org/10.1088/0264-9381/13/5/003

    Article  MathSciNet  MATH  Google Scholar 

  158. Aftergood, J., DeBenedictis, A.: Matter conditions for regular black holes in \(f(T)\) gravity. Phys. Rev. D 90(12), 124006 (2014). https://doi.org/10.1103/PhysRevD.90.124006. arXiv:1409.4084

  159. Balart, L., Vagenas, E.C.: Regular black hole metrics and the weak energy condition. Phys. Lett. B 730, 14–17 (2014). https://doi.org/10.1016/j.physletb.2014.01.024. arXiv:1401.2136

  160. Rodrigues, M.E., Junior, E.L.B., de Sousa Silva, M.V.: “Using dominant and weak energy conditions for build new classe of regular black holes.” JCAP 02, 059 (2018), https://doi.org/10.1088/1475-7516/2018/02/059. arXiv:1705.05744

  161. Toshmatov, B., Bambi, C., Ahmedov, B., Abdujabbarov, A., Stuchlík, Z.: Energy conditions of non-singular black hole spacetimes in conformal gravity. Eur. Phys. J. C 77(8), 542 (2017). https://doi.org/10.1140/epjc/s10052-017-5112-2. arXiv:1702.06855

  162. Maeda, H.: Quest for realistic non-singular black-hole geometries: regular-center type. JHEP 11, 108 (2022). https://doi.org/10.1007/JHEP11(2022)108. arXiv:2107.04791

  163. Liu, F.-Y., Mai, Y.-F., Wu, W.-Y., Xie, Y.: Probing a regular non-minimal Einstein-Yang-Mills black hole with gravitational lensings. Phys. Lett. B 795, 475–481 (2019). https://doi.org/10.1016/j.physletb.2019.06.052

    Article  ADS  MathSciNet  MATH  Google Scholar 

  164. Rayimbaev, J., Abdujabbarov, A., Wen-Biao, H.: Regular nonminimal magnetic black hole as a source of quasiperiodic oscillations. Phys. Rev. D 103(10), 104070 (2021). https://doi.org/10.1103/PhysRevD.103.104070

  165. Lan, C., Miao, Y.-G., Zang, Y.-X.: “Simulations of physical regular black holes in fluids.” arXiv:2206.08694

  166. Myung, Y.S., Kim, Y.-W., Park, Y.-J.: Quantum Cooling Evaporation Process in Regular Black Holes. Phys. Lett. B 656, 221–225 (2007). https://doi.org/10.1016/j.physletb.2007.09.056. arXiv:gr-qc/0702145

  167. Myung, Y.S., Yoon, M.: Regular black hole in three dimensions. Eur. Phys. J. C 62, 405–411 (2009). https://doi.org/10.1140/epjc/s10052-009-1036-9. arXiv:0810.0078

  168. Miao, Y.-G., Xu, Z.-M.: Thermodynamics of noncommutative high-dimensional AdS black holes with non-gaussian smeared matter distributions. Eur. Phys. J. C 76(4), 217 (2016). https://doi.org/10.1140/epjc/s10052-016-4073-1. arXiv:1511.00853

  169. Nam, C.H.: Thermodynamics and phase transitions of non-linear charged black hole in AdS spacetime. Eur. Phys. J. C 78(7), 581 (2018). https://doi.org/10.1140/epjc/s10052-018-6056-x

    Article  ADS  Google Scholar 

  170. Lan, C., Miao, Y.-G., Yang, H.: Quasinormal modes and phase transitions of regular black holes. Nucl. Phys. B 971, 115539 (2021). https://doi.org/10.1016/j.nuclphysb.2021.115539. arXiv:2008.04609

  171. Naveena Kumara, A., Rizwan, C.L.A., Hegde, K., Ajith, K.M.: “Repulsive interactions in the microstructure of regular hayward black hole in anti-de sitter spacetime,” Phys. Lett. B 807, 135556 (2020) https://doi.org/10.1016/j.physletb.2020.135556. arXiv:2003.10175

  172. Banerjee, R., Majhi, B.R., Samanta, S.: Noncommutative Black Hole Thermodynamics. Phys. Rev. D 77, 124035 (2008). https://doi.org/10.1103/PhysRevD.77.124035. arXiv:0801.3583

  173. Kruglov, S.I.: Black hole as a magnetic monopole within exponential nonlinear electrodynamics. Annals Phys. 378, 59–70 (2017). https://doi.org/10.1016/j.aop.2016.12.036. arXiv:1703.02029

  174. Nojiri, S., Odintsov, S.D.: Regular multihorizon black holes in modified gravity with nonlinear electrodynamics. Phys. Rev. D 96(10), 104008 (2017). https://doi.org/10.1103/PhysRevD.96.104008. arXiv:1708.05226

  175. Sekiwa, Y.: Thermodynamics of de Sitter black holes: Thermal cosmological constant. Phys. Rev. D 73, 084009 (2006). https://doi.org/10.1103/PhysRevD.73.084009. arXiv:hep-th/0602269

  176. Wang, S.: Thermodynamics of Schwarzschild de Sitter spacetimes: Variable cosmological constant (2006). arXiv:gr-qc/0606109

  177. Kastor, D., Ray, S., Traschen, J.: Enthalpy and the mechanics of AdS black holes. Class. Quant. Grav. 26(19), 195011 (2009). https://doi.org/10.1088/0264-9381/26/19/195011. arXiv:0904.2765

  178. Ayon-Beato, E., Garcia, A.: Four parametric regular black hole solution. Gen. Rel. Grav. 37, 635 (2005). https://doi.org/10.1007/s10714-005-0050-y. arXiv:hep-th/0403229

  179. Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977). https://doi.org/10.1103/PhysRevD.15.2752

    Article  ADS  Google Scholar 

  180. Jacobson, T., Kang, G., Myers, R.C.: On black hole entropy. Phys. Rev. D 49, 6587–6598 (1994). https://doi.org/10.1103/PhysRevD.49.6587. arXiv:gr-qc/9312023

  181. Zhang, Y., Gao, S.: First law and Smarr formula of black hole mechanics in nonlinear gauge theories. Class. Quant. Grav. 35(14), 145007 (2018). https://doi.org/10.1088/1361-6382/aac9d4. arXiv:1610.01237

  182. Tzikas, A.G.: Bardeen black hole chemistry. Phys. Lett. B 788, 219–224 (2019). https://doi.org/10.1016/j.physletb.2018.11.036. arXiv:1811.01104

  183. Singh, B.K., Singh, R.P., Singh, D.V.: Extended phase space thermodynamics of Bardeen black hole in massive gravity. Eur. Phys. J. Plus 135(10), 862 (2020). https://doi.org/10.1140/epjp/s13360-020-00880-0. arXiv:2004.11023

  184. Rizwan, C.L.A., Naveena Kumara, A., Hegde, K., Vaid, D.: “Coexistent Physics and Microstructure of the Regular Bardeen Black Hole in Anti-de Sitter Spacetime.” Annals Phys. 422, 168320 (2020) https://doi.org/10.1016/j.aop.2020.168320. arXiv:2008.06472

  185. Ma, M.-S., Zhao, R.: Corrected form of the first law of thermodynamics for regular black holes. Class. Quant. Grav. 31, 245014 (2014). https://doi.org/10.1088/0264-9381/31/24/245014. arXiv:1411.0833

  186. Maluf, R.V., Muniz, C.R., Santos, A.C.L., Estrada, M.: A new class of regular black hole solutions with quasi-localized sources of matter in (2+1) dimensions. Phys. Lett. B 835, 137581 (2022). https://doi.org/10.1016/j.physletb.2022.137581. arXiv:2208.13063

  187. Azreg-Aïnou, M.: Black hole thermodynamics: No inconsistency via the inclusion of the missing \(P-V\) terms. Phys. Rev. D 91, 064049 (2015). https://doi.org/10.1103/PhysRevD.91.064049. arXiv:1411.2386

  188. Liu, Y.-P., Cao, H.-M., Xu, W.: Reentrant phase transition with a single critical point of the Hayward-AdS black hole. Gen. Rel. Grav. 54(1), 5 (2022). https://doi.org/10.1007/s10714-021-02886-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  189. Naveena Kumara, A., Ahmed Rizwan, C.L., Punacha, S., Ajith, K.M., Ali, M.S.: “Photon orbits and thermodynamic phase transition of regular AdS black holes.” Phys. Rev. D 102(8), 084059 (2020) https://doi.org/10.1103/PhysRevD.102.084059. arXiv:1912.11909

  190. Tharanath, R., Suresh, J., Kuriakose, V.C.: Phase transitions and Geometrothermodynamics of Regular black holes. Gen. Rel. Grav. 47(4), 46 (2015). https://doi.org/10.1007/s10714-015-1884-6. arXiv:1406.3916

  191. Molina, M., Villanueva, J.R.: On the thermodynamics of the Hayward black hole. Class. Quant. Grav. 38(10), 105002 (2021). https://doi.org/10.1088/1361-6382/abdd47. arXiv:2101.07917

  192. Rodrigues, M.E., de Silva, M.V., Vieira, H.A.: “Bardeen-Kiselev black hole with a cosmological constant.” Phys. Rev. D 105(8), 084043 (2022) https://doi.org/10.1103/PhysRevD.105.084043. arXiv:2203.04965

  193. Li, C., Fang, C., He, M., Ding, J., Deng, J.: Thermodynamics of the Bardeen Black Hole in Anti-de Sitter Space. Mod. Phys. Lett. A 34(40), 1950336 (2019). https://doi.org/10.1142/S021773231950336X. arXiv:1812.02567

  194. Naveena Kumara, A., Rizwan, C.L.A., Hegde, K., Ajith, K.M.: “Repulsive Interactions in the Microstructure of Regular Hayward Black Hole in Anti-de Sitter Spacetime.” Phys. Lett. B 807, 135556 (2020) https://doi.org/10.1016/j.physletb.2020.135556. arXiv:2003.10175

  195. Rodrigue, K.K.J., Saleh, M., Thomas, B.B., Crepin, K.T.: Thermodynamic phase transition and global stability of the regular Hayward black hole surrounded by quintessence. Mod. Phys. Lett. A 35(16), 2050129 (2020). https://doi.org/10.1142/S0217732320501291. arXiv:1808.03474

  196. Rajani, K.V., Ahmed Rizwan, C.L., Naveena Kumara, A., Vaid, D., Ajith, K.M.: “Regular Bardeen AdS black hole as a heat engine.” Nucl. Phys. B 960, 115166 (2020) https://doi.org/10.1016/j.nuclphysb.2020.115166. arXiv:1904.06914

  197. Guo, S., Huang, Y.L., He, K.J., Li, G.P.: Hayward black hole heat engine efficiency in anti-de Sitter space. Mod. Phys. Lett. A 36(16), 2150108 (2021). https://doi.org/10.1142/S021773232150108X

  198. Guo, S., Huang, Y.-L., He, K.-J., Li, G.-P.: “Hayward black hole heat engine efficiency in anti-de Sitter space.” arXiv:1908.01712

  199. Ye, R., Zheng, J., Chen, J., Wang, Y.: \(P-v\) criticality and heat engine efficiency for Bardeen Einstein-Gauss-Bonnet AdS black hole. Commun. Theor. Phys. 72(3), 035401 (2020). https://doi.org/10.1088/1572-9494/ab617f

  200. Nam, C.H.: Heat engine efficiency and Joule-Thomson expansion of nonlinear charged AdS black hole in massive gravity. Gen. Rel. Grav. 53(3), 30 (2021). https://doi.org/10.1007/s10714-021-02787-2. arXiv:1906.05557

  201. Zhang, M., Zhang, C.-M., Zou, D.-C., Yue, R.-H.: P-V criticality and Joule-Thomson expansion of Hayward-AdS black holes in 4D Einstein-Gauss-Bonnet gravity. Nucl. Phys. B 973, 115608 (2021). https://doi.org/10.1016/j.nuclphysb.2021.115608. arXiv:2102.04308

  202. Kumara, A.N., Punacha, S., Hegde, K., Rizwan, C.L.A., Ajith, K.M., Ali, M.S.: “Dynamics and kinetics of phase transition for regular AdS black holes in general relativity coupled to non-linear electrodynamics.” arXiv:2106.11095

  203. Johnson, C.V.: Holographic Heat Engines. Class. Quant. Grav. 31, 205002 (2014). https://doi.org/10.1088/0264-9381/31/20/205002. arXiv:1404.5982

  204. Johnson, C.V.: Gauss-Bonnet black holes and holographic heat engines beyond large \(N\). Class. Quant. Grav. 33(21), 215009 (2016). https://doi.org/10.1088/0264-9381/33/21/215009. arXiv:1511.08782

  205. Sharma, S., Desai, A., Ganai, P.A.: “Regular charged black hole in massive gravity as heat engine.” arXiv:2207.06417

  206. Caceres, E., Nguyen, P.H., Pedraza, J.F.: Holographic entanglement entropy and the extended phase structure of STU black holes. JHEP 09, 184 (2015). https://doi.org/10.1007/JHEP09(2015)184. arXiv:1507.06069

  207. Mo, J.-X., Liang, F., Li, G.-Q.: Heat engine in the three-dimensional spacetime. JHEP 03, 010 (2017). https://doi.org/10.1007/JHEP03(2017)010. arXiv:1701.00883

  208. Johnson, C.V.: An Exact Efficiency Formula for Holographic Heat Engines. Entropy 18, 120 (2016). https://doi.org/10.3390/e18040120. arXiv:1602.02838

  209. Ruppeiner, G.: Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67, 605–659 (1995). https://doi.org/10.1103/RevModPhys.67.605. [Erratum: Rev. Mod. Phys. 68, 313-313 (1996)]

  210. Weinhold, F.: Metric geometry of equilibrium thermodynamics. J. Chem Phys. 63(6), 2479–2483 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  211. Naveena Kumara, A., Ahmed Rizwan, C.L., Hegde, K., Ali, M.S., Ajith, K.M.: “Microstructure and continuous phase transition of a regular Hayward black hole in anti-de Sitter spacetime.” PTEP 2021(7), 073E01 (2021) https://doi.org/10.1093/ptep/ptab065. arXiv:2003.00889

  212. Pu, J., Guo, S., Jiang, Q.-Q., Zu, X.-T.: Joule-Thomson expansion of the regular(Bardeen)-AdS black hole. Chin. Phys. C 44(3), 035102 (2020). https://doi.org/10.1088/1674-1137/44/3/035102. arXiv:1905.02318

  213. Rizwan, C.L.A., Naveena Kumara, A., Rajani, K.V., Vaid, D., Ajith, K.M.: “Effect of Dark Energy in Geometrothermodynamics and Phase Transitions of Regular Bardeen AdS Black Hole.” Gen. Rel. Grav. 51(12), 161 (2019). https://doi.org/10.1007/s10714-019-2649-4. arXiv:1811.10838

  214. Hennigar, R.A., McCarthy, F., Ballon, A., Mann, R.B.: Holographic heat engines: general considerations and rotating black holes. Class. Quant. Grav. 34(17), 175005 (2017). https://doi.org/10.1088/1361-6382/aa7f0f. arXiv:1704.02314

  215. Wei, S.-W., Liu, Y.-X., Mann, R.B.: Repulsive Interactions and Universal Properties of Charged Anti-de Sitter Black Hole Microstructures. Phys. Rev. Lett. 123(7), 071103 (2019). https://doi.org/10.1103/PhysRevLett.123.071103. arXiv:1906.10840

  216. Martel, K., Poisson, E.: Regular coordinate systems for Schwarzschild and other spherical spacetimes. Am. J. Phys. 69(4), 476–480 (2001). https://doi.org/10.1119/1.1336836. arXiv:gr-qc/0001069

  217. Moussa, K.A., Clement, G., Guennoune, H., Leygnac, C.: Three-dimensional Chern-Simons black holes. Phys. Rev. D 78, 064065 (2008). https://doi.org/10.1103/PhysRevD.78.064065. arXiv:0807.4241

  218. Alexander, S., Yunes, N.: Chern-Simons Modified General Relativity. Phys. Rept. 480, 1–55 (2009). https://doi.org/10.1016/j.physrep.2009.07.002. arXiv:0907.2562

  219. Dolgachev, I.V.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, (2012). https://doi.org/10.1017/CBO9781139084437

  220. Petrov, A.Z.: Classification of spaces defining gravitational fields, vol. 114 of 8, ch. Models for Concurrency, pp. 55–69. Kazan State University, Kazan, (1954). http://mi.mathnet.ru/uzku344

  221. Petrov, A.Z.: The Classification of spaces defining gravitational fields. Gen. Rel. Grav. 32, 1661–1663 (2000). https://doi.org/10.1023/A:1001910908054

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant No. 12175108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Gang Miao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Segré Notation

   Segré notation (or Segré symbol) is a systematic method for studying the complete intersection of two quadrics in algebraic geometry [219]. It is extended by Petrov [128, 220, 221] to classify gravitational fields [103]. However, the original and extended notations aim at different research subjects. The former targets second-order tensors in a vector space, and acts as an algebraic classification of Ricci tensors in general relativity, called the Segré classification. The latter directs at fourth-order tensors in a bivector space in general relativity, and acts as an algebraic classification of Weyl tensors, known as the Petrov classification. The Segré notation refers to the Segré classification in our current context. It provides a guide to searching the matter source in RBHs for a given metric and gravitational theory.

For two given tensors of order two, \(\mathcal {R}\) and \(\mathcal {I}\), which can also be regarded as two matrixes, one considers the \(\lambda \)-matrix, \(\mathcal {R}-\lambda \mathcal {I}\), and computes the corresponding elementary divisors. Supposing that \(\det (\mathcal {R}-\lambda \mathcal {I})=0\) as an algebraic equation has n distinct roots \(\lambda _1,\ldots , \lambda _n\), we have the elementary divisors for every root \(\lambda _i\),

$$\begin{aligned} (\lambda -\lambda _i)^{p_{i}^{(1)}}, \ldots , (\lambda -\lambda _i)^{p_{i}^{(s_i)}},\qquad p_{i}^{(1)}\le \cdots \le p_{i}^{(s_i)}, \end{aligned}$$
(128)

where \(p_{i}^{(s_j)}\) is the multiplicity of eigenvalue \(\lambda _i\) in the \(s_j\)-th divisor. The Segré notation is the collection,

$$\begin{aligned} \left[ (p_{1}^{(1)} \ldots p_{1}^{(s_1)} ) \ldots (p_{n}^{(1)} \ldots p_{n}^{(s_n)} ) \right] . \end{aligned}$$
(129)

For a second-order EMT, one constructs an orthonormal basis \(\hat{e}^\alpha _\mu \) [148] on the spacetime manifold \((\mathcal {M}, g_{\mu \nu })\), which satisfies

$$\begin{aligned} g_{\alpha \beta } \hat{e}^\alpha _\mu \hat{e}^\beta _\nu = \eta _{\mu \nu },\qquad \eta ={{\,\textrm{diag}\,}}\{-1,1,1,1\}, \end{aligned}$$
(130)

then decomposes the EMT by

$$\begin{aligned} T^{\mu \nu } = \rho \hat{e}^\mu _0 \hat{e}^\nu _0 +p_1 \hat{e}^\mu _1 \hat{e}^\nu _1 +p_2 \hat{e}^\mu _2 \hat{e}^\nu _2 +p_3 \hat{e}^\mu _3 \hat{e}^\nu _3. \end{aligned}$$
(131)

In other words, the EMT in the basis \(\hat{e}^\alpha _\mu \) can be represented as a diagonal matrix. Thus, we can use the Segré notation to classify the matter contents that have the possibility to generate non-rotating or rotating RBHs.

Due to the algebraic and physical properties of (131), the multiplicity is unit, i.e. we can use 1 and the parentheses to denote every diagonal component of \(T^{\mu \nu } \) and the equality among individual components. For instance, the algebraic property of EMT with \(\rho =p_1\) and \(p_2=p_3\) can be represented by [(11)(11)]. Here, we do not use commas to separate the time and space components.

1.2 Zakhary-Mcintosh Invariants

   We list all the 17 ZM invariants following Ref. [95].

  1. 1.

    Ricci data construed by Ricci tensors,

    $$\begin{aligned} \mathcal {I}_5=g^{\mu \nu }R_{\mu \nu }, \qquad \mathcal {I}_6=R_{\mu \nu }R^{\mu \nu }, \end{aligned}$$
    (132a)
    $$\begin{aligned} \mathcal {I}_7:= R_{\mu }^{\;\;\nu }R_{\nu }^{\;\;\alpha }R_{\alpha }^{\;\;\mu }, \qquad \mathcal {I}_8:= R_{\mu }^{\;\;\nu }R_{\nu }^{\;\;\alpha }R_{\alpha }^{\;\;\beta }R_{\beta }^{\;\;\mu }, \end{aligned}$$
    (132b)
  2. 2.

    Weyl data construed by Weyl tensors \(W_{\alpha \beta _\mu \nu }\),

    $$\begin{aligned} \mathcal {I}_1:= W^{\mu \nu }_{\quad \alpha \beta }W^{\alpha \beta }_{\quad \mu \nu }, \qquad \mathcal {I}_3:= W^{\mu \nu }_{\quad \alpha \beta }W^{\alpha \beta }_{\quad \rho \sigma }W^{\rho \sigma }_{\quad \mu \nu }, \end{aligned}$$
    (133a)
    $$\begin{aligned} \mathcal {I}_2:= -W^{\mu \nu }_{\quad \alpha \beta }W^{*\alpha \beta }_{\quad \mu \nu }, \qquad \mathcal {I}_4:= -W^{\mu \nu }_{\quad \alpha \beta }W^{*\alpha \beta }_{\quad \rho \sigma }W^{\rho \sigma }_{\quad \mu \nu }, \end{aligned}$$
    (133b)
  3. 3.

    Mixed data constructed by both Ricci and Weyl tensors,

    $$\begin{aligned} \mathcal {I}_9 := W_{\mu \alpha \beta \nu }R^{\alpha \beta }R^{\nu \mu },\quad \mathcal {I}_{10} := -W^*_{\mu \alpha \beta \nu }R^{\alpha \beta }R^{\nu \mu }, \end{aligned}$$
    (134a)
    $$\begin{aligned} \mathcal {I}_{11} := R^{\mu \nu } R^{\alpha \beta } \left( W_{\rho \mu \nu }^{\quad \; \sigma } W_{\sigma \alpha \beta }^{\quad \; \rho } - W_{\rho \mu \nu }^{*\quad \sigma } W_{\sigma \alpha \beta }^{*\quad \rho } \right) , \end{aligned}$$
    (134b)
    $$\begin{aligned} \mathcal {I}_{12} := -R^{\mu \nu } R^{\alpha \beta } \left( W_{\rho \mu \nu }^{*\quad \; \sigma } W_{\sigma \alpha \beta }^{\quad \; \rho } + W_{\rho \mu \nu }^{\quad \sigma } W_{\sigma \alpha \beta }^{*\quad \rho } \right) , \end{aligned}$$
    (134c)
    $$\begin{aligned} \mathcal {I}_{13} := R^{\mu \rho } R_{\rho }^{\;\; \alpha } R^{\nu \sigma } R_{\sigma }^{\;\beta } W_{\mu \nu \alpha \beta },\quad \mathcal {I}_{14} := R^{\mu \rho } R_{\rho }^{\;\; \alpha } R^{\nu \sigma } R_{\sigma }^{\;\beta } W^*_{\mu \nu \alpha \beta } \end{aligned}$$
    (134d)
    $$\begin{aligned} \mathcal {I}_{15} := \frac{1}{16} R^{\mu \nu }R^{\alpha \beta } \left( W_{\rho \mu \nu \sigma }W_{\;\;\alpha \beta }^{\rho \quad \sigma } + W^*_{\rho \mu \nu \sigma }W_{\quad \alpha \beta }^{*\rho \quad \sigma } \right) , \end{aligned}$$
    (134e)
    $$\begin{aligned} \begin{aligned} \mathcal {I}_{16}&:= -\frac{1}{32} R^{\alpha \beta } R^{\mu \nu } \Big ( W_{\rho \sigma \gamma \zeta } W^{\rho \quad \zeta }_{\;\;\alpha \beta }W^{\sigma \quad \zeta }_{\;\;\mu \nu } +W_{\rho \sigma \gamma \zeta } W^{*\rho \quad \zeta }_{\;\;\;\;\alpha \beta }W^{\sigma \quad \zeta }_{\;\;\;\;\mu \nu }\\&\qquad \qquad \qquad -W^*_{\rho \sigma \gamma \zeta } W^{*\rho \quad \zeta }_{\;\;\;\;\alpha \beta }W^{\sigma \quad \zeta }_{\;\;\mu \nu } +W^*_{\rho \sigma \gamma \zeta } W^{\rho \quad \zeta }_{\;\;\alpha \beta }W^{*\sigma \quad \zeta }_{\;\;\;\;\mu \nu } \Big ), \end{aligned} \end{aligned}$$
    (134f)
    $$\begin{aligned} \begin{aligned} \mathcal {I}_{17}&:= \frac{1}{32} R^{\alpha \beta } R^{\mu \nu } \Big ( W^*_{\rho \sigma \gamma \zeta } W^{\rho \quad \zeta }_{\;\;\alpha \beta }W^{\sigma \quad \zeta }_{\;\;\mu \nu } +W^*_{\rho \sigma \gamma \zeta } W^{*\rho \quad \zeta }_{\;\;\;\;\alpha \beta }W^{*\sigma \quad \zeta }_{\;\;\;\;\mu \nu }\\&\qquad \qquad \qquad -W_{\rho \sigma \gamma \zeta } W^{*\rho \quad \zeta }_{\;\;\;\;\alpha \beta }W^{\sigma \quad \zeta }_{\;\;\mu \nu } +W_{\rho \sigma \gamma \zeta } W^{\rho \quad \zeta }_{\;\;\alpha \beta }W^{*\sigma \quad \zeta }_{\;\;\;\;\mu \nu } \Big ), \end{aligned} \end{aligned}$$
    (134g)

where \(W_{\mu \nu \alpha \beta }\) is Weyl tensor and \(W^*_{\mu \nu \alpha \beta }=\epsilon _{\mu \nu \rho \sigma }W^{\rho \sigma }_{\;\;\;\alpha \beta }/2\) denotes its dual.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, C., Yang, H., Guo, Y. et al. Regular Black Holes: A Short Topic Review. Int J Theor Phys 62, 202 (2023). https://doi.org/10.1007/s10773-023-05454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05454-1

Navigation