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Abstract
In this work, we investigate the relationship between the geometrical properties, the photon
sphere, the shadow, and the eikonal quasinormal modes of electrically charged black holes in
4D Einstein-Gauss-Bonnet gravity. Quasinormal modes are complex frequency oscillations
that are dependent on the geometry of spacetime and have significant applications in studying
black hole properties and testing alternative theories of gravity. Here, we focus on the eikonal
limit for high frequency quasinormalmodes and their connection to the black holes geometric
characteristics. To study the photon sphere, quasinormal modes, and black hole shadow, we
employ various techniques such as the Wentzel-Kramers-Brillouin method in various orders
of approximation, the Poschl-Teller potential method, and Churilova’s analytical formulas.
Our results indicate that the real part of the eikonal quasinormalmode frequencies of test fields
are linked to the unstable circular null geodesic and are correlated with the shadow radius for
a charged black hole in 4D Einstein-Gauss-Bonnet gravity. Furthermore, we found that the
real part of quasinormal modes, the photon sphere and shadow radius have a lower value for
charged black holes in 4D Einstein-Gauss-Bonnet gravity compared to black holes without
electric charge and those of static black holes in general relativity. Additionally, we explore
various analytical formulas for the photon spheres and shadows, and deduce an approximate
formula for the shadow radius of charged black holes in 4D Einstein-Gauss-Bonnet gravity,
based on Churilova’s method and its connection with the eikonal quasinormal modes.
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1 Introduction

Modified gravity theories have gained attention as a potential solution to various unresolved
astrophysical mysteries, including the nature of dark matter, the formation of supermassive
Black Holes (BHs), the evolution of galaxies, and the behavior of large-scale structures in
the universe, as well as the acceleration of its expansion. One of these theories is known as
the Einstein-Gauss-Bonnet (EGB) gravity, which introduces the Gauss-Bonnet invariant as
an additional term to the Lagrangian. This theory of gravity can be interpreted as an exten-
sion of GR with quadratic curvature corrections, yielding interesting implications for BHs,
cosmology, and weak-field gravity [1]. Particularly, the BH solutions in EGB gravity have
been derived from various modified gravity theories using different approaches. The initial
BH solution in EGB theory was found by Boulware and Deser in 1985 [2] for dimensions
D ≥ 5, as the GB term does not affect the gravitational dynamics in D = 4. However, later
studies, such as those by Tomozawa in 2011 [3] and Cognola et al. in 2013 [4], discovered
that the GB term could have a non-trivial contribution to spacetime when D = 4 through reg-
ularization and dimensional reduction techniques. According to Lovelock’s theorem, EGB
gravity is only introduced in D ≥ 5, as the GB term does not contribute dynamically in lower
dimensions [5]. This led Glavan and Lin in 2020 [6] to propose a rescaling of the coupling
constant to obtain a contribution to gravitational dynamics in D = 4. From this moment, this
BH solution in 4D EGB gravity has been studied intensively and is considerably a subject
of ongoing research. For example, this BH solution in 4D EGB theory was explored subse-
quently in 2020 [7] by Fernandes, who studied its coupling with both BH electric charge and
anti-de Sitter space. Despite the fact that the solution proposed by BH in [6] was obtained
in a simple way, the model used there was strongly criticized. Several later studies have
shown that the method used to find the solution was neither consistent nor well-defined [1,
8–10]. However, several subsequent studies have obtained this same solution and clarified
that it was not really new. This and other very similar solutions can be deduced from different
well-defined approaches and modified gravity theories [1, 11–17].

On the other hand, remarkable progress in observational astronomy has been achieved
in recent years, particularly in the study of BHs. One of the most intriguing properties of
BHs is their Quasinormal Modes (QNMs), which can be detected by gravitational interfer-
ometers. These QNMs are a distinguishing characteristic of BHs that describe their damped
oscillations over the spacetime in response to external perturbations [18]. These modes are
fundamental to understanding the behavior of BHs and play a crucial role in verifying the
theoretical predictions of gravitational wave physics through experimental measurements.
The frequencies of these QNMs of BHs are complex numbers, with the real part correspond-
ing to the frequency of the oscillation and the imaginary part corresponding to the rate at
which the amplitude of the oscillation decays. QNMs have several important applications
in the research of BHs, such as studying their surface gravity and horizon area, stability,
the detection of gravitational waves, and their geometrical properties, such as their mass,
spin, and electric charge. There are various techniques used to compute and calculate QNMs,
including the Wentzel-Kramers-Brillouin (WKB) method, the continued fraction method,
the time-domain integration method and much more. In Fact, the knowledge about QNMs
could also have potential implications in other fields such as astrophysics, cosmology, and
high-energy physics, like testing General Relativiy (GR) and alternative theories of gravity
[19]. Eikonal QNMs are a specific type of oscillations that are particularly useful for studying
high-frequency QNMs and their applications. These oscillations occur in the eikonal limit,
in which the real part of the QNM frequency is directly related to the unstable circular null
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geodesics of the BH. This relationship is helpful in understanding the connection between
QNMs and the geometric properties of the BH. For instance, the real part of the QNM fre-
quency is a monotonically increasing function of the spin of the BH, whereas the imaginary
part of the QNM frequency is a monotonically decreasing function of the spin. [20]. There-
fore, exploring eikonal QNMs is a valuable approach to studying BHs and their geometrical
properties.

Another very interesting feature of BHs is their shadow, a dark region in their vicinity
caused by the bending of light due to the BHs gravity. The exact shape and size of a BHs
shadow also depend on the geometrical properties of the BH, as well as the properties of
the environment surrounding it, such as the distribution of matter and the presence of other
objects. For example, the presence of dark matter can affect the QNMs frequencies and the
shadow radius of a BH [21, 22]. The eikonal limit establishes a correlation between these
two quantities, indicating that the influence of dark matter on QNMs and the shadow radius
is more pronounced for rotating BHs than non-rotating ones [21].

The study of eikonal QNMs in BH solutions of GR and their connection with the photon
sphere has been extensively explored in previous research [23]. These studies have also
been extended to alternative theories of gravitation, such as Scalar Gauss-Bonnet grav-
ity [24], Einstein-dilaton-Gauss-Bonnet BHs [25], dynamical Chern-Simons gravity [26],
Rotating Loop Quantum BHs [27], string-corrected D-dimensional BHs [28], and deformed
Schwarzschild BHs [29], among others. Additionally, the QNMs of BHs in 4D EGB grav-
ity are a topic of ongoing research. Some investigations have focused on the shadows and
photon spheres with spherical accretions, the correlation between the shadow of a BH and
its eikonal QNMs, as well as the effect of the Gauss-Bonnet (GB) coupling constant α on
these properties [30–36]. Moreover, recent research has been conducted on extended and
more complex versions of this 4D EGB BH type solution. Investigations have included the
study of eikonal QNMs and greybody factors in asymptotically de Sitter spacetime [37], the
investigations on the QNMs and the shadow of a BH with confining electric potential in
scalar-tensor description of 4D EGB gravity [38], the effects of the magnetic charge on weak
deflection angle and greybody bound of 4D EGB BHs [39], the analysis of the shadow of
rotating BHs in 4D EGB gravity [40], the study of null geodesics and shadow of 4D EGB
BHs surrounded by quintessence [41], the examination of entropy, energy emission, QNMs,
and deflection angle of 4D EGB BHs with nonlinear electrodynamics [42], and the inves-
tigation of QNMs of a 4D EGB BH in anti-de Sitter space [43]. Similarly, several studies
have been conducted on electrically charged BHs in 4D EGB gravity, each focusing on dif-
ferent aspects of their behavior. For instance, gravitational lensing is studied in [44], particle
motion and plasma behavior are examined in [45], superradiance and stability of the solution
are discussed in [46], and the connection between phase transition and QNMs is explored
in [47]. Recent research has focused on the properties of rotating charged BHs in 4D EGB
gravity, including the examination of photon motion and shadow [48]. Additionally, studies
have been conducted on the characteristics of charged BHs in 4D EGB gravity coupled with
anti-de Sitter space, such as their shadow, energy emission, deflection angle, and heat engine
properties [49]. Furthermore, investigations have been carried out on the instability, quasinor-
mal modes, and strong cosmic censorship of charged BHs in 4D EGB gravity coupled with
de Sitter space under charged scalar and electromagnetic perturbations [50, 51]. Notably, by
merging the findings from previous investigations, a more comprehensive understanding of
these variations in modified theories of gravity can be achieved.

A recent work in [52] explored the correspondence between the shadow and the QNMs
of the scalar field around a charged BH in 4D EGB gravity, using the 6th order of the
WKB method. In this work, we will extend the findings of this study by utilizing additional

123



209 Page 4 of 26 International Journal of Theoretical Physics (2023) 62:209

approaches, such as the Poschl-Teller potential and Churilova’s methods, to investigate sev-
eral properties that emerge the relationship between the BH shadow, and the eikonal QNMs
of scalar and electromagnetic field perturbations for a charged BH in 4D EGB gravity. There-
fore, We will show several new analytical formulas for the radius of the photon sphere and
the BH shadow, which can be very useful because of its short form and which result from
the relationship of these quantities with the eikonal QNMs.

This paper is organized as follows: In Section 2, we present the electrically charged
BH in 4D EGB gravity, briefly introducing the BH metric background, their horizons, and
particular limit cases. In Section 3, we show the theory behind the QNMs of scalar and
electromagnetic field perturbations, providing the corresponding master wave equations and
discussing some of the principal semi-analytical methods to calculate the QNM frequencies,
such as the WKB approximation approach and the Poschl-Teller potential method. Then,
in Section 4, we discuss some eikonal QNMs approaches, including a recently proposed
analytical formulation that approximates the frequencies at this limit. Later, we analyze and
apply these methods on the eikonal QNMs of a charged BH in 4D EGB gravity, looking
at the effect of the geometric parameters of the BH on these. Afterwards, in Section 5, we
study the photon sphere of a charged BH in 4D EGB gravity and its particular limit cases,
illustrating the correspondence between eikonal QNMs and null geodesics, and revealing the
effect of the geometric parameters of the BH on this. Thereafter, in Section 6, we investigate
the shadow of a charged BH in 4D EGB gravity and its connection with their eikonal QNMs
frequencies, sharing an analytic and approximate formula for the shadow and comparing it
with all the results given by other methods and again, the effect of the geometric parameters
of the BH in their shadow. Finally, in Section 7, we summarize some conclusions.

2 The Charged Black Hole in the 4D Einstein-Gauss-Bonnet Gravity

2.1 The Spacetime Background

Thegravitational theory ofEGB inD-dimensional spacetime coupledwith an electromagnetic
source is described by the action [52]

S = 1

16πG

∫
dxD

√−g
[
R − FμνF

μν + α
(
R2 − 4RμνR

μν + Rμνβγ R
μνβγ

)]
, (1)

where R is the scalar curvature, which corresponds to the well known Einstein-Hilbert con-
tribution, Rμν and Rμνβγ are the Ricci and Riemann tensors respectively, α is known as the
GB coupling constant and Fμν is the electromagnetic tensor given by

Fμν = ∂μAν − ∂ν Aμ, (2)

with Aμ being the quadripotential. α has dimensions of [length2] and some authors take it
between −8M2 < α < M2 [30]. Nevertheless, it is usual to consider the simple constrain
α > 0 [17], since it has been shown that for α < 0 the BH solution might not be valid for
small distances [40]. In this work, we will use the assumption α > 0.

EGB gravity describes quadratic corrections to the curvature tensors from Lovelock’s
gravitational theory, but is also obtained in the low-energy limit of string theory, in which
α can be interpreted as the inverse stress of the string and is defined only with positive
values [40]. Actually, the BH solution in EGB theory has already been deduced from various
modified gravity theories. It was initially obtained in 1985 by Boulware and Deser in [2] for
the cases where D ≥ 5, since the GB term does not contribute to the gravitational dynamics
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when D = 4. Then, Tomozawa in 2011 [3], through a regularization procedure, found that
there could be, from a quantum perspective, a non-trivial contribution of the GB term to
space-time in the case where D = 4 . Later in 2013, Cognola et al. [4], through another
process of regularization to EGB gravity, managed to perform a dimensional reduction under
the Lagrangian formulation, finding again the BH type solution for the case in which D = 4.
According to Lovelock’s theorem, the gravity of EGB is only introduced in cases where
D > 4 because, for smaller dimensions, the term with the GB coupling would not contribute
dynamically [5]. In 2020, Glavan and Lin [6] used this formalism to obain the same BH
solution in 4D EGB gravity by simply proposing a rescaling of α. However, several studies
have shown that this previous proposal is problematic. This is easily suspected by the fact that
the lagrangian action diverges and is not well-defined in the 4-dimensional limit, disregarding
Lovelock’s theorem [1, 8–10]. Consequently, it has been clarified that the BH solutions of
4D EGB can be obtained from different approaches and theories of modified gravity that
are well-defined. Therefore, it is not an entirely novel solution. To obtain coherent versions
of the theory of BH solutions in 4D EGB gravity, alternative regularization processes have
been applied. These include scalar-tensor theories from conformal regularizations [14, 15],
the Kaluza-Klein regularized reduction [13], and other formalisms related to theories of
gravity such as semi-classical or higher dimensional [1, 11, 12, 16, 17]. Taking this into
account, we will study the solution of 4D EGB BHs within the context of consistent theories.
For example, in [16], the suggested approach have two dynamical degrees of freedom by
breaking the temporal diffeomorphism invariance and are explored in the context of EGB
gravity in D = d + 1 using the ADM decomposition. This undoubtedly shows that this
BH solution has been of great interest in recent years. The spacetime under consideration is
assumed to be static and spherically symmetric, and is described by

ds2 = − f (r) dt2 + f (r)−1 dr2 + r2d�2
D, (3)

where, if D = 4, we have that d�2
D ≡ dθ2 + sin2 θdφ2 and

Aμ = −Q

r
dt, (4)

so the solution of an electrically charged BH in 4D EGB gravity will take the form [52]

f (CEGB)(r) = 1 + r2

2α

⎡
⎣1 −

√
1 + 4α

(
2M

r3
− Q2

r4

)⎤
⎦ . (5)

This solution was first introduced in [7], in addition to a coupling with anti-de Sitter space.
The asymptotic behavior of this solution is

f (CEGB)(r) = 1 − 2M

r
+ Q2

r2
+ 4M2α

r4
− 4MQ2α

r5
+ O

(
1

r6

)
. (6)

When only the first and second orders are considered in the series expansion, the solutions
of GR are clearly revealed.

For simplicity, from now on, the spacetime that describes the background geometry of an
electrically charged BH in 4D EGB gravity of (5) will be denoted as the CEGB BH solution.
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2.2 Horizons and Particular Cases

The CEGB BH solution has two horizons, the internal (Cauchy) horizon, r−, and the event
horizon, r+, which are located at

r± = M ±
√
M2 − Q2 − α. (7)

The corresponding behavior of r± is shown in Fig. 1 for different values of Q and α. There,
the monotonic corrections on r± are evident, at higher values of α and Q, the value of r+
decreases while r− increases. Thus, it is possible to obtain a suitable value of the parameters
α and Q for which r− and r+ become a single degenerate horizon (with r− = r+ = M).
This particular case is known as the extreme BH type and it is obtained when

M = Mext =
√
Q2 + α. (8)

Thus, when M = Mext , the function f (CEGB) has only one real root (corresponding to the
degenerate horizon). When M > Mext the usual BHs solutions are obtained, with two real
roots representing the two horizon as in (7). Taking M = 1 and M > Mext , α takes values
in the range

0 < α ≤ 1 − Q2. (9)

From here it is clear that when Q → 1, the parameter α → 0. On the other hand, when
M < Mext we have two complex root and the solution will represent a naked singularity.

The BH solution f (CEGB), contains various types of BHs as particular limiting cases.
First, the Schwarzschild space-time is reached when Q → 0 and α → 0, obtaining

f (Sch) = 1 − 2M

r
. (10)

The Reissner-Nordström (RN) BH is achieved by taking α → 0 in the solution f (CEGB),

f (RN ) = 1 − 2M

r
+ Q2

r2
. (11)

This metric describes the electrically charged BHs of the theory of GR and the horizons are
given by

r± = M ±
√
M2 − Q2. (12)

Fig. 1 Radius of the event horizon r+ and of the inner horizon r− for a CEGB BH. In the left panel it is shown
in terms of the electric charge Q/M (using α/M2 = 0.1) and in the right panel in terms of the GB coupling
constant α/M2 (with Q/M = 0.1)
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Fig. 2 Dependeces maximum values of GB constant and charge of the BH in 4D EGB gravity(left panel),
event horizon to the maximum values of GB constant (middle panel), and event horizon to charge of the BH
in 4D EGB gravity (right panel)

The third particular limiting case is the BH solution of 4D EGB gravity, obtained when
Q → 0,

f (EGB) = 1 + r2

2α

(
1 −

√
1 + 8Mα

r3

)
. (13)

This spacetime has two real roots given by

r± = M ±
√
M2 − α. (14)

Furthermore, we can determine the maximum values of the spacetime parameters by
analyzing the spacetime to ensure that the BH possesses an event horizon. This can be
achieved by solving the equations:

f (CEGB)(r) = 0, f (CEGB)′(r) = 0 (15)

where ′ denotes the derivative with respect to the radial direction.
Figure 2 consists of three panels. The left panel illustrates the dependence of themaximum

values of the GB constant and the charge of a black hole in 4D EBG gravity. The gray region
represents black holes that possess an event horizon, while the white region corresponds to
naked singularities, where there is no black hole at the center of our spacetime. Furthermore,
the middle and right panels of Fig. 2 display an intriguing behavior of our event horizon,
demonstrating that it remains constant regardless of changes in the parameters.

3 Quasinormal Modes of the Test Fields Perturbations

3.1 MasterWave Equations of Scalar and Electromagnetic Fields

QNMs play an important role in investigating gravitational wave astronomy as they describe
perturbations near BHs that can be observed through interferometry projects. The study of
QNMs using various test fields, such as scalar, electromagnetic, and gravitational, provides
valuable insights into the geometrical properties ofBHs andhelps determine their stability and
uniqueness. To start the investigation, we propose examining the scalar and electromagnetic
fields due to their relatively simple descriptions. Firstly, amassless scalar field,�, is described
by the Klein-Gordon equation that is written, using the background metric gμν , as

1√−g
∂μ

(√−ggμν∂ν�
) = 0. (16)

123



209 Page 8 of 26 International Journal of Theoretical Physics (2023) 62:209

On the other hand, the electromagnetic field equation in a curved spacetime is

1√−g
∂μ

(√−gFμν
) = 0. (17)

Using the formalism of perturbation theory and the scalar and vector harmonics to separate
the spherical coordinates (t, r , θ, φ), (16) and (17) can be transformed into a single general
differential equation that adopts a Schrödinger-like form for stationary backgrounds [19,
53–55],

d2�s

dr2∗
+ [

ω2 − Vs(r)
]
�s = 0, (18)

where we have introduced the well-known tortoise coordinate, r∗, defined by the relation

dr∗ = dr

f (r)
(19)

and the effective potential takes de generalized form

Vs(r) = f (r)

(
�(� + 1)

r2
+ (1 − s)

r
f ′(r)

)
. (20)

In this expression, s = 0 and s = 1 identify the scalar and the electromagnetic perturbations,
respectively. Also, the prime denotes differentiation with respect to r , and � = 0, 1, 2, . . .
are the multipole quantum numbers that come from spherical harmonic expansions.

The QNMs frequencies, denoted by ω in (18), are obtained by requiring purely outgoing
waves at infinity and purely incoming waves at the event horizon [30],

�s ∼ ±e±iωr∗ , r∗ → ±∞. (21)

In the case of the CEGB BH, the effective potential is always positive and have the shape
of a potential barrier with a single peak. It also fulfills that

V (CEGB)
s (r → r+) = V (CEGB)

s (r → ∞) = 0. (22)

This behavior of the effective potential are the necessary boundary conditions to use the
semi-analytical methods in the upcoming sections to calculate the QNMs frequencies.

3.2 TheWKB AproximationMethod

Among the first theoretical approaches developed to calculate these QNMs frequencies in a
semi-analyticalmanner is thewell knownWentzel-Kramers-Brillouin (WKB) approximation
method [56]. The derivation presented by Schutz andWill [56] begins with a series expansion
of the redefined potential �(r∗) = ω2 − Vs(r∗). The value of the turtle coordinate at which
themaximumpoint of the effective potential is reachedwill be denoted by r̃∗ and the potential
evaluated at this point would be Vs(r̃∗) = V0. Hence, the series expansion will be

� = �0 + 1

2
�′′

0 (r∗ − r̃∗)2 + O (r∗ − r̃∗)3 + ... (23)

with �0 = ω2 − V0 and �′′
0 = −V ′′

0 . It is clear that the second term of the expansion
corresponds to the condition of the maximum point of the potential and therefore it vanishes.
Substituting this expansion into the differential (18), the master wave equation reduces to
the parabolic cylinder differential equation (usually called the Weber equation), which has
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known solutions. Using the asymptotic behavior described above and imposing the boundary
conditions that represent a BH, it is possible to find a simple analytical expression of the
frequencies of the QNMs. At first order, it takes the form

ω2 = V0 − i
√

−2V ′′
0

(
n + 1

2

)
. (24)

where the expression is labeled with the harmonic or overtone number n. Both, the real part
ωR and the imaginary partωI , aswell as the overtone number n, depend only on themaximum
potential, V0, and on the second derivative of the potential evaluated in the maximum point,
V ′′
0 . It should be noted that although the WKB formula has been derived analytically, it is not

always possible to find the value of r̃∗ explicitly. Therefore, it could be said that the WKB
approach is a semi-analytic methodology. When this method was introduced, the QNMs
of the gravitational perturbations of the Schwarzschild BH were estimated with an error of
approximately 6% [56, 57].

In 1987, Iyer andWill [58] extended the WKB approximation method up to the 3rd order,
improving the precision of the method up to an estimated error of less than 1% for n = 0
[57]. The formula for the frequencies of the QNMs of the 3rd order of the WKB method is

ω2 =
[
V0 +

√
−2V ′′

0 �̃1

]
− i�̃

√
−2V ′′

0 [1 + �̃2], (25)

where �̃1 and �̃2 (can be consulted in [58]) give additional contributions that depend on
n and on higher-order derivatives of the potential evaluated at the radial coordinate of the
maximum point.

In 2003, Konoplya [59] extended the WKB method to 6th order, giving more accurate
results than the previous expressions [57]. In this case, the frequencies are given by the
relation

i
(
ω2 − V0

)
√

−2V ′′
0

−
6∑
j=2

� j = n + 1

2
, (26)

where � j (can be consulted in [59]) represent the higher-order contributions. This equation

depends on terms up to V (12)
0 , that is, the twelfth derivative of the potential evaluated at the

radial coordinate of the maximum point.
Finally, in 2017, Matyjasek and Opala [60] developed the extension of the WKB method

up to 13th order. However, it has been shown that convergence in each order is not guaranteed
and that the inclusion of more orders in the expansion does not ensure more accurate results
[57]. In any case, the equations of theWKBmethod at 1st , 3rd and 6th order give satisfactory
results as long as � > n, with the best results obtained when � � n and acceptable results
when � = n [57].

3.3 The Pöschl-Teller Potential Method

Another of the semi-analytical formalisms developed to calculate the frequencies of the
QNMs of a BH was introduced in 1984 by Ferrari and Mashhoon [61]. It consists in an
approximation the effective potential included in the (20) to the well known Pöschl-Teller
potential, such that the master wave equation could be rewritten as

∂2�

∂r2∗
+

[
ω2 − V0

cosh2 η (r∗ − r̄∗)

]
� = 0, (27)
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with

η2 = V ′′
0

2V0
. (28)

Making some substitutions and following a similar procedure as that in the WKB approx-
imation, it is possible to transform (27) into a differential equation whose solutions are the
hypergeometric functions [62]. Analyzing their asymptotic behavior, it is possible to develop
a semi-analytic formula for the frequencies of QNMs,

ω = ±
√
V0 − η2

4
− iη

(
n + 1

2

)
. (29)

This approach considers both the real and imaginary components of the frequency to be
dependent on the potential and its second derivative evaluated at the point of maximum.
However, only the imaginary component, ωI , is affected by the overtone number, n. This
method can provide more accurate results for ωI compared to those obtained using theWKB
formula at 1st order of the (24). Hence, this treatment is not recommended for determining
the real component ωR of the perturbation frequencies, except in specific cases such as the
eikonal limit (� → ∞) or for the fundamental mode (n = 0) [62]. In order to ensure greater
precision in our discussions, in the upcoming sections we will keep these restrictions in mind
and primarily focus on the eikonal QNMs of the fundamental mode (n = 0).

In general, these semi-analytical formulas do not provide precise results when n ≥ � or
when the potential contains divergences, as is the case of perturbations of some massive
scalar fields or for asymptotically deSitter and Anti-deSitter spaces. In these situations, the
conditions required by the formalisms are not met, since they require the ability to identify
the characteristic maximum point of the potential barrier. Consequently, other alternative
approaches have been proposed for calculating QNM frequencies, including classical and
numerical methods such as the Chandrasekhar-Detweiler method, direct integration of the
wave equation, the Frobenius seriesmethod and its variations, the continued fractionsmethod,
and the monodromy technique for highly damped QNMs (for a discussion of these methods
see [19, 62]). In recent years, novel and alternative computational methods have also been
developed to obtain BH QNM frequencies, such as the Borel summation method [63], the
Jansen Mathematica package [64] or the use of Neural Networks Methods [65].

4 Quasinormal Modes in the Eikonal Regime

4.1 Eikonal QNMs Approaches

Theway inwhich light travels through space and interacts withmatter and energy is one of the
most fascinating aspects of the universe. Recently, a strong correlation between null geodesics
and QNMs has been established [66]. Specifically, in the eikonal limit (� → ∞), the real
and imaginary parts of QNMs frequencies for any spherically symmetric, asymptotically flat
spacetime can be linked to the frequency and instability timescale of unstable circular null
geodesics. This implies a connection between the possible paths of light rays and the response
of the BH to external perturbations. Therefore, in the eikonal regime, we can establish a
correlation between the radius of the photon sphere Rps of a BH and its QNMs using the
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following analytical expression [21, 51, 52, 67]

ω = �� − i

(
n + 1

2

)
λ. (30)

where � is the angular velocity at the photon sphere,

� =
√

f ′(Rps)

2Rps
. (31)

The symbol λ in (30) represents the Lyapunov exponent, which can be expressed as

λ =

√√√√ f
(
Rps

) (
2 f

(
Rps

) − R2
ps f

′′ (Rps
)

2R2
ps

. (32)

This parameter is associated with the instability time scale of the photon sphere of a BH,
indicating how quickly the orbit becomes unstable.

An interesting approach to the eikonal limit was proposed byM. Churilova [68] by noting
that the effective potential Veik in this limit does not usually depend on the spin of the field,
except for some exceptions such as the backgrounds of charged BHs coupled to non-linear
electromagnetic fields or the gravitational perturbations in some theories with higher cur-
vature corrections, like EGB, Einstein-Lovelock or Einstein-dilaton-Gauss-Bonnet theories.
Therefore, in most static and spherically symmetric spactimes, the effective potential in the
eikonal aproximation for scalar and electromagnetic perturbations can be expressed as [68]

Veik(r) = f (r)

(
�(� + 1)

r2
+ O(1)

)
. (33)

This means that the effective potential Veik of the test fields perturbations in the eikonal
limit can have the same form as the potential of the electromagnetic field perturbations Vs=1.
We will analyze this fact below on the CEGB BH, with the help of our results of the QNMs
frequencies of the scalar and electromagnetic field using high values of �.

Additionally, in [68] a general approach for eikonal QNMs of asymptotically flat BH
solutions is presented. There, an expansion of the first order WKB formula of the (24) is
written in powers of small parameters defined by the deviations of a given metric from the
Schwarzschild one. These small parameters on the CEGB BH can be identified in the metric
expansion of (6). Consequently, applying this Churilova analytical formula, in the eikonal
limit, for a CEGB BH we obtain

ω(Ch) =
(
� + 1

2

)
3
√
3M

(
1 + Q2

6M2 + 2α

27M2 − 2Q2α

81M4

)
(34)

− i

(
n + 1

2

)
3
√
3M

(
1 + Q2

18M2 − 4α

27M2 + 22Q2α

243M4

)

+ O
(

1

� + 1
2

)
.

This result reproduces the analytical form of the eikonal QNMs of the 4D EGB BH found
in [30], when Q/M = 0. Using (30) and (34) we have that the angular velocity of the photon
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sphere is approximately

�(Ch) = (2� + 1)
(
162M4 + 3M2

(
4α + 9Q2

) − 4αQ2
)

972
√
3�M5

, (35)

and the Lyapunov exponent takes the form

λ(Ch) = 486M4 + 9M2
(
3Q2 − 8α

) + 44αQ2

1458
√
3M5

. (36)

In the following sections, we will obtian the radius of the shadow of a CEGB BH from
ω(Ch). This approximate expression will not only depend on the geometric parameters of the
BH solution, but also on �, so their applicability will be limited to the eikonal regime.

4.2 Eikonal QNMs of a CEGB BH

To calculate and study the eikonal QNMs of the CEGB BH, we use the WKB aproximation
formulas at 1st , 3rd , and 6th order, given by (24), (25), and (26), respectively.We also calculate
the eikonal frequencies of the QNMs through the PT potential using (29), the eikonal formula
given by the (30), and the Churilova’s analytical formula in (34). We show some of these
results in Table 2 for the QNMs of scalar perturbations (s=0), in Table 3 for the QNMs of
electromagnetic perturbations (s=1) and in Table 1 for both test fields.

In Table 1, we present the QNMs frequencies of the scalar and electromagnetic fields
around a CEGB BH for � = 500000 and various values of n. The second column summarize
the results obtained from theWKBmethod in three diferent orders and the PTmethod, which
gave the same results. The third and fourth columns list the values calculated using the eikonal
and Churilova formulas, respectively. It is evident that the real part of the frequencies does
not depend on n in the eikonal regime. Additionally, it can be seen that the imaginary part of
the frequencies obtained from theWKB and PTmethods closely match the results calculated
using the eikonal limit formula. Although Churilova’s eikonal formula is not as close to the
other results, it still agrees well with them. Considering these facts, as depicted in Figs. 3 and
4, the curves representing the frequency behavior overlap in the solid line that summarizes

Table 1 QNMs frequencies of the scalar and electromagnetic fields around of a CEGB BH and for various
values of n. (with � = 500000, α/M2 = 0.1 and Q/M = 0.1)

n WKB 1st , 3rd and 6th order and PT Eikonal Churilova

0 194248.7496-0.1896i 194248.5553-0.1896i 194191.8384-0.1897i

1 194248.7496-0.5687i 194248.5553-0.5687i 194191.8384-0.5692i

2 194248.7496-0.9478i 194248.5553-0.9478i 194191.8384-0.9486i

3 194248.7496-1.3270i 194248.5553-1.3270i 194191.8384-1.3281i

4 194248.7496-1.7061i 194248.5553-1.7061i 194191.8384-1.7075i

5 194248.7496-2.0853i 194248.5553-2.0853i 194191.8384-2.0870i

6 194248.7496-2.4644i 194248.5553-2.4644i 194191.8384-2.4664i

7 194248.7496-2.8435i 194248.5553-2.8435i 194191.8384-2.8458i

8 194248.7496-3.2227i 194248.5553-3.2227i 194191.8384-3.2253i

9 194248.7496-3.6018i 194248.5553-3.6018i 194191.8384-3.6047i
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Fig. 3 Eikonal QNMs frecuencies for a CEGB BH depending on the electric charge Q/M . The left panel
corresponds to the behavior of the real part of the frequencies while the right panel illustrates the behavior of
the imaginary part. (using n = 0, � = 500000 and α/M2 = 0.1)

the behavior of the WKB, PT and the eikonal methods, but differs from the dotted line that
displays the results of the Churilova formula.

In Tables 2 and 3 we note that increasing � implies that these methods consistently yield
similar values. It is also clear that the imaginary part of the frequencies does not depend on
�, as is foreseen by the analytical expressions of the eikonal limit and Churilova formulas in
(30) and (34), respectively.

For a CEGB BH, exactly the same values of the frequencies ω are obtained in all the
methods when � > 50000 for the perturbations of both the scalar and the electromagnetic
field. For the eikonal and Churilova formulas, this is an obvious result because they do not
depend on the field.However, this result for theWKBandPTmethods proves the convergence
of the eikonal QNMs frequencies. Therefore, the effective potential of these test fields over
the CEGB BH effectively behaves like (33) in the eikonal limit.

Similarly, our results for theWKB and PTmethodswhen � < 50000 show that the real and
imaginary parts of the frequencies ω are, in general, a little smaller for the electromagnetic
field than for the scalar field, but they converge for � ≈ 50000, as illustrated in Table 1.

Taking ω = ωR − ωI , in Figs. 3 and 4, we show the effect of the geometric parameters Q
and α on the real and imaginary components of the eikonal QNMs frequencies for a CEGB
BH. Our results show that, as the parameter α increases, the real and imaginary part of the
QNMs frequencies ωR and ωI increase monotonically as well. On the other hand, when
the electric charge Q grows, the real part ωR also increases but the imaginary part of the
frequencies increases up to a maximum peak of growth to decrease after it is reached. Our

Fig. 4 Eikonal QNMs frecuencies for a CEGB BH depending on the GB coupling constant α/M2. The left
panel corresponds to the behavior of the real part of the frequencies while the right panel illustrates the behavior
of the imaginary part. (using n = 0, � = 500000 and Q/M = 0.1)
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findings for the QNMs of the CEGB BH align with those reported in [52], where similar
corrections due to Q and α were observed. However, our analysis reveals that as Q increases,
ωI also increases, until it reaches a value close to Q2 = M2 − α, at which point ωI begins
to decrease as depicted in Fig. 3. These same behaviors were observed in [61] for the QNMs
of the RN BH due to electric charge, and in [69] for a charged BH in Einstein-Maxwell
nonlinear electrodynamics. In the CEGB BH, the effects of electric charge on the QNMs are
consistent with those reported in [46]. Furthermore, our results regarding the influence of the
GB coupling constant α on the real and imaginary parts of the QNMs of the CEGB BH are
in agreement with the findings presented in [30, 34, 37, 46, 52].

Another interesting observation is that the QNMs frequencies calculated by the Churilova
formula present a better agreement with other results in the literature when the geometric
parameters of the BH are small. This is expected, given the nature of the solution’s expansion
[68]. Therefore, theChurilova formula’s frequencies differ fromother results asM approaches
Mext .

5 The Effective Potential and the Photon Sphere

5.1 The BH Photon Sphere Radius

The photon sphere, also known as the ”light ring” or ”photon orbit”, for a static spherically
symmetric BH is recognized as the orbit at which light moves in a unstable circular null
geodesic. As mentioned in [21, 52], the Hamilton-Jacobi or Hamiltonian formulations can
be used to find the equations of motion for photons around a static and spherically symmetric
BH background and subsequently, permit to identify the effective potential that describes the
system. From the critical point conditions of this potential, the radius of the photon sphere
Rps can be determined by solving the expression

2 − Rps f ′(Rps)

f (Rps)
= 0. (37)

Substituting the Schwarzschild metric on this expression, we obtain that

R(Sch)
ps = 3M . (38)

Using the solution of RN given by (11), we have

R(RN )
ps = 1

2

(√
9M2 − 8Q2 + 3M

)
(39)

It should be noted that this expression for R(RN )
ps has the same analytical form given in

[70] for the radial coordinate of the maximum of the corresponding effective potential of field
perturbations in the eikonal limit. Additionally, the expression for R(RN )

ps can be approximated
for small values of Q as

R(RN )
ps = 3M − 2Q2

3M
− 4Q4

27M3 + O
(
Q5

)
. (40)

Using the 4D EGB BH metric given by (13) in the condition of the (37), we get

R(EGB)
ps =

(
M

(√
16α2 − 27M4 − 4α

))2/3 + 3M2

(
M

(√
16α2 − 27M4 − 4α

))1/3 . (41)
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In [71], another alternative analytical expression is deduced for the radius of the photon
sphere of the 4D EGB BH, with M = 1,

R(EGB)
ps = 2

√
3 cos

(
1

3
cos−1

(
− 4α

3
√
3

))
. (42)

Although we couldn’t establish an equality between these two expressions, we have tested
them numerically and they always gave identical results. However, both expressions lead to
the same expansion,

R(EGB)
ps = 3M − 4α

9M
− 8α2

81M3 + O
(
α3) , (43)

useful for small values of α. Note that the expansions of R(RN )
ps and R(EGB)

ps show that the
first term corresponds to radius of the photon spher for the Schwarzschild BH.

5.2 The Photon Sphere Radius for a CEGB BH

Using the expression of (37), an analytical expression for the radius of the photon sphere for
a CEGB BH is obtained as

R(CEGB)
ps = 1

2

√
−8M

(
2α + 3Q2

)
√
X

− X + 18M2 +
√
X

2
, (44)

X = 27M4 − 16Q2
(
α + Q2

)
31/3Y

+ Y

32/3
+ 6M2 (45)

Y = (−243M6 + 72M2 (
4α2 + 3Q4 + 6αQ2) + Z

)1/3
, (46)

Z = 1

6

√
1728

(
27αM4 + 4Q6

) (
64

(
α + Q2

)3 − 27M4
(
4α + 3Q2

))
. (47)

The above equations for R(CEGB)
ps effectively reproduce the analytic expressions corre-

sponding to the radius of the photon spheres of the solutions of the particular limit cases.
Taking Q → 0 and α → 0, we get R(Sch)

ps in (38). Doing only α → 0 gives R(RN )
ps given by

(39) and doing only Q → 0 recovers R(EGB)
ps given by (41).

Fig. 5 Photon sphere radius Rps for a CEGB BH using the (47). In the left panel it is shown in terms of the
electric charge Q/M (using α/M2 = 0.1) and in the right panel in terms of the GB coupling constant α/M2

(with Q/M = 0.1)
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In Fig. 5, we show the effect of the geometric parameters Q and α on R(CEGB)
ps . It is clear

that as both the electric charge and the GB coupling constant increase, the photon sphere
radius becomes smaller. These results agree with those reported in [49, 71].

5.3 Correspondence Between Eikonal QNMs and Null Geodesics

As we stated above, there exist a correlation between null geodesics and eikonal QNMs
frequencies for any spherically symmetric, asymptotically flat spacetime [66], which to a
large extent can be linked to the fulfillment of the (30). However, with the simple fact that the
BH solution is no longer valid for the WKB formula to first order, it is enough to believe that
this connection does not hold. For example, the predicted correlation between null geodesics
and QNMs is not upheld in the Einstein-Lovelock theory, as reported in [20], where authors
showed that the radius of the photon sphere does notmatch the radial position of the extremum
of the effective potential in the eikonal regime, contributing to the breakdown of the proposed
correspondence. In the previous section, we found that the effective potential of perturbations
of the scalar and electromagnetic fields around the CEGB BH follows (33) in the eikonal
limit. However, this is not the case for gravitational perturbations in this background. In fact,
in [30], it is shown that there is no correspondence between gravitational eikonal QNMs
and null geodesics in the 4D EGB BH because of the form of the effective potential. They
also mention that this correspondence does hold true for test fields perturbations when the
background metric is considered to be a viable BH solution. Nevertheless, for scalar and
electromagnetic fields in theCEGBBHspacetime, theQNMscalculations and its connections
with the null geodesics and with the radius of the BH shadow should be satisfied and valid.

With the purpose of analyzing the correspondence in the CEGB BH, we will examine the
agreement between the radius of the photon sphere, R(CEGB)

ps , and the radial position of the
maximum of the effective potential, r̃ , for both scalar and electromagnetic field perturbations
in the eikonal limit.

By differentiating with respect to the radial coordinate r and equating to zero the (20)
of the effective potential, Vs(r), gives a condition that find the radial coordinate r̃ of the
maximum point of the potential, as follows

0 = 1

r3

{
r f ′ [�(� + 1) + r(1 − s2) f ′] − f

[
2�(� + 1) + r(1 − s2)

(
f ′ − r f ′′)] }

r=r̃
.

(48)

Table 4 The effective potential
and its radial coordinate of the
maximum r̃ for the scalar
perturbations around a CEGB
BH. We show the convergence
for various values of �. (whit
α/M2 = 0.1, Q/M = 0.1 and

R(CEGB)
ps = 2.94761M)

� M2Vs=0 r̃/M

5 1.15675 2.93786

10 4.17533 2.94489

50 96.24260 2.94749

100 381.12300 2.94758

500 9452.01630 2.94761

1000 37770.25849 2.94761

5000 943501.21847 2.94761

10000 3773627.47464 2.94761

50000 94333139.77196 2.94761
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In Table 4, we present some values of the effective potential Vs for scalar perturbations
and the radial position of the maximum r̃ for various values of �, in a CEGBBH background.
The results show that as � increases, Vs increases as well, but r̃ becomes closer to the correct
value of the radius of the photon sphere that, for the values α/M2 = 0.1 and Q/M = 0.1,
is R(CEGB)

ps = 2.94761M . On the other hand, in the case of electromagnetic perturbations
(s = 1), the value of r̃ can be found analytically and it exactly matches the expression for
R(CEGB)
ps given in (47). Consequently, this establishes that, in the eikonal limit, the CEGBBH

also satisfies the connection between the maximum effective potential of the perturbations
and the radius of the photon sphere, at least for scalar and electromagnetic fields.

6 The Black Hole Shadow

6.1 Connection Between Eikonal QNMs and the Radius of the BH Shadow

The BH shadow is a region of darkness that results from the deflection of light by the
strong gravitational field in the BH surroundings. Light from background objects that would
normally reach an observer is instead absorbed by the BH, resulting in the appearance of a
shadow. The shape and size of this shadow is a unique characteristic of eachBHand it depends
on its geometric properties as well as on the characteristics of the material surrounding it.

Assuming a static observer positioned at a radial coordinate rO , far enough from a spher-
ically symmetric BH and such that f (rO) ≈ 1, the radius of the BH shadow, Rsh , as seen by
this observer can be approximately calculated by [21, 30, 52, 54, 71]

Rsh ≈ Rps√
f
(
Rps

) . (49)

It can be shown that for a Schwarzschild BH, the shadow radius is R(Sch)
sh = 3

√
3M . On

the other hand, using the equation for R(CEGB)
ps in terms geometric parameters for the CEGB

BH solution to obtain the shadow radius is not straightforward. Therefore, in order to find
an expression for R(CEGB)

sh , we will use the previous calculation of the QNMs as the starting
point. Based on the correlations between the distance from the BH and the behavior of eikonal
QNMs with the photon sphere, it can be deduced that the real part of QNMs frequencies is
inversely proportional to Rsh [21]. This relationship can be simply stated as follows

ωR = lim
��1

�

Rsh
. (50)

In general terms, it is also proposed that the relationship between the QNMs and the
shadow radius of spherically symmetrical BHs can be expressed as [52]

ω = R−1
sh

(
� + D − 3

2

)
− i

(
n + 1

2

)
λ (51)

where D represents the dimension of spacetime. In the eikonal limit, the term (D− 3)/2 can
be disregarded. Nevertheless, it can be useful to assess the connection between BH shadows
and QNMs at small �, especially in spherically symmetrical spacetimes defined in high or
lower dimensions. Moreover, a generalized equation linking eikonal QNMs and shadows of
rotating BHs is provided in [72]. Nonetheless, rotating BHs are not discussed in depth here
but they hold significance for future related research projects.
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6.2 CEGB BH Shadow Radius

The connection between the shadow and the QNMs of the massless scalar field around a
CEGB BH is explored in [52], but they do it using only the 6th order WKB method and
from the (51). In this work, we will use the (50), which holds only in the eikonal regime,
and we will test several additional methods to study the shadow and QNMs of scalar and
electromagnetic perturbations around a CEGB BH.

To determine the shadow radius of the CEGB BH, we use the frequencies of the QNMs
computed through the WKB method at 1st , 3rd , and 6th order, as specified in (24), (25), and
(26), respectively. We also use the frequencies of the QNMs derived from the PT potential
method outlined in (29), the eikonal formula that linking QNMs with Rps given by the (30),
and the Churilova’s analytical formula presented in (34).

By substituting R(CEGB)
ps from the (47) into the (49), it is possible to provide a rather

complicated analytical expression of the shadow radius of CEGB BH, which is not shared
here because it is so extensive. However, from Churilova’s analytical eikonal approach,
contrary to all the others studied, it is possible to provide an approximate analytical formula
for the CEGB BH shadow radius. Using the (34) and (50), it takes the form

R(Ch)
sh = 972

√
3�M5

(2� + 1)
(
162M4 + 3M2

(
4α + 9Q2

) − 4αQ2
) . (52)

This CEGB BH shadow radius formula is related to the eikonal limit and therefore, in
addition to the geometric parameters of the solution, it also depends on �.

Using (49), a CEGB BH with α/M2 = 0.1 and Q/M = 0.1 has a shadow with radius
Rsh = 5.14804M . In Table 5 we show the results obtained for the shadow radius for
the CEGB BH for the fundamental mode (n = 0) and using various values of �. There,
R(WK B−PT )
sh represents the shadow of the BH obtained from the WKB and PT potential

methods, R(Ei)
sh denotes the BH shadow radius obtained by using the eikonal equation and

finally, the fourth column shows the results of Churilova’s analytical equation. It should be
noted that R(WK B−PT )

sh summarizes all the results of the WKB approximation methods at
1st , 3rd and 6th order and the PT potential because, as discussed in Table 1, these methods
return the same values of the frequencies of the QNMs of the scalar and electromagnetic
field in the eikonal limit. Therefore, as an initial conclusion of this work we see that all the

Table 5 Shadow radius Rsh for a
CEGB BH using various values
of �. (with n = 0, α/M2 = 0.1,
Q/M = 0.1 and
Rsh = 5.14804M)

� R(WK B−PT )
sh /M R(Ei)

sh /M R(Ch)
sh /M

5 4.63095 5.14804 4.68141

10 4.88864 5.14804 4.90434

50 5.09643 5.14804 5.09857

100 5.12227 5.14804 5.12393

500 5.14289 5.14804 5.14441

1000 5.14547 5.14804 5.14698

5000 5.14753 5.14804 5.14904

10000 5.14779 5.14804 5.14929

50000 5.14799 5.14804 5.14950

100000 5.14802 5.14804 5.14953

500000 5.14804 5.14804 5.14955
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results obtained from the radius of its shadow show verify that the CEGB BH does indeed
fulfill the connection between geometrical paramters and the QNMs. The results given by
Churilova’s analytical eikonal approach show that R(Ch)

sh achieves values that are very close
to those obtained by the other approaches. For example, for � = 500000 the deviation error
between R(WK B−PT )

sh and R(Ch)
sh is less than 1%.

For practical purposes, doing � → ∞ removes the dependency on � from (52), simplifying
the CEGB BH shadow radius to

R(CEGB)
sh = 486

√
3M5

162M4 + 3M2
(
4α + 9Q2

) − 4αQ2
(53)

From this expression, the shadow radius for the limiting paraticular cases of the CEGB
BH can be calculated. For example, taking α → 0 gives

R(RN )
sh = 18

√
3M3

6M2 + Q2 , (54)

while taking Q → 0 produces

R(EGB)
sh = 81

√
3M3

27M2 + 2α
. (55)

Similarly, by choosing Q → 0 and α → 0 we recover the well-known limit of the
Schwarzschild BH shadow radius, R(Sch)

sh = 3
√
3M .

In Fig. 6, the solid line summarizes the BH shadow radius calculated using the QNMs
given by the WKB-PT method and the eikonal limit formula while the dotted line shows
the shadow radius from Churilova’s eikonal approach. It also ilustrates the effects of the
electric charge of the BH and the GB coupling constant on the shadow radius of a CEGB
BH. As both parameters increase, the shadow radius decreases, which agrees with previous
studies [34, 49, 52, 71]. This implies that, based on the range of possible values for the BH
geometric parameters as stated in (9), the CEGB BH has a smaller shadow radius compared
to the 4D EGB BH and the RN BH, and these BHs have a smaller shadow radius than that
of a Schwarzschild BH

Figure 6 also show that the curves overlap for small values of α and Q and then, in this
region the CEGB BH shadow radius obtained from Churilova’s eikonal approach is very
useful due to its analytical simplicity, providing accurate results.

Fig. 6 Shadow radius Rsh for a CEGB BH (with � = 500000). In the left panel it is shown in terms of the
electric charge Q/M (using α/M2 = 0.1) and in the right panel in terms of the GB coupling constant α/M2

(with Q/M = 0.1)
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Ultimately, it is important to say that, in [71], the authors examine a hypothesis regarding
a series of inequalities involving multiple parameters associated with the size of an 4D EGB
BH. The proposal is that

3

2
r+ ≤ Rps ≤ 1√

3
Rsh ≤ 3M, (56)

keeping in mind the ranges of (9) for the BH geometric parameters. We have evaluated the
validity of this hypothesis involving the parameters that describe the size of a CEGB BH and
our findings indicate that it satisfies the inequalities.

7 Conclusion

We have studied the relationship between the geometrical properties of a CEGB BH solution
and the radius of the photon sphere, shadow radius, and eikonal QNMs. We obtained that the
WKB method and PT potential method give the same results for eikonal QNMs for scalar
and electromagnetic field perturbations of a CEGB BH. Our findings indicate that the real
part of the eikonal QNMs frequencies is linked to the unstable circular null geodesic and
shadow radius of a CEGB BH. We have ilustrated how the parameters of electric charge Q
and GB constant α affect the QNMs frequencies, photon sphere, and shadow radius. Our
results indicate that the real part of QNMs, photon sphere, and shadow radius are lower in
CEGB BHs compared to those in 4D EGB, RN, and Schwarzschild BHs. Various equations
have been derived for the radius of the photon sphere and shadows of BH solutions. Our inves-
tigation has shown that the eikonal approach proposed by Churilova provides a practical and
straightforward approximate equation for the CEGB BH shadow radius, which is useful for
small values of the geometric parameters. This approach facilitates analytical investigations,
such as the study of astrophysical BH shadows, and could aid in observational investigations
of QNMs in future gravitational wave projects.

There are several topics for future research related to this work. The following projects
could be related to extending the analytical approach of the eikonal QNMs realized by
Churilova to other BH solutions to test its methodology, including in spacetime arrangements
that are not limited to being static, spherically symmetrical, or asymptotically flat. Moreover,
the study of the spectrum of QNMs of CEGB BHs excited by an external source, such as
an extreme mass ratio inspiral, could be explored. Additionally, the connections between the
photon sphere, BH shadow, and eikonal QNMs should be explored for more realistic CEGB
BHs or those related to alternative gravity theories. A particularly important BH solution to
test these connections is the rotating CEGB BH, as recent theories also suggest connections
between photon orbits, shadow radius, and eikonal QNMs in rotating BH solutions [72–74].
In [40], it was shown that the shadow of a rotating 4D EGB BH aligns with the M87* BH
shadow observed by the Event Horizon Telescope. Here, for a spin parameter of a = 0.1M ,
the GB coupling constant must be α ≤ 0.00394M2 (a very small value for α which matches
a good approximation of Churilova’s eikonal approach). Therefore, it would be beneficial
to also provide an analytical approach to these problems, linking the eikonal QNMs to the
geometric properties of rotating CEGB BHs.
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