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Abstract
For convex and sequential effect algebras, we study spectrality in the sense of Foulis.We show
that under additional conditions (strong archimedeanity, closedness in norm and a certain
monotonicity property of the sequential product), such effect algebra is spectral if and only
if every maximal commutative subalgebra is monotone σ -complete. Two previous results on
existence of spectral resolutions in this setting are shown to require stronger assumptions.
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1 Introduction

Effect algebras were introduced by Foulis and Bennett [10] as an algebraic abstraction of
the set of Hilbert space effects, that is, operators on a Hilbert space lying in the interval
between zero and the identity operator. The effects play an important role in themathematical
description of quantum theory, since they represent the yes-no measurements in quantum
mechanics. An effect algebra is called convex if it has a convex structure, [19, 20]. It was
proved that any convex effect algebra can be represented as an interval in an ordered vector
space [20], and under additional conditions as the unit interval in an order unit space [20].
Gudder and Greechie [18] introduced an additional operation of a sequential product which
is an analogue of the operation (a, b) �→ a1/2ba1/2 for Hilbert space effects a, b and is
interpreted as a description of a sequential measurement. Effect algebras endowed with such
a product are called sequential.

One of the important properties of Hilbert space effects is the existence of spectral resolu-
tions, which means that every effect can be expressed in terms of sharp effects representing
sharp measurements. The sharp effects are precisely the projection operators. Spectrality
appears as a crucial property in operational derivations of quantum theory, see e.g. [4, 23, 34,
36]. It is therefore important to study possible notions of spectrality in some classes of effect
algebras and to determine the properties and additional structures that ensure the existence
of some type of spectral resolutions.
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Perhaps the most well known extension of spectrality to order unit spaces is due to Alfsen
and Schultz [1, 2]. Their notion of spectral duality is based upon the geometry of dual
order unit and base normed spaces. A more algebraic definition was introduced in [11],
following the works by Foulis on spectrality in partially ordered unital abelian groups [5,
7–9]. The two approaches were compared in [26]. In both definitions, a crucial role is played
by compressions, generalizing the map a �→ pap for a Hilbert space effect a and a projection
p. In particular, if there exists a suitable set of compressions with specified properties, each
element has a unique spectral resolution, or a rational spectral resolutionwith values restricted
to Q in the case of partially ordered abelian groups, analogous to the spectral resolution of
self-adjoint elements in von Neumann algebras.

Following the ideas in [6], compressions and compression bases in effect algebras were
studied byGudder [15, 16] and Pulmannová [31]. In [27], we proved that under the conditions
of spectrality specified for an effect algebra in [31], there exists a binary spectral resolution,
restricted to dyadic rationals, characterized by properties analogous to spectral resolutions
for Hilbert space effects.

In the present work, we will concentrate on the special class of effect algebras that are
both convex and sequential. Spectral resolutions in this setting were studied in [17], where
it was further assumed that any element is a finite combination of indecomposable sharp
elements summing up to identity, such collections of sharp elements are called contexts. In
[35], it was shown that if the effect algebra is also monotone σ -complete, then each element
has a spectral resolution, in the sense that it can be written as a supremum and norm limit of
simple elements, that is, finite combinations of orthogonal sharp effects.

These works do not explicitly use any compressions, but note that for sequential effect
algebras, there is a distinguished set of compressions given by the sequential product with a
sharp element. Moreover, such compressions form a compression base, [16]. It is therefore
natural to study spectrality of convex and sequential effect algebras in the sense derived from
the works of Foulis (as in [27, 31]). This is precisely the aim of the present paper. We show
that under additional assumptions (strong archimedeanity, norm completeness and a certain
monotonicity property called theA-property), the effect algebra is spectral if and only if every
maximal commutative subalgebra is monotone σ -complete.We also show that the conditions
in both [17] and [35] imply spectrality in the Foulis sense.

After a preliminary section (Section 2) on general effect algebras, we describe the notion of
spectrality in Section 3. Section 4 briefly describes the convex and sequential effect algebras,
Section 5 contains our main results.

2 Effect Algebras

An effect algebra [10] is a system (E;⊕, 0, 1) where E is a nonempty set, ⊕ is a partially
defined binary operation on E , and 0 and 1 are constants, such that the following conditions
are satisfied:

(E1) If a ⊕ b is defined then b ⊕ a is defined and a ⊕ b = b ⊕ a.
(E2) If a ⊕ b and (a ⊕ b) ⊕ c are defined then b ⊕ c and a ⊕ (b ⊕ c) are defined and

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).
(E3) For every a ∈ E there is a unique a⊥ ∈ E such that a ⊕ a⊥ = 1.
(E4) If a ⊕ 1 is defined then a = 0.

Elements of E are called effects. We write a ⊥ b and say that a and b are orthogonal if a⊕b
exists. In what follows, when we write a ⊕ b, we tacitly assume that a ⊥ b. A partial order
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is introduced on E by defining a ≤ b if there is c ∈ E with a ⊕ c = b. If such an element
c exists, it is unique, and we define b � a := c. With respect to this partial order we have
0 ≤ a ≤ 1 for all a ∈ E . The element a⊥ = 1�a in (E3) is called the orthosupplement of a.
It can be shown that a ⊥ b iff a ≤ b⊥ (equivalently, b ≤ a⊥). Moreover a ≤ b iff b⊥ ≤ a⊥,
and a⊥⊥ = a.

An element a ∈ E is called sharp if a∧a⊥ = 0 (i.e., x ≤ a, a⊥ 
⇒ x = 0). We denote
the set of all sharp elements of E by ES . An element a ∈ E is principal if x, y ≤ a, and
x ⊥ y implies that x ⊕ y ≤ a. It is easy to see that a principal element is sharp.

The algebra of Hilbert space effects described below is a prototypical example of an effect
algebra on which the above abstract definition is modelled.

Example 2.1 Let H be a Hilbert space and let E(H) be the set of operators on H such that
0 ≤ A ≤ I . For A, B ∈ E(H), put A ⊕ B = A + B if A + B ≤ I , otherwise A ⊕ B is not
defined. Then (E(H);⊕, 0, I ) is an effect algebra. Note that any sharp element is principal
and the set of sharp effects E(H)S coincides with the set P(H) of projection operators on
H, that is, linear operators p : H → H such that p = p∗ = p2.

The effect algebra E(H) belongs to a larger class of effect algebras obtained as intervals
in partially ordered groups.

Example 2.2 Let (G, u) be a partially ordered abelian group with an order unit u. LetG[0, u]
be the unit interval inG (wewill often write [0, u] if the groupG is clear). For a, b ∈ G[0, u],
let a ⊕ b be defined if a + b ≤ u and in this case a ⊕ b = a + b. It is easily checked that
(G[0, u],⊕, 0, u) is an effect algebra. Effect algebras of this form are called interval effect
algebras. In particular, the real unit interval R[0, 1] can be given a structure of an effect
algebra. Note also that the Hilbert space effects in Example 2.1 form an interval effect
algebra.

By recurrence, the operation ⊕ can be extended to finite sums a1 ⊕ a2 ⊕ · · · ⊕ an of (not
necessarily different) elements a1, a2, . . . an of E . If a1 = · · · = an = a and ⊕i ai exist, we
write ⊕i ai = na. An effect algebra E is archimedean if for a ∈ E , na ≤ 1 for all n ∈ N

implies that a = 0.
An infinite family (ai )i∈I of elements of E is called orthogonal if every its finite subfamily

has an ⊕-sum in E . If the element ⊕i∈I ai = ∨
F⊆I ⊕i∈Fai exists, where the supremum is

taken over all finite subsets of I exists, it is called the orthosum of the family (ai )i∈I . An
effect algebra E is a σ -effect algebra if it is σ -orthocomplete, that is, if the orthosum exists
for any σ -finite orthogonal subfamily of E . Equivalently, E is monotone σ -complete, that
is, every ascending sequence (ai )i∈N has a supremum a = ∨

i ai in E (or every descending
sequence (bi )i∈N has an infimum b = ∧

i bi ) in E . Equivalence of these two conditions was
proved in [24].

A subset F of E is sup/inf -closed in E if whenever M ⊆ F and ∧M (∨M) exists in E ,
then ∧M ∈ F (∨M ∈ F).

If E and F are effect algebras, a mapping φ : E → F is a morphism if it is additive:
a ⊥ b implies φ(a) ⊥ φ(b) and φ(a ⊕ b) = φ(a) ⊕ φ(b), and φ(1) = 1. If φ : E → F
is a morphism, and φ(a) ⊥ φ(b) implies a ⊥ b, then � is a monomorphism. A surjective
monomorphism is an isomorphism.

A state on an effect algebra E is a morphism s from E into the effect algebra R[0, 1] (see
Example 2.2). We denote the set of states on E by S(E). We say that S ⊂ S(E) is separating
if s(a) = s(b) for every s ∈ S implies that a = b, and ordering (or order determining) if
s(a) ≤ s(b) for all s ∈ S implies a ≤ b. If S is ordering, then it is separating, the converse
does not hold.
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A lattice ordered effect algebra M , in which (a ∨ b) � a = a � (a ∧ b) holds for all
a, b ∈ M , is called an MV-effect algebra. We recall that MV-effect algebras are equivalent
withMV-algebras, which were introduced by [3] as an algebraic basis for many-valued logic.
It was proved in [29] that MV-algebras are equivalent to lattice ordered groups with order
unit, in the sense of category theory.

3 Spectrality in Effect Algebras

3.1 Compressions on Effect Algebras

The next definition follows the works of Foulis [6], Gudder [15] and Pulmannová [31].

Definition 3.1 Let E be an effect algebra.

(i) An additive map J : E → E is a retraction if a ≤ J (1) implies J (a) = a. The element
p := J (1) is called the focus of J .

(ii) A retraction with focus p is a compression if J (a) = 0 ⇔ a ≤ p⊥.
(iii) If I and J are retractions we say that I is a supplement of J if ker(J ) = I (E) and

ker(I ) = J (E).

It is easily seen that any retraction is idempotent. The focus of a retraction J is a principal
element and we have J (E) = [0, p], moreover, J is a compression if and only if Ker(J ) =
[0, p⊥]. If a retraction J has a supplement I , then both I and J are compressions and
I (1) = J (1)⊥. For these and further properties see [16, 31].

Example 3.2 Let E(H) be the algebra of effects onH (Example 2.1) and let p ∈ E(H) be a
projection. Let us define the map Jp : a �→ pap, then Jp is a compression on E(H) and Jp⊥
is a supplement of Jp . By [6], any retraction on E(H) is of this form for some projection p.
In particular, any projection is the focus of a unique retraction Jp with a (unique) supplement
Jp⊥ . Effect algebras such that any retraction is supplemented and uniquely determined by its
focus are called compressible, [5, 15].

Recall that two elements a, b ∈ E are (Mackey) compatible if there are elements
a1, b1, c ∈ E such that a1 ⊕ b1 ⊕ c exists and a = a1 ⊕ c, b = b1 ⊕ c. In this case
we shall write a ↔ b. If F ⊆ E and a, b ∈ F , we say that a, b are compatible in F if a ↔ b
and the elements a1, b1, c can be chosen in F . It was proved in [16] that this is equivalent to
compatibility in E if F is a normal sub-effect algebra: for all e, f , d ∈ E such that e⊕ f ⊕d
exists in E , we have e ⊕ d, f ⊕ d ∈ F 
⇒ d ∈ F .

Definition 3.3 [16] A family (Jp)p∈P of compressions on an effect algebra E indexed by
a sub-effect algebra P of E is called a compression base on E if the following conditions
hold:

(C1) each p ∈ P is the focus of Jp ,
(C2) P is normal,
(C3) if p, q, r ∈ P and p ⊕ q ⊕ r exists, then Jp⊕q ◦ Jq⊕r = Jq .

Elements of P are called projections.

Example 3.4 Let P(H) be the set of all projections on a Hilbert space H and let Jp for
p ∈ P(H) be as in Example 3.2. It is easily observed that the set (Jp)p∈P(H) is a compression
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base in E(H), moreover, it is the unique compression base in E(H) which is maximal in
the sense that it is not contained in any other compression base. More generally, the set of
all compressions in a compressible effect algebra is the unique maximal compression base,
[16].

It was proved in [27] that an equivalent definition of a compression base is obtained if
only (C1) is required along with the condition

(C2’) if p, q ∈ P and p ↔ q (in E), then Jp ◦ Jq = Jr for some r ∈ P .

This definition is perhaps more clearly motivated by analogy with Example 3.4, since it
corresponds to the fact that for the Hilbert space effect algebra E(H) and projections p, q ∈
P(H), we have p ↔ q iff pq ∈ P(H) and then Jp ◦ Jq = Jpq .

By [15, Corollary 4.5] and [31, Theorem 2.1], the set P as a subalgebra of E is a regular
orthomodular poset (OMP)with the orthocomplementationa �→ a⊥, and Jp⊥ is a supplement
of Jp . Recall that an OMP P is regular if for all a, b, c ∈ P , if a, b and c are pairwise
compatible, then a ↔ b ∨ c and a ↔ b ∧ c, [22, 30].

Example 3.5 Let M be an MV-effect algebra. Every retraction on M is of the formUp(a) =
p ∧ a for some p ∈ MS as its focus. Moreover, M is a compressible effect algebra and the
set (Up)p∈MS is the unique maximal compression base on M (cf. [31, Theorem 3.1]).

3.2 Compatibility and Commutants

From now on, we will assume that E is an effect algebra with a fixed compression base
(Jp)p∈P . By [31, Lemma 4.1] we have the following.

Lemma 3.6 If p ∈ P, a ∈ E, then the following statements are equivalent:

(i) Jp(a) ≤ a,
(ii) a = Jp(a) ⊕ Jp⊥(a),

(iii) a ∈ E[0, p] ⊕ E[0, p⊥],
(iv) a ↔ p,
(v) Jp(a) = p ∧ a.

The commutant of p in E is defined by

C(p) := {a ∈ E : a = Jp(a) ⊕ Jp⊥(a)}.
If Q ⊆ P , we write C(Q) := ⋂

p∈Q C(p). Similarly, for an element a ∈ E , and a subset
A ⊆ E , we write

PC(a) := {p ∈ P : a ∈ C(p)}, PC(A) :=
⋂

a∈A

PC(a).

We also define

CPC(a) := C(PC(a)), P(a) := CPC(a) ∩ PC(a) = PC(PC(a) ∪ {a}).
The set P(a) ⊆ P will be called the P-bicommutant of a (that is, P(a) is the set of all
projections p ∈ P which are compatible with a and with all projections compatible with a).
For a subset Q ⊆ E , we put

P(Q) := PC(PC(Q) ∪ Q).

Note that the elements in P(Q) are pairwise compatible and since P is a regular OMP, this
implies that P(Q) is a Boolean subalgebra in P .
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Lemma 3.7 Let p, q ∈ P, a ∈ E.

(i) [31, Lemma 4.2] If p ⊥ q and either a ∈ C(p) or a ∈ C(q), then

Jp∨q(a) = Jp⊕q(a) = Jp(a) ⊕ Jq(a).

(ii) [16, Cor. 4.3] If p ↔ q, then Jp Jq = Jq Jp = Jp∧q .

Recall that a maximal set of pairwise compatible elements in a regular OMP P is called a
block of P [30, Corollary 1.3.2]. It is well known that every block B is a Boolean subalgebra
of P [30, Theorem 1.3.29]. If B is a block of P , the set C(B) will be called a C-block of E .

Example 3.8 Let E = E(H) for a Hilbert spaceH. It is easily checked that for any projection
p ∈ P(H),

C(p) = {p}′ ∩ E = {a ∈ E, pa = ap}
and for any a ∈ E ,

P(a) = {a}′′ ∩ P(H)

(here C ′ denotes the usual commutant of a subset of bounded operators C ⊂ B(H)). The
C-blocks are the unit intervals in maximal abelian von Neumann subalgebras of B(H).

3.3 Spectral Effect Algebras

In this section we recall the definition of a spectral effect algebra, introduced in [31]. Remem-
ber that E is an effect algebra with a distinguished compression base (Jp)p∈P . Spectrality
is defined by two properties of the compression base. The first property is an analogue of
existence of support projections.

Definition 3.9 If a ∈ E and p ∈ P , then p is a projection cover for a if, for all q ∈ P ,
a ≤ q ⇔ p ≤ q . We say that E has the projection cover property if every effect a ∈ E has
a (necessarily unique) projection cover. The projection cover of a ∈ E will be denoted as a◦.

For an element a ∈ E , we may also define the floor of a as the largest projection under a
(if it exists). It will be denoted by a◦. The relation to the projection cover is (a⊥)◦ = (a◦)⊥,
this is rather obvious from p ≤ a ⇐⇒ a⊥ ≤ p⊥. It follows that E has the projection cover
property if and only if any element has the floor.

Theorem 3.10 ([16, Thm. 5.2], [31, Thm. 5.1]) Suppose that E has the projection cover
property. Then P is an orthomodular lattice (OML). Moreover, P is sup/inf-closed in E.

Proposition 3.11 Let E have the projection cover property. Then for any a ∈ E, a◦ ∈ P(a).

Proof Since a ≤ a◦, a ∈ C(a◦) by Lemma 3.6 (iv). The rest follows by [31, Thm. 5.2 (i)].
��

The second property, the b-comparability, was introduced as an analogue of the general
comparability property in unital partially ordered abelian groups [9], where it can be inter-
preted as existence of orthogonal decompositions of elements into a positive and a negative
part.

In the case of effect algebras with compression bases, the definition is more involved. We
first introduce a notion analogous to commutativity of Hilbert space effects. Recall that for
a, b ∈ E(H), ab = ba implies that a ↔ b, but the converse is not necessarily true unless
a or b is a projection. To obtain the corresponding notion for an effect algebra E with a
compression base, we will need a further property.
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Definition 3.12 [31, Definition 6.1] We will say that a ∈ E has the b-property (or is a b-
element) if there is a Boolean subalgebra B(a) ⊆ P such that for all p ∈ P , a ∈ C(p) ⇔
B(a) ⊆ C(p). We say that E has the b-property if every a ∈ E is a b-element.

The Boolean subalgebra B(a) in the above definition is in general not unique. By [27,
Lemma 3.20], the bicommutant P(a) of a is the largest such subalgebra. Further, by [31,
Proposition 6.1], every projection q ∈ P is a b-element with B(q) = {0, q, q⊥, 1} and if an
element a ∈ E is a b-element, then there is a block B of P such that a ∈ C(B).

Let e, f ∈ E have the b-property. We say that e and f commute, in notation eC f , if

P(e) ↔ P( f ). (1)

By [27, Lemma 2.18], this is equivalent to B(e) ↔ B( f ) for any choice of the Boolean
subalgebras B(e) and B( f ). For p ∈ P we have eCp ⇐⇒ e ↔ p ⇐⇒ e ∈ C(p),
[31, Lemma 6.1], so this definition coincides with compatibility if one of the elements is a
projection.

Remark 3.13 Roughly speaking, the b-property can be seen as the requirement that there are
‘enough’ projections in E . Of course, this depends on the choice of the compression base.
For example, if the compression base is trivial, that is, P = {0, 1}, then E trivially has the
b-property and aCb for any a, b ∈ E .

Theorem 3.14 [27, Theorem 2.19] Assume that E has the b-property. Then E is covered by
its C-blocks. Moreover, C-blocks in E coincide with maximal sets of pairwise commuting
elements in E.

Definition 3.15 [31, Definition 6.3] An effect algebra E has the b-comparability property if

(a) E has the b-property.
(b) For all e, f ∈ E such that eC f , the set

P≤(e, f ) := {p ∈ P(e, f ) : Jp(e) ≤ Jp( f ) and Jp⊥( f ) ≤ Jp⊥(e)}
is nonempty.

The b-comparability property has important consequences on the set of projections and
on the structure of the C-blocks.

Theorem 3.16 [31, Theorem 6.1] Let E have the b-comparability property. Then every sharp
element is a projection: P = ES.

Theorem 3.17 [31, Theorem 7.1] Let E have the b-comparability property and let C = C(B)

for a block B of P. Then

(i) C is an MV-effect algebra.
(ii) For p ∈ B, the restriction Jp|C coincides with Up (recall Example 3.5) and (Up)p∈B

is the maximal compression base in C. Moreover, (Up)p∈B has the b-comparability
property in C.

(iii) If E has the projection cover property, then C has the projection cover property.
(iv) If E is σ -orthocomplete, then C is σ -orthocomplete.

Finally, we have the following definition of spectrality on effect algebras.

Definition 3.18 An effect algebra E with a given compression base (Jp)p∈P is spectral if it
has both the projection cover and the b-comparability property.
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It was proved in [27, Thm. 4.15] that in an archimedean spectral effect algebra, any
element a has a spectral resolution that can be characterized as the unique family {pλ}λ of
projections commuting with a parametrized by λ ∈ Q ∩ [0, 1], which is nondecreasing and
right continuous (that is, pλ ≤ pμ if λ ≤ μ and

∧
λ<μ pμ = pλ) and satisfies an additional

condition that can be interpreted as “a ≤ λ on pλ and a ≥ λ on p⊥
λ ”. In addition, if the effect

algebra has a separating set of states, then any element is uniquely determined by its spectral
resolution and two elements commute if and only if the corresponding spectral resolutions
are elementwise compatible.

Example 3.19 [27]

(i) The algebra E(H) of Hilbert space effects is spectral, similarly, the unit interval in a
von Neumann algebra or in a JBW-algebra is spectral [1]. By the results of [26, 27],
the unit interval in a JB-algebra is spectral if and only if the JB-algebra is Rickart.

(ii) If E and F are spectral effect algebras, then their direct product E × F endowed with
the direct product of compression bases is spectral.

(iii) Using a faithful state of E(H), the horizontal sum E(H)∪̇E(H) can be endowed with
a compression base which makes it spectral. In general the horizontal sum of spectral
effect algebras is not spectral.

(iv) An MV-effect algebra is spectral if it is monotone σ -complete or a boolean algebra.
(v) An OMP is spectral if and only if it is a boolean algebra.

4 Special Types of Effect Algebras

4.1 Convex Effect Algebras

An effect algebra E is convex [19] if for every a ∈ E and λ ∈ [0, 1] ⊂ R there is an element
λa ∈ E such that for all a, b ∈ E and all λ,μ ∈ [0, 1] we have
(C1) μ(λa) = (λμ)a.
(C2) If λ + μ ≤ 1 then λa ⊕ μa ∈ E and (λ + μ)a = λa ⊕ μa.
(C3) If a ⊕ b ∈ E then λa ⊕ λb ∈ E and λ(a ⊕ b) = λa ⊕ λb.
(C4) 1a = a.

A convex effect algebra is convex in the usual sense: for any a, b ∈ E , λ ∈ [0, 1], the
element λa ⊕ (1− λ)b ∈ E . An important example of a convex effect algebra is the algebra
E(H) of Hilbert space effects, Example 2.1.

Let V be an ordered real linear space with positive cone V+. Let u ∈ V+ and let us form
the interval effect algebra V [0, u]. A straightforward verification shows that (λ, x) �→ λx is a
convex structure on V [0, u], so V [0, u] is a convex effect algebra which we call a linear effect
algebra. By [20, Theorem 3.4], any convex effect algebra is isomorphic to the linear effect
algebra V [0, u] in an ordered vector space with order unit u. Moreover, this isomorphism is
affine, which means that it preserves the convex structures.

In convex effect algebras we have a stronger notion of archimedeanity:

Definition 4.1 A convex effect algebra E is strongly archimedean if, for any a, b, c ∈ E , if
a ≤ b ⊕ 1

n c ∀n ∈ N, then a ≤ b.

The next theorem describes the relations among order unit spaces, ordering sets of states
and strongly archimedean convex effect algebras.
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Theorem 4.2 [20, Theorem 3.6] Let E � V [0, u] for an ordered vector space (V , V+) with
order unit u. Then the following statements are equivalent. (a) E possesses an ordering set
of states. (b) E is strongly archimedean. (c) (V , V+, u) is an order unit space.

Recall that an order unit space (V , V+, u) is endowed with an order unit norm, defined
as

‖v‖ := inf{λ > 0 : −λu ≤ v ≤ λu}.
Note that the unit interval V [0, u] is norm-closed. We will consider below the norm in
E � V [0, u] inherited from V .

Let E be a strongly archimedean convex effect algebra with the corresponding order unit
space (V , V+, u). Spectrality in order unit spaces in the sense of Foulis was studied in [11].
Let us recall that a compression on (V , V+, u) is defined as a positive linear map V → V
such that its restriction is a compression on the effect algebra E . Similarly, a compression
base is a collection of linear maps (Jp)p∈P such that their restrictions form a compression
base in E . For p ∈ P and v ∈ V , we define the commutants

C(p) = {v ∈ V : v = Jp(v) + Jp⊥(v)}, PC(v) = {p ∈ P : v ∈ C(p)}
and the bicommutant P(v) = PC(PC(v) ∪ {v}). We then say that (V , V+, u) has the
comparability property if the set

P±(v) := {p ∈ P(v) : Jp⊥(v) ≤ 0 ≤ Jp(v)} (2)

is nonempty.

Definition 4.3 An orthogonal decomposition of v ∈ V is a decomposition of the form v =
v+ − v−, where v+, v− ∈ V+ and there is a projection p ∈ PC(v) such that v+ = Jp(v),
v− = −Jp⊥(v).

By [8, Thm. 3.2 and Lemma 4.2], if (V , V+, u) has the comparability property, then each
element has a unique orthogonal decomposition, determined by any projection in P±(v).

We say that (V , V+, u) has the projection cover property if E � V [0, u] has the projection
cover property, with the restricted compression base. If the comparability property holds, then
the projection cover property is equivalent to existence of a Rickart mapping [11, Theorem
2.1], defined as a map ∗ : V → P , where v∗ is the (necessarily unique) projection such that

p ∈ P, p ≤ v∗ ⇐⇒ v ∈ C(p), and Jp(v) = 0.

For a ∈ E , we have a∗ = (a◦)⊥ and (λa)◦ = a◦ for any λ ∈ [0, 1]. More generally, let
v ∈ V+, then we may define the support of v as v◦ := (v∗)⊥ and it is easily seen that
v◦ = (cv)◦ for any c ∈ R+.

We say that the order unit space (V , V+, u) is spectral if it has both the projection cover
and the comparability property. In this case, every element v ∈ V has a unique spectral
resolution {pv,λ}λ∈R ⊆ P(v), where the spectral projections are defined as [11]

pv,λ := ((v − λ)+)∗. (3)

The spectral resolution of v is continuous from the right in the sense that if α ∈ R, then
pv,α = ∧{pv,λ : α < λ ∈ R}, [11, Theorem 3.5].

An element λ ∈ R is called an eigenvalue of v if the projection dv,λ := (v−λ)∗ is nonzero,
in this case, dv,λ is called the λ-eigenprojection of v. For α ∈ R, the projection dv,α may be
interpreted as the "jump" that occurs in the spectral resolution as λ approaches α from the
left in the following sense: pv,α − dv,α = ∨{pv,λ : α > λ ∈ R}, [11, Theorem 3.6].
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The spectral lower and upper bounds for v are defined by Lv := sup{λ ∈ R : λu ≤ v}
andUv := inf{λ ∈ R : v ≤ λu}, respectively. By [11, Theorem 3.3 (vii)], Lv = sup{λ ∈ R :
pv,λ = 0} and Uv = inf{λ ∈ R : pv,λ = u}. Then v can be written as a Riemann-Stieltjes
type integral

v =
∫ Uv

Lv−0
λdpv,λ. (4)

For more details about spectral resolutions see [11].

Example 4.4 Let V be the space of self-adjoint operators on a Hilbert space H and let V+
be the cone of positive operators. Then (V , V+, u = I ) is a spectral order unit space. In this
case, the Rickart mapping sends each v ∈ V onto its kernel projection. Thus, we obtain the
usual definition of the spectral resolutions, eigenvalues and eigenprojections.

It was proved in [27, Thm. 5.11] that a strongly archimedean convex effect algebra E
has the comparability property or projection cover property if and only if the corresponding
order unit space (V , V+, u) has the same property. In particular, E is spectral if and only if
(V , V+, u) is spectral. In this case, every element a ∈ E has an integral representation of the
form (4) with respect to a unique spectral resolution (pa,λ)λ∈[0,1] ⊆ P(a), and this spectral
resolution is the same as obtained in (V , V+, u). Any element is uniquely determined by its
spectral resolution and two elements in E commute if and only if the corresponding spectral
resolutions are elementwise compatible. We will also need the following two results.

Corollary 4.5 Let E be a strongly archimedean convex and spectral effect algebra. Then
every element a ∈ E is the norm limit and supremum of an ascending sequence an ≤ an+1

of elements of the form
an = ⊕i cn,i pn,i ,

with cn,i ∈ [0, 1] and pn,i ∈ P(a), ⊕i pn,i = 1.

Proof Let (V , V+, u) be the spectral order unit space such that E � V [0, u] (with the unique
extended compression base). By [11, Cor. 3.1], any element a ∈ V [0, u] is the norm limit
of an ascending sequence of elements of the form an = ∑

i cn,i pn,i , with pn,i ∈ P(a) and
cn,i ∈ R, and by [11, Lemma 5.1] we may assume that

∑
i pn,i = u. Since an ≤ an+1, we

have an ≤ a ≤ u. We now may replace each an by an element (an)+, which is obtained by
putting negative coefficients cn,i to zero. All the projections pn,i are in P(a), and therefore
mutually commuting and commuting also with a and all an . Put pn = ⊕i,cn,i>0 pn,i , then

(an)+ = pnan ≤ pna ≤ a.

Similarly, from an ≤ an+1 ≤ (an+1)+, we obtain that (an)+ ≤ (an+1)+. Notice also that

0 ≤ a − (an)+ ≤ a − an → 0.

We have obtained an ascending sequence {(an)+} of elements in [0, u] that converges to a in
norm. It is clear that (an)+ is again a simple element and the remaining coefficients cn,i must
be in the interval [0, 1] (this can be observed e.g. from the fact that for every sharp element
p of E there is some state s on E such that s(p) = 1, [20]). To conclude the proof, note that
since the positive cone V+ is norm-closed, the norm limit of an ascending sequence is its
supremum.

��
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Lemma 4.6 Let E be spectral and let ∗ be the Rickart mapping in the corresponding spectral
order unit space (V , V+, u). Let (pλ)λ∈[0,1] be the spectral resolution of a ∈ E. Then

1 = p1, (a◦)⊥ = p0,

a◦ = (a − 1)∗ =
∧

λ<1

p⊥
λ .

Proof The equality for p0 and p1 follow easily from the definition. Let d := d1 = (a − 1)∗,
then d ∈ P and Jd(a−1) = 0, so that Jd(a) = d and hence d ≤ a. If q ∈ P is any projection
such that q ≤ a, then q commutes with a and Jq(a − 1) = 0, so that q ≤ d by definition of
the Rickart mapping. It follows that d = a◦. For the second equality, we have by [11, Thm.
3.6] that

∨
λ<1 pλ exists and equals p1 − d = d⊥. This implies that

d = (
∨

λ<1

pλ)
⊥ =

∧

λ<1

p⊥
λ .

��

4.2 Sequential Effect Algebras

Definition 4.7 A sequential effect algebra (SEA) [18] (E : +, 1, 0, ◦) is an effect algebra
with an additional sequential product operation ◦. We denote a|b when a ◦ b = b ◦ a (i.e.
when a and b commute). The sequential product is required to satisfy the following axioms.

(S1) a ◦ (b + c) = a ◦ b + a ◦ c.
(S2) 1 ◦ a = a.
(S3) a ◦ b = 0 
⇒ b ◦ a = 0.
(S4) If a|b then a|b⊥ and a ◦ (b ◦ c) = (a ◦ b) ◦ c for all c.
(S5) If c|a and c|b then c|(a ◦ b) and if a + b is defined c|(a + b).

Definition 4.8 [18]. A σ -SEA is a SEA which is monotone σ -complete (hence a σ -effect
algebra) such that if a1 ≥ a2 ≥ · · · then b ◦∧ai = ∧(b ◦ ai ) and if b|ai for all i then b| ∧ ai .

Lemma 4.9 [18] Let p, a ∈ E with p sharp.

(i) a is sharp iff a ◦ a⊥ = 0 iff a ◦ a = a.
(ii) p ≤ a iff p ◦ a = a ◦ p = p.
(iii) a ≤ p iff p ◦ a = a ◦ p = a
(iv) p ◦ a = 0 iff p + a is defined and in this case p + a is the lest upper bound of p and

a. The sum p + a is sharp iff a is sharp.
(v) a|p iff a ↔ p.
(vi) If a|p then p ◦ a = p ∧ a.

It is easy to check that any map on SEA of the form Jp(a) = p ◦ a, p ∈ ES , is a
compression with focus p and a supplement Jp⊥(a) = p⊥ ◦ a. Moreover, by [16, Theorem
3.4], (Jp)p∈P , P = ES , is a maximal compression base for E . Below we will always assume
that E is endowed with this compression base.

Let S ⊆ E be a subset of elements of E , then S′ := {a ∈ E : s|a, ∀s ∈ S} is the
commutant of S. Similarly the bicommutant S′′ := (S′)′ of S is the set of all elements in E
that commute with every element in S′.

Lemma 4.10 Let E be a SEA, S ⊆ E.
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(i) S′ is a sub-SEA of E.
(ii) If p ∈ P, then C(p) = {p}′.
(iii) If S is a set of mutually commuting elements, then S′′ is a commutative sub-SEA of E.

Proof By [18, Lemma 3.1], 0, 1 ∈ S′. The rest of (i) follows immediately from the axioms
(S4), (S5) of SEA, Definition 4.7. By Lemma 4.9, for any p ∈ P and a ∈ E , a ∈ {p}′ if and
only if a ↔ p. Statement (ii) now follows by Lemma 3.6. For (iii), using (i), it is enough to
prove that S′′ is commutative. Since S is commutative, S ⊆ S′, which yields S′′ ⊆ S′ = S′′′,
which by definition yields commutativity of S′′.

��
Notice that the maximal compression base in S′ coincides with (Jp|S′)p∈P∩S′ .

5 Spectrality in Convex Sequential Effect Algebras

Throughout this section, we consider a SEA E which is also a strongly archimedean convex
effect algebra. Note that in this case, the sequential product is affine in the second variable,
that is, for a, b, c ∈ E and λ ∈ [0, 1], we have

a ◦ (λb ⊕ (1 − λ)c) = λa ◦ b ⊕ (1 − λ)(a ◦ c),

this follows from axiom (S1) and [27, Thm. 5.8]. ByTheorem4.2, we see that E is isomorphic
to the unit interval in an order unit space (V , V+, u), moreover, for any a ∈ E , the map
b �→ a ◦ b extends to a positive linear map on (V , V+, u). This also implies that the
sequential product is continuous in the inherited order unit norm in the second variable. If E
is commutative, then (a, b) �→ a ◦ b extends to a positive bilinear product on (V , V+, u)

Example 5.1 It is easily seen that the Hilbert space effect algebra E(H) is convex, strongly
archimedean and sequential, with the sequential product given by

a ◦ b = a1/2ba1/2.

In fact, E(H) is a prototypical example of both sequential and convex effect algebra. More-
over, E(H) is monotone complete and spectral, and we have a|b ⇐⇒ aCb ⇐⇒ ab = ba
for any a, b ∈ E(H). Note that the sequential product in E(H) is not unique [33], but all of
these products must coincide on pairs (p, a) where p ∈ P(H).

Example 5.2 More generally, let A be a JB-algebra with unit u and Jordan product (a, b) �→
a ∗ b, [2, Chap. 1], [21]. Let E be the unit interval [0, u] in A. For a, b ∈ E , we define

a ◦ b := 2a1/2 ∗ (a1/2 ∗ b) − a ∗ b.

It was proved in [37] that E with this product is a (convex, strongly archimedean) SEA.

Our aim is to study spectrality for this type of effect algebras. Let us first look at the case
when E is commutative. We will need the following representation result. Below, C(X) =
C(X ,R) denotes the space of continuous functions X → R and C(X , [0, 1]) denotes the set
of continuous functions X → [0, 1].
Theorem 5.3 (Kadison) [28] Let V be an order unit space with a bilinear commutative
operation ◦ such that 1 ◦ v = v and v ◦ w ≥ 0 whenever v,w ≥ 0, then there exists a
compact Hausdorff space X and an isometric embedding � : V → C(X) such that �(X)

lies dense in C(X) and �(v ◦ w) = �(v)�(w). If V is complete in its norm, then V is
isomorphic as an ordered algebra to C(X).
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Corollary 5.4 Let E be a commutative SEA which is also convex and strongly archimedean.
Then E is isomorphic to a dense subalgebra of the algebra C(X , [0, 1]) of continuous
functions X → [0, 1] for some compact Hausdorff space X. Moreover, the following are
equivalent.

(i) E is monotone σ -complete;
(ii) E � C(X , [0, 1]), with X basically disconnected;
(iii) E is norm-complete and spectral.

Proof The first statement follows by the Kadison theorem and the remarks above. The rest
follows by [27, Example 5.13].

��
Let us now turn to the general case. One of the problems that appear in this setting is

that if the b-property holds, we have two notions of commutativity, namely aCb and a|b.
Note that for p ∈ P , a|p ⇐⇒ aCp ⇐⇒ a ↔ p, but for general elements these two
notions might be distinct and therefore should not be confused. We will show in the course
of our characterization of spectrality that these two notions are equal under some additional
conditions. Note that this is true for the algebra of Hilbert space effects, Example 5.1.

We start by observing the following property of the projection cover, which will be needed
in the sequel.

Lemma 5.5 Let a, b ∈ E be such that a◦ exists and b = limn bn, where for each n, bn ≤ b
and bn = ⊕iλn,i pn,i with λn,i ∈ [0, 1] and pn,i ∈ P. Then a◦b = 0 if and only if a◦ ◦b = 0.

Proof Assume a◦ ◦ b = 0, then by axiom (S3), b ◦ a◦ = 0, so that a ◦ b = 0 using axioms
(S1) and (S3) together with the fact that a ≤ a◦. For the converse, assume first that b ∈ P .
By Lemma 4.9 (iv), a ◦ b = 0 implies a ≤ b⊥, so that a◦ ≤ b⊥ and hence a◦ ◦ b = 0.
Next, let b = ⊕iλi pi for some λi ∈ [0, 1] and projections pi , then a ◦ b = 0 implies that
λi (a ◦ pi ) = a ◦ λi pi = 0, so that a ◦ pi = 0 for all i such that λi > 0. By the previous
step, a◦ ◦ pi = 0 and hence a◦ ◦ b = 0. Finally, let b = limn bn as in the assumption, then
a ◦ bn ≤ a ◦ b = 0 implies that a ◦ bn = 0 and hence a◦ ◦ bn = 0 for all n. The proof follows
by continuity of the sequential product in the second variable.

��
In addition to our standing assumptions in this section,wewill always assume the following

property which will be called property A: For every ascending sequence an ≤ an+1 of
mutually commuting elements in E such that ∨nan exists and b ∈ E , an |b for all n implies
that ∨nan |b.

We next observe some consequences of propertyA. The first result shows that this property
ensures that the sequential product is in agreement with the convex structure.

Lemma 5.6 Let a, b ∈ E, λ ∈ [0, 1]. Then
(i) a ◦ (λb) = (λa) ◦ b = λ(a ◦ b).
(ii) If a|b then a|λb.
Proof (i) Since ◦ is affine in the second variable, we have a ◦ (λb) = λ(a ◦ b). The rest of
the proof of (i) uses similar arguments as the proof of [35, Proposition 3.9]. First, note that
1
n a| 1n a, so that 1

n a|a, by axiom (S5). Similarly we get γ a|a and also γ a⊥|a⊥ for all rationals
γ ∈ [0, 1]. By axioms (S4) and (S5) then γ a⊥|a and a|(γ a ⊕ γ a⊥), so that a|γ 1. It follows
that (γ 1) ◦ a = a ◦ (γ 1) = γ (a ◦ 1), by the first part of the proof. Let now γi ∈ [0, 1] be
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an increasing sequence of rationals such that ∨iγi = λ, then ∨iγi1 = λ1 and by property A,
we obtain that a|λ1. We now compute using (S4)

(λa) ◦ b = (a ◦ (λ1)) ◦ b = a ◦ ((λ1) ◦ b) = a ◦ (λb) = λ(a ◦ b).

The statement (ii) is immediate from (i).
��

Lemma 5.7 Let S ⊆ E be any subset. Then S′ is closed under norm limits of sequences of
mutually commuting elements.

Proof We will use an argument inspired by [13]. So let an ∈ S′ be any norm-convergent
sequence of mutually commuting elements and let a = limn an . By restriction to a subse-
quence, wemay assume that ‖an+1−an‖ < 2−n for all n. Put sn := 1

2 (an+(1−2−n)u), then
sn is an ascending sequence of mutually commuting elements in S′. Indeed, it is enough to
note that if we put bk = ak+1−ak +2−ku, k = 1, 2, . . . , the assumption on {an} implies that
0 ≤ bk ≤ 21−ku ≤ u, and sn = 1

2 (a1 + ∑n
k=1 bk). Moreover, limn sn = 1

2 (a + u). Since the
norm-limit of an ascending sequence is its supremum, property A implies that 1

2 (a+u) ∈ S′.
Using [18, Lemma 3.1 (v)], we obtain that 1

2a ∈ S′ and consequently also a ∈ S′.
��

Lemma 5.8 Let S ⊆ E be a subset ofmutually commuting elements. Then S′′ is a norm-closed
strongly archimedean convex commutative sub-SEA of E.

Proof By Lemma 4.10 S′′ is a commutative sub-SEA of E . By Lemma 5.6, S′′ is also convex,
with the convex structure inherited from E , and it is easily seen that it must be strongly
archimedean. The fact that S′′ is norm-closed follows by Lemma 5.7.

��
Proposition 5.9 Assume that E has the b-comparability property. Then aCb implies a|b.
Proof We have aCb ⇐⇒ P(a) ↔ b ⇐⇒ P(a) ⊆ {b}′. By [26, Theorem 3.22], a
is in the closed linear span of P(a), here we potentially have to consider the extension to
(V , V+, u). Let an ∈ span(P(a)), an → a. By replacing an by ‖a‖ an‖an‖ , wemay assume that

−u ≤ an ≤ u, so that cn := 1
2 (an+u) is a sequence in span(P(a))∩E converging to 1

2 (a+u).
It follows that any cn is of the form cn = ⊕iλn,i pn,i for λn,i ∈ [0, 1], pn,i ∈ P(a) ⊆ {b}′,
so that cn is a sequence of mutually commuting elements in {b}′. Lemma 5.8 now implies
that limn cn = 1

2 (a + u) ∈ {b}′, hence also a|b.
��

We now want to look at the opposite implication of Proposition 5.9. We will show, after
some preparations, that it holds if E is spectral and norm-complete (see Proposition 5.13
below).

Lemma 5.10 Assume that E is spectral and let ak = a ◦ · · · ◦ a. Then {ak} is a descending
sequence of commuting elements in E and a◦ = ∧

k a
k .

Proof It is clear that {ak} is a descending sequence of commuting elements in E . By definition
and Lemma 4.9 (ii), a◦ ◦ a = a◦, so that a◦ ◦ ak = a◦ and this shows that a◦ ≤ ak for all
k ∈ N. Let b ∈ E be any element such that b ≤ ak for all k. Then a ◦ b ≤ a ◦ ak = ak+1 for
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all k. Let {pλ}λ∈[0,1] be the spectral resolution for a and put aλ = pλ ◦ a. Then aλ ≤ λpλ

[11, Theorem 3.3 (ii)] and consequently for all k ∈ N,

aλ ◦ b = pλ ◦ (a ◦ b) ≤ pλ ◦ ak+1 = (pλ ◦ a)k+1 ≤ λk+1 pλ,

here we used axiom (S3) and the fact that pλ ∈ P and a commute. By archimedeanity, for
λ < 1 this implies that aλ ◦ b = 0. Similarly as before, we obtain

0 = aλ ◦ b = (a ◦ pλ) ◦ b = a ◦ (pλ ◦ b).

Since E is spectral, we see fromCorollary 4.5 that the assumptions in Lemma5.5 are satisfied,
so that we obtain

0 = a◦ ◦ (pλ ◦ b) = (a◦ ◦ pλ) ◦ b = (pλ ◦ a◦) ◦ b = pλ ◦ (a◦ ◦ b) = pλ ◦ b,

the last equality follows from the fact that b ≤ a ≤ a◦. This implies that b ≤ p⊥
λ for all

λ < 1 and hence
b ≤

∧

λ<1

p⊥
λ = a◦,

by Lemma 4.6.
��

The next result shows that under some further assumption on the bicommutants in E , any
element in the order unit space (V , V+, u) has a suitable decomposition into positive and
negative part. Note that since we have −‖v‖u ≤ v ≤ ‖v‖u for any v ∈ V , it follows that
(2‖v‖)−1(v + ‖v‖u) ∈ V [0, 1] � E .

Proposition 5.11 Let v ∈ V and let b = (2‖v‖)−1(v +‖v‖u). Assume that the bicommutant
{b}′′ is norm-complete. Then there are some μ± > 0 and elements a± ∈ {b}′′ such that
a+ ◦ a− = 0 and

v = μ+a+ − μ−a−.

Proof By Lemma 5.8, {b}′′ is a strongly archimedean convex commutative sub-SEA of E .
Since it is also norm-complete by the assumption, we have by Corollary 5.4 that {b}′′ �
C(X , [0, 1]) for some compact Hausdorff space X . Since C(X) is spanned by C(X , [0, 1]),
it corresponds to the subspace in V spanned by {b}′′.

Since v is a linear combination of b and u, there is a corresponding function f ∈ C(X).
Put f± = 1

2 (| f | ± f ), then f = f+ − f−, f± are positive elements in C(X) and we
have f+ f− = 0. It follows that there are some g± ∈ C(X , [0, 1]) and μ± > 0 such that
f± = μ±g± and consequently g+g− = 0. Let now a± ∈ {b}′′ be the elements corresponding
to g±. Then we have v = μ+a+ − μ−a− and a+ ◦ a− = 0 follows from the fact that the
sequential product in {b}′′ corresponds to the pointwise product of functions in C(X , [0, 1]).

��
Lemma 5.12 Let E be spectral, a ∈ E and let {pλ}λ∈[0,1] be the spectral resolution of a.
Assume that {a}′′ is norm-complete. Then pλ ∈ {a}′′, λ ∈ [0, 1].
Proof Let b ∈ {a}′′, then bk ∈ {a}′′ for all k ∈ N and we see by Lemma 5.10 and property
A that b◦ ∈ {a}′′. Since b◦ = (b⊥)⊥◦ , we have b◦ ∈ {a}′′. For λ ∈ [0, 1] put vλ := a − λu,
then we see that {(2‖vλ‖)−1(vλ + ‖vλ‖u)}′′ = {a}′′ is norm-complete, so that we may apply
Proposition 5.11. We obtain a decomposition

a − λu = μ+c+ − μ−c− (5)
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with μ± > 0 and c± ∈ {a}′′, c+ ◦ c− = 0. We next show that this is an orthogonal decom-
position of a − λu in (V , V+, u), in the sense of Definition 4.3. Since such a decomposition
is unique, this will imply that μ±c± = (a − λu)± and hence

pλ = (a − λu)∗+ = ((μ+c+)◦)⊥ = (c◦+)⊥ ∈ {a}′′.
So let us choose q = c◦+. Then q ◦ c+ = c+. Moreover, spectrality and Corollary 4.5

shows that the assumptions of Lemma 5.5 are satisfied. It follows that q ◦ c− = 0, so that
c− ≤ q⊥. We therefore have Jq(a−λu) = μ+c+ and Jq⊥(a−λu) = −μ−c−, which shows
that (5) is indeed an orthogonal decomposition. This finished the proof.

��
Proposition 5.13 Let E be norm-complete and spectral. Then for a, b ∈ E, a|b if and only
if aCb.

Proof Assume that a|b. Since E is norm-complete and {a}′′ is norm-closed by Lemma 5.8,
we may apply Lemma 5.12. It follows that all spectral projections pa,λ ∈ {a}′′, so that pa,λ|b
for all λ. Similarly, pb,μ|pa,λ for all λ,μ. Since p|q is the same as pCq for projections p, q ,
this implies that aCb. The converse follows from Proposition 5.9.

��
We now prove our main result.

Theorem 5.14 Let E be a strongly archimedean convex SEAwith propertyA. If everymaximal
commutative subalgebra ismonotone σ -complete, then E is spectral. If in addition E is norm-
complete, the converse also holds.

Proof Assume that every maximal commutative subalgebra in E is monotone σ -complete.
We will first show the projection cover property. For this, we prove that for every a ∈ E
there exist a largest projection p ∈ P such that a ◦ p = 0. It is then clear that p⊥ will be the
projection cover of a. The proof is similar to a proof in [32]. So let

P = {e ∈ P : a ◦ e = 0}.
We will show that P is upward directed and that every increasing chain in P has an upper
bound. By the Zorn lemma,P then has amaximal element, whichmust be the largest elements
since P is upward directed.

So let p, q ∈ P and put 1
2 (p+q) = b. Then a ◦b = 0 = b◦a by axiom (S3), so that there

is some maximal commutative subalgebra M ⊆ E containing a and b. By the assumption
and Corollary 5.4, M is norm-complete and spectral, so that a, b and M satisfy the conditions
in Lemma 5.5, see Corollary 4.5. Put s be the projection cover of b in M , then it follows
that a ◦ s = 0, so that s ∈ P . We also have 1

2 p,
1
2q ≤ b ≤ s and hence p, q ≤ s, as s is a

principal element. It follows that P is upward directed.
Let now C be an increasing chain in P , then all elements in C mutually commute and also

commute with a. Therefore there is a maximal commutative subalgebra M1 ⊆ E containing
a and C. Let s1 be the projection cover of a in M1, then s⊥

1 = 1− s1 is the largest element in
P ∩ M1 such that a ◦ s⊥

1 = 0, so that s⊥
1 ∈ P and C ≤ s⊥

1 , which means that C has an upper
bound in P . This proves that a◦ exists.

For b-comparability, it will be enough to show that the corresponding order unit space
(V , V+, u) has the comparability property. Recall that this means that for any v ∈ V , the
set P±(v) defined in (2) is nonempty. So choose some v ∈ V . Note that for any b ∈ E ,
the bicommutant is contained in some maximal commutative subalgebra, so that {b}′′ is
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norm-complete by the assumption, Corollary 5.4 and Lemma 5.8. Hence we may apply
Proposition 5.11. Let v = μ+c+ − μ−c− be the obtained decomposition. By the previous
paragraph, E has the projection cover property, so we may put p = c◦+. Now observe that the
conditions of Lemma 5.5 are satisfied for any a, b ∈ E . Indeed, a◦ exists and b is contained in
some maximal commutative subalgebra M , which is monotone σ -complete, hence spectral
(Corollary 5.4), so that b can be obtained as the norm limit of an ascending sequence of
simple elements bn ∈ M (Corollary 4.5). It follows that p ◦ c+ = c+ and p ◦ c− = 0, so that
p⊥ ◦ c− = c−. It is now easily checked that p ∈ P±(v).

To prove the converse, assume that E is norm-complete and spectral. By Proposition
5.13, we see that maximal commutative subalgebras are the same as C-blocks. The statement
follows by [26, Thm. 3.33].

��

The next result follows immediately from the above theorem and the definitions of a
σ -SEA (cf. [36]).

Corollary 5.15 Any σ -SEA is spectral.

5.1 Context-Spectrality in Convex SEAs

Let us now turn to the notion of spectrality in convex SEAs defined in terms of contexts as
in [17], which we first briefly recall. So let E be a convex effect algebra. An element a ∈ E
is one dimensional if for b ∈ E , b ≤ a implies that b = ta for some t ∈ [0, 1]. A context
in E is a finite set of one dimensional sharp elements p1, . . . , pn such that ⊕n

i=1 pi = 1. In
[17], E is called spectral if every element a ∈ E has the form a = ⊕iμi pi for some context
{p1, . . . , pn} andμi ∈ [0, 1]. We will call such effect algebra context-spectral, to distinguish
this notion from spectrality considered in the present paper. We will show that if E is also
sequential, then context-spectrality is stronger than spectrality.

We will, in fact, use a weaker assumption that every element a ∈ E is simple, that is, it can
be written as a sum a = ⊕iμi pi for some sharp elements p1, . . . , pn , ⊕i pi = 1 as before,
but pi are not assumed to be one-dimensional. (Note that, as in the case of context-spectrality,
the number of the sharp elements pi in such decompositions might be different). In this case,
there is always an expression of this form with μ1 < · · · < μn , in [11], such an expression is
called a reduced representation of the simple element. For general convex effect algebras, it
is not clear whether simple elements have a unique reduced representations. Such uniqueness
was proved under an additional assumption in [25, Proposition 10].

Let E be a convex effect algebra such that every element is simple. It can be shown the
same way as in [25, Prop. 3] that in this case E has an ordering set of states. It follows that E
is strongly archimedean and E � V [0, u] for an order unit space (V , V+, u), by Theorem
4.2. Moreover, any element v ∈ V is simple, that is, it is a linear combination v = ∑

i ci pi
for some sharp elements p1, . . . , pn ,

∑
i pi = u, [25, Lemma 2].

Theorem 5.16 Let E be a convex SEA such that every element of E is simple. Then E is
spectral. If a = ⊕iμi pi is a reduced representation of a, then the spectral resolution of a
has the form {pa,λ}λ∈[0,1], where

pa,λ = ⊕k−1
i=1 pi , λ ∈ [μk−1, μk), k = 1, . . . , n + 1,

where we put μ0 = 0, μn+1 = 1 and p0 = 0.
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Proof Let a ∈ E , a = ⊕n
i=1μi pi be a reduced representation of a. Put a◦ := ⊕i,μi>0 pi ,

then a◦ is a projection cover of a. Indeed, it is clear that a ≤ a◦ ∈ P and if q ∈ P is such
that a ≤ q , then μi pi ≤ q , so that pi ≤ q for all i such that μi > 0 (this follows from the
fact that q is principal), so that a◦ = ∨i,μi>0 pi ≤ q .

By [17, Thm. 4.3 (i)], we obtain that any pi is a function of a, which means that there are
some elements ci,0, . . . , ci,n−1 ∈ R such that

pi = ci,01 +
n−1∑

k=1

ci,ka
k,

where ak = a ◦ · · · ◦ a. Here the sums are evaluated in the corresponding order unit space
V . It then follows from the axiom (S5) of the sequential product that if b ∈ E is such that
b|a, then b|ak for all k ≥ 1, so that for any projection p ∈ P , we have a ∈ C(p) if and
only if pi ∈ C(p), i = 1, . . . , n. Setting B(a) to be the Boolean subalgebra generated by
p1, . . . , pn , we see that E has the b-property.

Let b ∈ E be another element, with reduced representation b = ⊕ jλ j q j . Then by the b-
property proved above, we see that aCb if and only if {p1, . . . , pn} ↔ {q1, . . . , qm}. Hence
there exist a common refinement {rk := pi ◦ q j } and we may express both elements as

a = ⊕kαkrk, b = ⊕kβkrk,

with αi, j = μi and βi, j = λ j . Note also that we have rk ∈ P(a, b). Indeed, it is clear that
rk ∈ PC(a, b), moreover, if q commutes with both a and b, then we must have q|pi and
q|q j , so that q|(pi ◦ q j ) by the axiom (S5). It is now easy to see that

p := ⊕k,αk<βk rk ∈ P≤(a, b).

This shows the b-comparability property. The last statement on the spectral resolution follows
easily by the expression (3) for the spectral projections.

��

By uniqueness of the spectral resolutions, we obtain the following statement, cf. [11, Thm.
5.3].

Corollary 5.17 Let E be a convex SEA such that every element is simple. Then every a ∈ E
has a unique reduced representation a = ⊕iμi pi , moreover,μi are precisely the eigenvalues
of a.

Corollary 5.18 Any context-spectral convex SEA is spectral.
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