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Abstract
This article investigates a sixth order integrable nonlinear partial differential equation 
model that fulfills the Hirota N-soliton. Space and time-dependent shift, rotation and 
space-dependent shift, time and space translations, and time and space dilations Lie point 
symmetries are presented methodically. Under a specific point symmetries, the Lie point 
symmetries lead to group invariant solutions. The significance of conservation laws of the 
underlying equation are shown. The results are quite accurate in recreating complex waves 
and the dynamics of their interactions.
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1 Introduction

The dynamics of solitary waves are governed by the well-known Korteweg-de Vries 
equation

(1.1)Θt + 6ΘΘx + Θxxx = 0.
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Long wavelength, low amplitude shallow water waves are what gave rise to its creation. 
Due to its unlimited number of conservation laws, multiple-soliton solutions, bi-Hamilto-
nian structures, Lax pair, and other physical features, it is significant from the perspective 
of integrable systems. The Korteweg-de Vries equation (1.1) in two dimensions is known 
as the Kadomtsev-Petviashvili equation

It (1.2) serves as a model for shallow long waves with dispersion in the x and mild y direc-
tions and is totally integrable and produces multiple-soliton solutions.

An integrable nonlinear partial differential equation model of the sixth-order known as 
a combined potential Kadomtsev-Petviashvili-B-type Kadomtsev-Petviashvili equation in 
two dimensions

was established in [1] and it was shown that (1.3) satisfies the Hirota N-soliton condi-
tion which implied that (1.3) possesses an N-soliton solution. Selecting certain val-
ues of the parametes in (1.3) leads to a series of equations of interest as follows. Setting 
�1 = �5 = 1, �3 = �6 = −5, �2 = �4 = 0, with the aid of Θ = Φx , (1.3) is reduced to the 
(2 + 1)-dimensional with B-type Kadomtsev-Petviashvili equation

 which depicts weakly dispersive waves propagating in quasi-medium and fluid mechanics, 
or the electrostatic wave potential in plasmas. The dependent variable Φ denotes the wave 
amplitude function, x, y space coordinates, t denotes the time coordinate and �−1

x
 denotes 

the integral with respect to x. By setting �5 = 36, �2 = �4 = 0 courtesy of Θ = Φx , Eq. (1) 
is reduced to a generalized (2 + 1)-dimensional Caudrey-Dodd-Gibbon- Kotera-Sawada 
equation

 that models a series of nonlinear dispersion physical phenomena. Setting 
�1 = �5 = 1, �2 = �3 = �4 = �6 = 0 through the transformation Θ = Φx , (1.3) degenerates 
to a fifth-order Sawada-Kotera equation

that accounts for the long waves in the shallow water under the gravity and in a one-dimen-
sional nonlinear lattice. Finally in the case where �2 = �5 = 1, �6 = 1, �1 = �3 = �4 = 0 
and �2 = �5 = 1, �1 = �3 = �4 = �6 = 0 through potential Θ = Φx (1.3) disintegrates into 
(1.2) and (1.1) respectively.

Differential equations [2–6] such as (1.3) are used to explain a wide range of physical 
processes and as such plethora of methods have been devised to extract closed-form solu-
tions [7–11]. In [7] soliton solutions were examined, and the Hirota N-soliton condition for 
the B-type Kadomtsev-Petviashvili equation within the Hirota bilinear formulation was 

(1.2)
(
Θt + 6ΘΘx + Θxxx

)

x

+ Θyy = 0.

(1.3)

�1
(
15Φ3

x
+ 15ΦxΦxxx + Φxxxxx

)
x
+ �2

(
6ΦxΦxx + Φxxxx

)
+ �3

(
Φxxxy + 3

(
ΦxΦy

)
x

)

+ �4Φxx + �5Φxt + �6Φyy = 0

(1.4)
Θt + Θxxxxx − 5(Θxxy + �−1

x
Θyy) + 15(ΘxΘxx + ΘΘxxx − ΘΘy − Θx�

−1
x
Θy) + 45Θ2Θx = 0

(1.5)�1(15Θ
3 + 15ΘΘxx + Θxxxx)x + �3(Θxxy + 3(Θ�−1

x
Θy)x) + 36Θt + �6�

−1
x
Θyy = 0

(1.6)Θt + Θxxxxx + 15(ΘΘxxx + ΘxΘxx) + 45Θ2Θx = 0
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established. A weight number was employed in an algorithm to assess the Hirota condition 
while converting the Hirota function in N wave vectors to a homogeneous polynomial, and 
soliton solutions were presented under generic dispersion relations. The (2+1)-dimensional 
Burgers equation served as the foundation for the introduction of a generalized Burgers equa-
tion with variable coefficients [8] and the authors found lump solutions to the generalized 
Burgers equation with variable coefficients by combining the test function method with the 
bilinear form. In [9] a proposed (2+1)-dimensional nonlinear model and localized wave inter-
action solutions, including lump-kink and lump-soliton types were examined. The authors in 
[10] examined the generalized Kadomtsev-Petviashvili equation in (3+1) dimensions using 
the Hirota bilinear approach and symbolic computation. The bilinear Bäcklund transformation 
was built using its bilinear form and the determinant’s properties were used to derive the Pfaf-
fian, Wronskian, and Grammian form solutions. A generalized (3+1)-dimensional Kadomt-
sev-Petviashvili type problem was developed [11] based on the prime number p = 3 , and cer-
tain accurate solutions were achieved by redefining the bilinear operators using specific prime 
numbers.

A class of nonlinear partial differential equations describing physical systems gives 
rise to soliton solutions. Solitons are solitary waves having the ability to scatter elastically 
and they maintain their structures and speed even when they collide. Finding solutions to 
these nonlinear partial differential equations is thus inevitable. However, finding closed-
form solutions is a highly challenging endeavour, and closed-form solutions solutions are 
only possible in a small number of situations. Several techniques for achieving closed-form 
solutions have been put forward in recent years. The Lie symmetry analysis method [12], 
the tanh method [12, 13], the Hirota bilinear method [14], the Darboux transformation 
method [15], and the inverse Hirota’s bilinear approach [16, 17] are a few of the primary 
techniques used to do the integration of nonlinear partial differential equations. In addi-
tion to soliton solution extraction, conservation laws are crucial. The procedure for solving 
nonlinear partial differential equations involves conservation laws in a significant way. The 
initial step in solving a problem is often to discover the conservation laws of a system of 
nonlinear partial differential equations. A system of nonlinear partial differential equation’s 
conservation laws is a powerful indicator of the system’s integrability.

The Lie symmetry approach, commonly known as the Lie group method, is one of the most 
effective techniques for finding solutions to nonlinear partial differential equations among the 
techniques discussed above. It is based on research into the invariance of point transformations 
on the one-parameter Lie group. Lie symmetry techniques are heavily algorithmic and were 
first created by Sophus Lie in the second half of the 19th century. These approaches provide 
explicit solutions for differential equations, particularly nonlinear differential equations, by 
methodically combining and extending well-known ad hoc techniques. The quantity of aca-
demic articles, books, and new symbolic software dedicated to symmetry approaches for dif-
ferential equations shows that there have been significant breakthroughs in recent years.

This paper examines (1.3), where Φ = Φ(x, y, t) is a real function of x, y and t and 
�i i = 1⋯ 6 are real parameters. The Lie point symmetries of (1.3) are computed and it 
gives rise to group invariant solutions and symmetry reductions under a certain point sym-
metries and conserved vectors are illustrated courtesy of the multiplier method.

The outline of the paper is as follows. In Section 2, we obtain Lie point symmetries and 
the commutator table of the Lie algebra of (1.3). Section 3 illustrates symmetry reductions 
and associated group invariant solutions. Then in Section 4 we construct conservation laws 
for (1.3) using the multiplier method and discuss the significance of the computed conser-
vation laws. Finally, in Section 5 concluding remarks are presented.
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2  Lie Point Symmetries of (1.3)

A differential equation’s Lie point symmetry [18] is an invertible transformation of the 
dependent and independent variables that does not modify the equation itself. A differen-
tial equation’s symmetries must be determined, which is a difficult task. However, Sophus 
Lie (1842-1999), a Norwegian mathematician, discovered that if one limits oneself to sym-
metries that form a group (continuous one-parameter group of transformations) and depend 
continuously on a small parameter, one can linearize the symmetry conditions and come up 
with an algorithm for calculating continuous symmetries.

The vector field

is a Lie point symmetry of (1.3) if

where Δ[6] is the sixth prolongation of (2.1).

(2.1)Δ = Ξ1(t, x, y,Φ)
�

�t
+ Ξ2(t, x, y,Φ)

�

�x
+ Ξ3(t, x, y,Φ)

�

�y
+ Ψ(t, x, y,Φ)

�

�Φ

(2.2)

Δ[6]

{
�1
(
15Φ3

x
+ 15ΦxΦxxx + Φxxxxx

)
x
+ �2

(
6ΦxΦxx + Φxxxx

)
+ �3

(
Φxxxy + 3

(
ΦxΦy

)
x

)

+ �4Φxx + �5Φxt + �6Φyy

}
|(1.3) = 0,

(2.3)Ξ2
Φ
= 0,

(2.4)Ξ3
Φ
= 0,

(2.5)Ξ3
x
= 0,

(2.6)Ξ1
Φ
= 0,

(2.7)Ξ1
x
= 0,

(2.8)Ξ1
y
= 0,

(2.9)Ξ2
xx
= 0,

(2.10)ΨΦΦ = 0,

(2.11)ΨxΦ = 0,

(2.12)3 Ξ2
x
− Ξ3

y
= 0,
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It can clearly be seen that from (2.3-2.28) consists of 26 linear par-
tial differential equations and the four unknown infinitesimal functions are 
Ξ1(t, x, y,Φ),Ξ2(t, x, y,Φ),Ξ3(t, x, y,Φ),Ψ(t, x, y,Φ) . This implies that the above system of 
linear partial differential equations is over-determined. The integration of the above over-
determined system of linear partial differential equation leads to the following general 
solution:

(2.13)3 Ξ2
x
− Ξ3

y
= 0,

(2.14)ΨΦ + Ξ2
x
= 0,

(2.15)ΨΦ + Ξ2
x
= 0,

(2.16)− Ξ1
t
+ 5 Ξx;x = 0,

(2.17)ΨΦ + Ξ2
x
= 0,

(2.18)2 Ξ2
x
�2 + 15 Ψx�1 − �3Ξ

2
y
= 0,

(2.19)15 �Φxx�1 + �3ΨyΦ − 3 �3Ξ
2
xy
= 0,

(2.20)3 Ψxx�3 − �6Ξ
3
yy
+ 2 �6ΨyΦ = 0,

(2.21)3 Ψx�3 − 2 �6Ξ
2
y
− �5Ξ

3
t
= 0,

(2.22)− Ξ3
y
+ 4 Ξ2

x
+ ΨΦ = 0,

(2.23)− Ξ3
y
+ 4 Ξ2

x
+ ΨΦ = 0,

(2.24)�3ΨyΦ + 15 Ψxx�1 − �3Ξ
2
xy
= 0,

(2.25)ΨΦ�2 + 15 Ψx�1 − �3Ξ
2
y
+ 3 Ξ2

x
�2 = 0,

(2.26)4 Ξ2
x
�4 + 15 Ψxxx�1 + 6 Ψx�2 − �5Ξ

2
t
+ 3 �3Ψy = 0,

(2.27)Ψxxxx�2 + Ψxxxxxx�1 + �3Ψxxxy + �6�Φ;yy + Ψxx�4 + �5Ψtx = 0,

(2.28)6 Ψxx�2 + 15 Ψxxxx�1 − �6Ξ
2
yy
+ �5ΨtΦ + 3 �3Ψxy − �5Ξ

2
tx
= 0.
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where Ri, i = ⋯ 6 are arbitrary constants of integration.

The commutator [Δi,Δj] is given by [Δi,Δj] = ΔiΔj − ΔjΔi.
The commutator table of the Lie point symmetries of (1.3) is given in Table 1
and the associated relations are given as follows:

(2.29)Ξ1(t, x, y,Φ) = R1 − 75R6�3�1�5t,

(2.30)Ξ2(t, x, y,Φ) = 3R4�3g(t) − 15R5�1�5y − 15R6�3�1�5x,

(2.31)Ξ3(t, x, y,Φ) = R2 + R5

(
30�6�1t − 3�3

2t
)
+ R6

(
6�3

2�2t − 45�3�1�5y
)
,

(2.32)
Ψ(t, x, y,Φ) = R3f (t) + R4𝜀5ġ(t)y + R5

(
2𝜀5𝜀2y − 𝜀5𝜀3x

)

+ R6

(
15𝜀5𝜀3𝜀1Φ + 2𝜀5𝜀2𝜀3x + 20𝜀5𝜀4𝜀1y − 4𝜀5𝜀2

2y
)
,

Δ1 =
𝜕

𝜕t
, time translation

Δ2 =
𝜕

𝜕y
, space translation

Δ3 = f (t)
𝜕

𝜕Φ
, space &time − dependentshif t

Δ4 = 𝜀5ġ(t)y
𝜕

𝜕Φ
+ 3𝜀3g(t)

𝜕

𝜕 x
, time-dependent shif t&space

Δ5 =
(
2𝜀5𝜀2y − 𝜀5𝜀3x

) 𝜕

𝜕Φ
− 15𝜀1𝜀5y

𝜕

𝜕x
+
(
30𝜀6𝜀1t − 3𝜀3

2t
) 𝜕

𝜕y
, rotatation &space − dependentshif t

Δ6 =
(
15𝜀5𝜀3𝜀1Φ + 2𝜀5𝜀2𝜀3x + 20𝜀5𝜀4𝜀1y − 4𝜀5𝜀2

2y
) 𝜕

𝜕Φ
− 75𝜀3𝜀1𝜀5t

𝜕

𝜕t

− 15𝜀3𝜀1𝜀5x
𝜕

𝜕x
+
(
6𝜀3

2𝜀2t − 45𝜀3𝜀1𝜀5y
) 𝜕

𝜕y
, dilation &space&time − dependentshif t

Table 1  Commutator table of the 
Lie algebra of system (1.1)

Δ
1

Δ
2

Δ
3

Δ
4

Δ
5

Δ
6

Δ
1

0 0 �
∞
�

�
∞
�

�Δ
2

�
�

Δ
2

0 0 0 �
∞
�

�
�

�
�

Δ
3

−F∞
1

0 0 0 0 �
∞
�

Δ
4

−�∞
�

−�∞
�

0 0 �
∞
�

�
∞
�

Δ
5

−�Δ
2

−�
�

0 −�∞
�

0 �
��

Δ
6

−�
�

−�
�

−�∞
�

−�∞
�

−�
��

0
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3  Symmetry Reductions and Exact Solutions

In this segment, we illustrate symmetry reductions and closed form solutions. One must solve 
the corresponding Lagrange equations

to achieve symmetry reductions and exact solutions. We consider the following cases as 
illustrated below.

3.1  Case (I).

The group-invariant solution

is generated by the point symmetry Δ6 , where � =
x

5
√
t
,� =

5 y�5�1 + t�3�2

5t3∕5�1�5
 are invariants 

of the symmetry Δ6 and P(� ,�) satisfies the sixth-order nonlinear partial differential 
equation

𝛼 = 30𝜀1𝜀6 − 3𝜀2
3
,

�
∞
�

= ḟ (t)
𝜕

𝜕Φ
,

�
∞
�

= 𝜀5 g̈(t)y
𝜕

𝜕Φ
+ 3𝜀3 ġ(t)

𝜕

𝜕 x
,

�� = −75𝜀3𝜀1𝜀5
𝜕

𝜕t
+ 6𝜀3

2𝜀2
𝜕

𝜕y
,

�
∞
�

= 𝜀5 ġ(t)
𝜕

𝜕Φ
,

�� = 2𝜀5𝜀2
𝜕

𝜕Φ
− 15𝜀1𝜀5

𝜕

𝜕x
,

�� = −45𝜀1𝜀3𝜀5
𝜕

𝜕y
−
(
4𝜀2

2
𝜀5 − 20𝜀1𝜀4𝜀5

)
𝜕

𝜕Φ
,

�
∞
�

=
(
15𝜀1𝜀3𝜀5 f (t) + 75𝜀1𝜀3𝜀5 f̈ (t)

) 𝜕

𝜕Φ
,

�
∞
�

=
(
−30𝜀1𝜀5𝜀6 tġ(t) + 3𝜀2

3
𝜀5 tġ(t) − 3𝜀2

3
𝜀5g(t)

)
𝜕

𝜕Φ
,

�
∞
�

=
(
225𝜀1𝜀

2

3
𝜀5 tġ(t) − 45𝜀1𝜀

2

3
𝜀5g(t)

)
𝜕

𝜕x
+
(
75𝜀1𝜀3𝜀

2

5
tyg̈(t) + 60𝜀1𝜀3𝜀

2

5
yġ(t) − 6𝜀2𝜀

2

3
𝜀5 tġ(t) + 6𝜀2𝜀

2

3
𝜀5g(t)

)
𝜕

𝜕Φ
,

��� =
(
90𝜀1𝜀2𝜀

2

3
𝜀5t − 450𝜀2

1
𝜀3𝜀

2

5
y
)

𝜕

𝜕x
+
(
900𝜀2

1
𝜀3𝜀5𝜀6 t − 90𝜀1𝜀

3

3
𝜀5t

)
𝜕

𝜕y

+
(
600𝜀2

1
𝜀4𝜀5𝜀6 t − 120𝜀1𝜀

2

2
𝜀5𝜀6t + 90𝜀1𝜀2𝜀3𝜀

2

5
y − 60𝜀1𝜀

2

3
𝜀4𝜀5 t − 30𝜀1𝜀

2

3
𝜀2
5
x
)

𝜕

𝜕Φ
.

(3.1)
dt

Ξ1(t, x, y,Φ)
=

dx

Ξ2(t, x, y,Φ)
=

dy

Ξ3(t, x, y,Φ)
=

dΦ

Ψ(t, x, y,Φ)

(3.2)

u = −
1

225�1
2�5�3

5
√
t

�
5 �2�3t

6∕5�4�1 − �2
3�3t

6∕5 + 15 �2x
5
√
t�1�5�3 + 75

5
√
ty�5�1

2�4

− 15
5
√
ty�5�1�2

2 − 225P(� ,�)�1
2�5�3

�
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Using the point symmetries of (3.3) we now further reduce the nonlinear partial differential 
equation to an ordinary differential equation. It should be noted that symmetries of (3.3) 
are

The symmetry Υ1 + Υ2 gives rise to the group-invariant solution

where � = � ,is an invariant of the symmetry Υ1 + Υ2 and Q(�) satisfies the second-order 
linear ordinary differential equation

whose solution is

(3.3)

25P�������1
2 + 1125P��P�

2�1
2 + 375P��P����1

2 + 375P����P��1
2

+ 75P��P��3�1 + 25�3P�����1 + 25�6P���1 + 75P��P��3�1 − 5�5P����1

− 10�5P��1 − 15P����1�5 = 0.

(3.4)Υ1 =
�

�P
,

(3.5)Υ2 = �5�
�

�P
+ 15�3

�

��
.

(3.6)P(� ,�) =
� + � �5� + 15Q(�)�3

15�3
,

(3.7)75�3�6Q�� − 4�5
2� − �5 = 0.

Fig. 1  Graphical simulation of (3.2)
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Finally (3.8) therefore completes group invariant solution (3.2) and the graphical simula-
tion of (3.2) is given in Fig. 1.

3.2  Case (II).

The infinitesimal generator Δ5 leads to

with invariants � = −15t2�1�6 +
3

2
t2�2

3
+ y, � = −150�2

1
�5t

3�6 + 15t�5
(
t2�2

3
+ y

)
�1 + x 

and P(� ,�) satisfies nonlinear partial differential equation

Employing the point symmetries of (3.10) one can further reduce the nonlinear partial dif-
ferential equation to an nonlinear ordinary differential equation and symmetries of (3.10) 
are

The symmetry Υ1 + Υ2 + Υ3 leads to

with invariants � =
�3� + �

�3
 and Q(�) satisfies the nonlinear ordinary differential equation

Finally any solution Q(�) of (3.15) completes group invariant solution (3.9).

(3.8)Q(�) =
3 �5�

2 + 4 �5
2�3 + 450C1 � �6�3 + 450C2 �6�3

450�6�3

(3.9)

u =
15
(
3
(
10�2

1
�3�6 − �1�

3
3

)
t4 − 4y�1�3t

2
)
�2
5

8
+
(
2�2

(
−10�1�6 + �2

3

)
t3 +

(
−x�3 + 2y�2

)
t
)
�5

+ P(� ,�)

(3.10)

2P�������1 + 2
(
15P��1 + �2

)
P���� + 2�3P���� + 30P��P����1

+ 2
(
15��1�

2
5
+ 45P2

�
�1 + 3P��3 + 6P��2 + �4

)
P�� + 6�3P�P��

− 2�2
5
�3 + 2�6P�� = 0.

(3.11)Υ1 =
�

�P
,

(3.12)Υ2 =
�

��
,

(3.13)Υ3 = 5�
�

�P
�2
5
�1 − �3

�

��
.

(3.14)P(� ,�) =
−2� − 5�2

5
�2�1 + 2Q(�)�3

2�3

(3.15)

45Q��Q
2
�
�1�

2
3
+ 6�2Q��Q��

2
3
+ 15Q����Q��1�

2
3
+ 15Q��Q����1�

2
3
− 5�6�

2
5
�1�3

− �2
5
�3
3
+ 6Q�Q���

2
3
+ �4Q���

2
3
+ �2Q�����

2
3
+ Q�������1�

2
3
− 3Q���

2
3

+ Q�����
2
3
+ �6Q�� = 0.
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3.3  Case (III).

The infinitesimal generator Δ1 + Δ2 leads to the group-invariant solution

with invariants � = x, � = −t + y and P(� ,�) satisfies the nonlinear partial differential 
equation

A special solution to (3.17) is the following travelling wave solution

The evolution of the travelling wave solution (3.16) is illustrated in Fig. 2.

(3.16)u = P(� ,�)

(3.17)

45P2
�
P���1 + 6�2P�P�� + 3�3P�P�� + 15P�P�����1 + 3�3P��P� + 15P��P����1

+ �4P�� − �5P�� + �6P�� + �2P���� + �3P���� + P�������1 = 0.

P(� ,�) = 2C2 tanh

{
C2� + C1+

(
−4�3C2

2 + �5 +

√
−64�6C2

4�1 + 16�2
3
C2

4 − 16C2
2�6�2 − 8�3C2

2�5 − 4�4�6 + �2
5

)
C2�

2�6

}
+ C4.

Fig. 2  Evolution of travelling wave solution of (3.16)
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3.4  Case (IV).

The point symmetry Δ3 + Δ4 results in the group invariant solution

with invariants � = t, � = y and P(� ,�) the following linear partial differential equation

The integration (3.19) leads to

and finally (3.20) completes the group invariant solution (3.18) and a graphical simulation 
of is given in Fig. 3.

The limiting behavior of problems that are far from their beginning or boundary conditions 
is captured by group invariant solutions in numerous applications.

(3.18)u =
xf(t) + xy𝜀5ġ(t) + 3P(𝜒 ,𝜑)g(t)𝜀3

3g(t)𝜀3
,

(3.19)3gP���3�6 + ��2
5
g�� + �5f� = 0.

(3.20)P(� ,�) = −
�5

(
1

2
f��

2 +
1

6
�3�5g��

)

3�6�3g
+ F(�)� + G(�)

Fig. 3  Profile of (3.18)
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4  Conservation Laws of (1.3)

Conservation laws are an important concept in the study of partial differential equations 
(PDEs). They describe the mathematical relationships between the properties of physical 
systems and how they change over time. The basic idea behind conservation laws is that 
the total amount of a particular property, such as mass, energy, or momentum, remains 
constant within a closed system. In PDEs, conservation laws are represented as equations 
that describe how certain physical quantities change in response to changes in other quanti-
ties. For example, the conservation of mass equation for a fluid is described by the continu-
ity equation, which states that the rate of change of the fluid’s density is proportional to the 
rate of change of its volume. Similarly, the conservation of energy equation for a thermody-
namic system is described by the first law of thermodynamics, which states that the change 
in the internal energy of a system is equal to the heat added to the system minus the work 
done on the system. Another important concept in conservation laws is the concept of the 
flux of a physical property. The flux is a measure of the flow of a property from one region 
of a system to another. For example, in fluid dynamics, the flux of mass is represented 
by the velocity of the fluid, while the flux of energy is represented by the heat transfer 
rate. There are several methods used to derive conservation laws from PDEs. One common 
method is the use of symmetry considerations, where the conservation law is derived from 
the symmetries of the physical system. Another method is the use of Noether’s theorem, 
which states that the conservation laws can be derived from the invariances of the system 
under certain transformations.

In summary, conservation laws play a crucial role in the study of partial differential 
equations. They provide mathematical descriptions of the relationships between physi-
cal quantities and how they change over time, and they are derived from the symmetries 
and invariances of physical systems. Understanding conservation laws is essential for a 
wide range of scientific and engineering applications, including fluid dynamics, thermo-
dynamics, and solid mechanics, among others.

Let us consider a kth-order system of PDEs of n independent variables 
x = (x1, x2,… , xn) and m dependent variables u = (u1, u2,… , um) , viz.,

where u(1), u(2),… , u(k) denote the collections of all first, second, … , kth-order partial deriv-
atives, that is, u�

i
= Di(u

�), u�
ij
= DjDi(u

�),… respectively, with the total derivative opera-
tor with respect to xi is given by

where the summation pact is used whenever suitable.
The Euler-Lagrange operator, for each � , is given by

The n-tuple vector Ω = (Ω1,Ω2,… ,Ωn), Ωj ∈ A, j = 1,… , n , is a conserved vector of 
(4.1) if Ωi satisfies

(4.1)E�(x, u, u(1),… , u(k)) = 0, � = 1,… ,m,

(4.2)Di =
�

�xi
+ u�

i

�

�u�
+ u�

ij

�

�u�
j

+… , i = 1,… , n,

(4.3)
�

�u�
=

�

�u�
+
∑

s≥1

(−1)sDi1
…Dis

�

�u�
i1i2…is

, � = 1,… ,m.
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The equation (4.4) defines a local conservation law of system (4.1).
A multiplier ��(x, u, u(1),…) has the property that

hold identically. Here we will consider multipliers of the zeroth order,
i.e., �� = �(t, x, y,Φ) . The right hand side of (4.5) is a divergence expression. The 

determining equation for the multiplier �� is

Once the multipliers are obtained the conserved vectors are calculated via a homotopy for-
mula [?]. A space-time divergence is a local conservation law for equations (1.3)

that holds for all formal solutions of the equation (1.3) where the conserved density Ωt and 
the spatial fluxes Ωx,Ωy.

If u and its derivatives tend to zero as x, y approaches infinity, the conserved quanti-
ties are obtained by ∫ ∞

−∞
∫ ∞

−∞
Ωtdxdy . For (1.3), we obtain a zeroth order multiplier � , 

that is given by

where F and G are arbirary functions of t. It should be pointed out that first, second and 
third order multipliers do not exist. Thus, corresponding to the above zeroth order multi-
plier we have the following conservation laws of (1.3):

(4.4)DiΩ
i|(4.1) = 0.

(4.5)Λ�E� = DiΩ
i

(4.6)
�(��E�)

�u�
= 0.

DtΩ
t + DxΩ

x + DyΩ
y = 0

�(t, x, y,Φ) =F(t)y + G(t),

(4.7)Ωt
1
=
1

2
y�5F(t)Φx,

(4.8)

Ωx
1
=
1

4

{
− 3�3F(t)ΦxΦ − 3y�3F(t)ΦxyΦ − 2y�5F

�Φ + 60y�1F(t)Φx
3

+ 12y�2F(t)Φx
2 + 4y�4F(t)Φx + 9y�3F(t)ΦxΦy + 60y�1F(t)ΦxxxΦx + 3y�3F(t)Φxxy

+ 4y�2F(t)Φxxx + 4y�1F(t)Φxxxxx − �3F(t)Φxx + 2y�5F(t)Φt

}
,

(4.9)
Ω

y

1
=
1

4

{
3y�3F(t)ΦxxΦ − 4�6F(t)Φ + 3y�3F(t)Φx

2 + y�3F(t)Φxxx

+ 4y�6F(t)Φy

}
;

(4.10)Ωt
2
=
1

2
�5G(t)Φx,
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Physical rules including the conservation of energy, mass, and momentum are expressed 
mathematically as conservation laws. In order to solve and reduce partial differential equa-
tions, conservation rules are absolutely essential. The study of the existence, uniqueness, 
and stability of solutions to nonlinear partial differential equations, as well as the creation 
of numerical integrators for partial differential equations, have both made extensive use of 
conservation laws. It should be noted that a limitless number of conservation rules may be 
obtained since the multiplier contains an arbitrary function.

5  Concluding Remarks

Today’s article examined a nonlinear partial differential equation model of sixth order 
that satisfies the Hirota N-soliton. Time and space translations, time and space dilations, 
rotation and space-dependent shift, and space-dependent shift Lie point symmetries 
were established. Certain Lie point symmetries resulted in group invariant solutions and 
infinitely many conservation laws the underlying equation were computed, along with 
their importance. The employed Lie symmetry approach is distinct from the conven-
tional integrability methods, which also include Hirota’s bilinear method, the traveling 
wave solution, and the Darboux transformation method, among others. In terms of sim-
ulating complicated waves and the dynamics of their interaction the results obtained in 
work can serve as benchmarks against the numerical simulations.
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(4.11)

Ωx
2
=
1

4

{
− 3�3G(t)ΦxyΦ − 2�5G

�Φ(t, x, y) + 9�3G(t)ΦxΦy + 3�3G(t)Φxxy + 60�1G(t)Φx
3

+ 12�2G(t)Φx
2 + 4�4G(t)Φx + 60�1G(t)ΦxxxΦx + 4�2G(t)Φxxx + 4�1G(t)Φxxxxx

+ 2�5G(t)Φt

}
,

(4.12)Ω
y

2
=
1

4

(
3�3G(t)ΦxxΦ + 3�3G(t)Φx

2 + �3G(t)Φxxx + 4�6G(t)Φy

)
.
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