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Abstract
A quantum stochastic product is defined as a binary operation on the convex set of quantum
states that preserves the convex structure. We discuss a class of group-covariant, associa-
tive stochastic products, the twirled products, having remarkable connections with quantum
measurement theory and with the theory of open quantum systems. By extending this binary
operation from the density operators to the full Banach space of trace class operators, one
obtains a Banach algebra. In the case where the covariance group is the group of phase-
space translations, one has a quantum convolution algebra. The expression of the quantum
convolution in terms of Wigner distributions and of the associated characteristic functions is
analyzed.

Keywords Quantum state · Quantum stochastic product · Quantum measurement ·
Operator algebra · Convolution algebra · Square integrable representation

1 Introduction

Operator algebras are ubiquitous in physical theories involving a Hilbert space struc-
ture; especially — just to mention the most relevant examples — in quantum mechanics,
quantum information science, quantum field theory, quantum statistical mechanics and non-
commutative geometry [1–8]. Within the operator algebra framework, the physical states of
a quantum system can be introduced as, suitably normalized, positive functionals on the C∗-
algebra of all bounded observables [1, 4, 5, 8]. In the most elementary case (say, in ‘ordinary
quantummechanics’), this abstract algebra is isometrically ∗-isomorphic to— and, thus, can
be identified with— the Banach spaceB(H) of all bounded operators on a separable complex
Hilbert spaceH, endowed with the usual composition of operators (A, B) �→ AB ≡ A ◦ B,
the algebra product, and with the adjoining operation A �→ A∗, i.e., the algebra involution.
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In several applications however — e.g., in the context of quantum information theory,
quantum control and quantummeasurement theory [6, 7] — one actually restricts to a distin-
guished class of states, the so-called σ -additive states [1, 8] (which is analogous to restricting,
in classical statistical mechanics, to σ -additive probability measures). These states can be
realized as normalized, positive trace class operators; namely, the so-called density operators
(or density states), that form a convex subset D(H) of the complex Banach space T (H) of
trace class operators on H.

The selfadjoint component B(H)R of the C∗-algebra B(H), that coincides with the set of
all true bounded observables, in its own respect, can be endowed with a two-fold algebraic
structure. In fact, the real Banach space B(H)R can be endowed with the pair of binary
operations

A • B := 1

2
(AB + B A) and A � B := 1

2i
(AB − B A), (1)

the so-called Jordan (symmetric) and Lie (skew-symmetric) products. The triple

(B(H)R, (·) • (·), (·) � (·)) (2)

is a Jordan-Lie Banach algebra, where the two products — that determine a Jordan and a
Lie algebra structure, respectively — are mutually related by the Leibniz rule and by the
associator identity; conversely, via complexification, every Jordan-Lie Banach algebra can
be promoted to a C∗-algebra [1, 5].

We stress that, on the one hand, states do not directly fit in the Jordan-Lie Banach algebra
structure (2). In fact, for every pair of density operators ρ, σ ∈ D(H), the Jordan product
ρ • σ is a selfadjoint trace class operator, but it is a density operator iff ρ = σ ≡ P , where
P is a pure state [9], i.e., a rank-one orthogonal projection; the Lie product ρ � σ , moreover,
is a selfadjoint trace class operator too, but it simply cannot be a density operator because
tr(ρ � σ) = 0. On the other hand, one may ask [9–12] whether it is possible to endow the
Banach space T (H) with some binary operation

(·) � (·) : T (H) × T (H) → T (H) (3)

satisfying suitable assumptions, that should be consistent with the notion of physical state.
Therefore, as a starting point, we suppose that

(A1) The pair (T (H), (·) � (·)) defines an algebra — i.e., the product (3) is bilinear —
and, in addition, the algebra product is state-preserving. Namely, we suppose that the
product of two states ρ � σ is a state too.

If we wish to obtain a — both mathematically and physically — interesting structure, we
should further require that

(A2) This algebra (T (H), (·) � (·)) is associative.
(A3) The algebra product (·) � (·) is continuous w.r.t. some topology suitably consistent

with physics (quantum mechanics).

Owing to the parallelism between classical and quantum physics [5], if such an algebraic
structure does exist in the quantum setting, one should expect that an analogous structure
may exist in the classical setting too. Indeed, let us consider the convolution μ � ν of a pair
μ, ν of complex Radon measures, defined on a locally compact topological group G. It is
well known that all measures of this kind form a Banach spaceM(G), which endowed with
the convolution product, becomes a Banach algebra (containing the smaller group algebra
L1(G)) [13]. If μ, ν are probability measures on G — here regarded as classical states —
then μ � ν is a probability measure (i.e., a classical state) too. From the physical point of
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view, the most relevant case is that of the vector group G = R
n × R

n — regarded as the
group of translations on phase space — and the associated phase-space convolution algebra
M(Rn × R

n).
The observation that convolution is a group-theoretical operation and the central role

played in quantummechanics by the symmetry transformations—see [14, 15], and references
therein — lead us to consider a group-theoretical framework in the quantum setting, as well.
Therefore, we will further assume that

(A4) One can define awhole class of associative, state-preserving bilinear products onT (H),
and a generic product (·) � (·) of this class is — except for special or trivial cases — a
genuinely binary operation (the map (·)�(·) : T (H)×T (H) → T (H) should depend,
in general, on both its arguments).

(A5) The construction of each product involves a symmetry group G and possesses some
covariance property w.r.t. a symmetry action of G.

(A6) By a natural analogy with the ‘classical’ convolution algebra (M(G), (·) � (·)), in
the case where the symmetry group G is abelian, the algebra (T (H), (·) � (·)) is
commutative.

The assumption (A6) seems to be quite reasonable even if it refers to a quantum setting:
Non-commutativity is a natural feature for an algebra of quantum observables, whereas one
may well expect an algebra involving states to behave differently.

We conclude with the following further ansatz:

(A7) In the remarkable case where the symmetry group is the phase-space translation group
— i.e., for G = R

n ×R
n —one should get a quantum convolution algebra that may be

regarded, in some suitable sense, as a quantum counterpart of the classical phase-space
convolution algebra.

A binary operation on the trace class T (H) satisfying our first assumption (A1) is called
a stochastic product, and the Banach space T (H), endowed with a stochastic product veri-
fying (A2) too, is called a stochastic algebra [10]. For such an algebra, condition (A3) holds
automatically w.r.t. the norm topology on T (H) (in fact, (A3) turns out to be a consequence
of (A1) alone). Moreover, one can introduce, by means of a group-theoretical construction,
a class of associative stochastic products — the so-called twirled products [9–12] — that
satisfy assumptions (A4)–(A7), as well.

The paper is organized as follows. In Section 2, we introduce the notion of stochastic
product of quantum states. Next, in Section 3, we provide an explicit group-theoretical con-
struction of the twirled products. These products induce a class ofBanach algebras, the twirled
stochastic algebras — see Section 4 — and admit a nice physical interpretation (Section 5).
In Section 6, we consider two remarkable examples: the compact groups and the group of
phase-space translations. Finally, in Section 7, a few conclusions are drawn, together with a
glance at some future prospects.

2 The Notion of Stochastic Product of Quantum States

A map S : D(H) → D(H) which is convex-linear — namely, that preserves the natural
convex structure of the space of density operators D(H) — is called a quantum stochastic
map. It can be shown that such a map admits a unique (trace-preserving, positive) linear
extension Sext : T (H) → T (H) [10], a linear stochastic map on the trace class T (H).

123



   88 Page 4 of 17 International Journal of Theoretical Physics (2023) 62           (2023) 62:88 

Analogously, a quantum stochastic product is defined as as a binary operation on D(H),

(·) 	 (·) : D(H) × D(H) → D(H), (4)

that is convex-linear w.r.t. both its arguments; namely, for all ρ, σ, τ, υ ∈ D(H) and all
α, ε ∈ [0, 1], it is assumed that the following relation is satisfied:

(αρ + (1 − α)σ) 	 (ετ + (1 − ε)υ) = αερ 	 τ + α(1 − ε)ρ 	 υ

+ (1 − α)εσ 	 τ + (1 − α)(1 − ε)σ 	 υ. (5)

We will also use the following notion: A binary operation (·)� (·) on the trace class T (H)

is called state-preserving if it is such that D(H) � D(H) ⊂ D(H).
Every quantum stochastic product is continuousw.r.t. the natural topology onD(H)—see

Remark 1 below— and admits a (state-preserving) bilinear extension. In fact, the following
result holds [10]:

Proposition 1 Every quantum stochastic product onD(H) is continuous w.r.t. the norm topol-
ogy inherited from T (H); namely, denoting by ‖ · ‖1 ≡ ‖ · ‖tr the trace norm on T (H), w.r.t.
the topology on D(H) and on D(H) × D(H) induced, respectively, by the metrics

d1(ρ, σ ) := ‖ρ − σ‖1 and d1,1((ρ, τ ), (σ, υ)) := max{‖ρ − σ‖1, ‖τ − υ‖1}. (6)

For every quantum stochastic product (·) 	 (·) : D(H) × D(H) → D(H), there is a unique
bilinear stochastic map (or stochastic product) (·) � (·) : T (H) × T (H) → T (H) — i.e.,
a unique state-preserving bilinear map on T (H) — such that ρ 	 σ = ρ � σ , for all
ρ, σ ∈ D(H).

Remark 1 It can be shown that the weak and the strong topologies on D(H) (inherited from
B(H)), as well as the topologies induced on D(H) by the metrics associated with Schatten
p-norms ‖ · ‖p, 1 ≤ p ≤ ∞, all coincide [10]. This unique topology on D(H) is called
the standard topology. Thus, the topology induced on D(H) × D(H) by the metric d1,1 is
precisely the product topology associated with the standard topology on D(H).

Definition 1 The space T (H), endowed with a map (·) � (·) : T (H) × T (H) → T (H) that
is bilinear, state-preserving and associative, is called a stochastic algebra.

It is worth observing that, by Proposition 1, every quantum stochastic product (·) 	 (·)
on D(H) can be regarded as the restriction of a uniquely determined bilinear stochastic map
(·)�(·) onT (H), which is associative iff the product (·)	(·) is associative.As a consequence,
a stochastic algebra can also be defined as a Banach space of trace class operators T (H),
together with an associative quantum stochastic product (·) 	 (·) : D(H) ×D(H) → D(H).

Now, let BL(H) be the complex vector space of all bounded bilinear maps on T (H). BL(H)

becomes a Banach space when endowed with the norm ‖ · ‖(1) defined as follows. For every
β(·, ·) : T (H) × T (H) → T (H) in BL(H), we put

‖β(·, ·)‖(1) := sup{‖β(A, B)‖1 : ‖A‖1, ‖B‖1 ≤ 1}. (7)

Denoting by T (H)R ⊂ T (H) the real Banach space of all selfadjoint trace class operators
on H, one can prove the following result [10]:

Proposition 2 Every bilinear stochastic map (·) � (·) : T (H) × T (H) → T (H) is bounded
and its norm is such that ‖(·) � (·)‖(1) ≤ 2, whereas, for its restriction (·) � (·) to a bilinear
map on the real Banach space T (H)R, we have that ‖(·) � (·)‖(1) = 1. It follows that,
whenever a stochastic product (·) � (·) on T (H) is associative, the pair (T (H)R, (·) � (·))
is a real Banach algebra, since, for all A, B ∈ T (H)R, ‖A � B‖1 ≤ ‖A‖1‖B‖1.
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Remark 2 With regard to the previous proposition, note that the restriction of a stochastic
product (·) � (·) on T (H) to a bilinear map on T (H)R is well defined, because the fact that
the map (·) � (·) is bilinear and state-preserving implies that it is also adjoint-preserving;
hence, T (H)R � T (H)R ⊂ T (H)R. Also note that the inequality ‖(·) � (·)‖(1) ≤ 2 may not
be saturated. E.g., the algebra (T (H), (·) � (·)) may well be a Banach algebra too; see the
final claim of Theorem 1 below.

3 Explicit Construction of Stochastic Products: The Twirled Products

We will now show that a suitable group-theoretical construction leads us to an interesting
class of quantum stochastic products, the so-called twirled products [10]. A fundamental
mathematical tool for this construction are the so-called square integrable representations.

3.1 TheMain Tool: Square Integrable Representations

Let G be a locally compact, second countable Hausdorff topological group; in short, a l.c.s.c.
group. Denoting by U(H) the unitary group of a separable complex Hilbert space H, let
the map U : G → U(H) be an irreducible projective representation of G. The fact that the
representation U is supposed, in general, to be projective entails that

U (gh) = γ (g, h)U (g)U (h), (8)

where γ : G×G → T is a Borel function, themultiplier associatedwithU [16]. In particular,
we say that U is unitary if γ ≡ 1.

We will assume that the scalar product 〈·, ·〉 inH is conjugate-linear in its first argument,
and we fix a normalization μG of the left Haar measure [13, 16] on G. Then, for every pair
of vectors ψ, φ ∈ H, we can define the coefficient

κψφ : G � g �→ 〈U (g) ψ, φ〉 ∈ C, (9)

which is a bounded Borel function, and we consider, in particular, the distinguished set of
coefficient functions

A(U ) := {
ψ ∈ H : ∃φ ∈ H, with φ �= 0, s.t . κψφ ∈ L2(G, μG; C)

}
. (10)

The set A(U ) — consisting of all admissible vectors for the representation U — is a linear
subspace of H, that is either trivial or dense in H.

Definition 2 The projective representation U is called square integrable if A(U ) �= {0};
equivalently, if A(U ) is a dense linear subspace of H.

For further information on the theory of square integrable — unitary or, more generally,
projective — representations, the associated harmonic analysis, the numerous applications
and related topics, see [9, 17–25], and the bibliography therein.

Here, for the sake of simplicity, we will briefly outline a few facts, focusing, in particular,
on the case where the l.c.s.c. group G is unimodular [13]. Namely, we will suppose that the
Haar measure μG is both left and right invariant. In this case, if U : G → U(H) is a square
integrable projective representation, then it can be shown that all vectors inH are admissible;
i.e., A(U ) = L2(G, μG; C). Moreover, all coefficient functions — i.e., all functions of the
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form (9) — are square integrable w.r.t. the Haar measure μG and satisfy the orthogonality
relations

∫

G
dμG(g) κφη(g)κψχ (g) = cU 〈η, χ〉〈ψ, φ〉, ∀η, χ,ψ, φ ∈ H, (11)

where cU is a strictly positive constant depending on the representation U and on the given
normalization of μG (but not on the choice of η, χ,ψ, φ ∈ H).

Remark 3 Theorthogonality relations in thenon-unimodular case—consider, e.g., the square
integrable unitary representations of the semidirect product R � R

+∗ (or, also, the group
R � R∗), i.e., of the one-dimensional affine group, that are fundamental in wavelet analysis
(see [18, 20, 21, 24, 25], and references therein)—are somewhatmore complicated. Precisely,
the orthogonality relations of a square integrable representation U : G → U(H) involve, in
general, a positive selfadjoint operator DU onH (which is sometimes called theDuflo-Moore
operator [9, 20, 22–25]), whose domain coincides with the dense linear subspace A(U ) of
H, and that is bounded iff G is unimodular. In the latter case, DU is simply a positive multiple
of the identity, i.e.,

DU = dU Id, where dU ≡ c1/2U , (12)

whence we recover the simplified form (11) of orthogonality relations.

3.2 Remarkable Cases

In Section 6, explicit examples of quantum stochastic products will involve two remarkable
types of square integrable representations of (in both cases, unimodular) l.c.s.c. groups:

(T1) We will consider, at first, the case of a compact group G. As is well known [13],
such a group is always unimodular, and all its irreducible unitary representations are
finite-dimensional. They are square integrable, as well, since in the compact case the
Haar measure μG is finite. In this case, moreover, relations (11) are nothing but the
classical Schur orthogonality relations and, according to the Peter-Weyl theorem, ifμG

is normalized as a probability measure (μG(G) = 1), then cU = dim(H)−1 [13].
(T2) We will also consider the irreducible projective representations of the group R

n ×
R

n of phase-space translations — regarded as a direct product of the subgroups of
position (with n position degrees of freedom) and momentum translations — that are
characterized by a symplectic multiplier [26] γh. Explicitly, we have:

γh(q, p; q̃, p̃) := exp(i(q · p̃ − p · q̃)/2h), (q, p), (q̃, p̃) ∈ R
n × R

n . (13)

Here, the parameter h ranges over all nonzero real numbers and its modulus can be
regarded as Planck’s constant �; moreover, the product q · p̃ = q1 p̃1 + q2 p̃2 + · · · (or
p · q̃) should be regarded as a pairing between the vector q and the co-vector p̃. Those
genuinely projective representations are infinite-dimensional and square integrable,
and, for each fixed value of the parameter h, they form precisely a single unitary
equivalence class. It is worth observing that, from the physical point of view, one can
actually restrict to the positive values of h only. In fact, one can easily check that two
representations belonging, respectively, to the unitary equivalence classes associated
with h and−h are anti-unitarily— hence, physically— equivalent [25, 26]. It is clear,
moreover, that selecting a certain value of � ≡ h > 0 amounts to choosing suitable
physical units for Planck’s constant (i.e., the physical units of an action). An irreducible
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representation of the group R
n × R

n , with multiplier γ�, is usually called a (�-)Weyl
system [26].

3.3 The Twirled Products

Let us first summarize the main notations and assumptions for our construction:

• We suppose that G is a unimodular l.c.s.c. group, and that G admits square integrable
representations.

• Wedenote byB(G) theBorelσ -algebra ofG and byP(G) the set of all Borel probability
measures on G.

• Next, we select a square integrable projective representation U : G → U(H). The
assumption that U is square integrable cannot be dispensed with, because it ensures the
validity of Proposition 4 below [10], which is a fundamental step for our construction.

• For the sake of simplicity, it is convenient to suppose henceforth that the Haar measure
μG is normalized in such a way that cU = 1; see (11).

• The representationU induces an isometric representation G � g �→ SU (g) in the Banach
space T (H), i.e.,

SU (g)T := U (g)T U (g)∗, T ∈ T (H). (14)

The mapping
G × D(H) � (g, ρ) �→ ρg ≡ SU (g)ρ ∈ D(H) (15)

is the standard symmetry action [14, 15] of G on the convex set D(H) of density states.
AlthoughU is, in general, projective—see (8)— SU behaves as a group homomorphism:
SU (gh) = SU (g) SU (h).

• We further select a fiducial density operator υ ∈ D(H) and a measure � ∈ P(G). Let
� g (�g) be the left (right) g-translate of � ; i.e., for every g ∈ G and E ∈ B(G),

� g(E) := �(g−1E), �g(E) := �(Eg). (16)

E.g., � = δ ∈ P(G) is the Dirac measure at the identity e ∈ G.
• In the following, all integrals of operator-valued (precisely, T (H)-valued) functions on

G w.r.t. a probability measure should be regarded as Bochner integrals.

With our previous notations and assumptions, we have the following two results [10]:

Proposition 3 For every probability measure μ ∈ P(G), the linear map

μ[U ] : T (H) � T �→
∫

G
dμ(g) (SU (g)T ) ∈ T (H) (17)

is both positive and trace-preserving. Therefore, we can define the quantum stochastic map

D(H) � ρ �→ μ[U ]ρ ∈ D(H). (18)

Proposition 4 For every density state ρ ∈ D(H), the mapping

νρ,υ : B(G) � E �→
∫

E
dμG(g) tr

(
ρ(SU (g)υ)

) ∈ R
+ (19)

belongs to P(G).
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Taking into account the above facts, we can now define a binary operation on D(H),
associated with the triple (U , υ,�); i.e., we set

ρ
υ	
�

σ := (
(νρ,υ � �)[U ])σ =

∫

G
d(νρ,υ � �)(g) (SU (g)σ ), ∀ρ, σ ∈ D(H). (20)

Let us analyze this definition. First, we have considered the fact that νρ,υ is a probability
measure associated with the density operators ρ and υ (Proposition 4). Then, we have formed
the convolution μ ≡ νρ,υ � � ∈ P(G) of νρ,υ with the previously selected probability
measure � . Eventually, we have applied the stochastic map (νρ,υ � �)[U ] — constructed
according to Proposition 3 — to the density state σ .

We can put this product in a more explicit form:

ρ
υ	
�

σ =
∫

G
dμG(g)

∫

G
d�(h) tr

(
ρ(SU (g)υ)

)
(SU (gh)σ ). (21)

Definition 3 We call the binary operation on D(H) defined by (20) the twirled product
generated by the triple (U , υ,�), where U is called the inducing representation of the
twirled product, the states ρ, υ and σ are called the input, the probe and the whirligig,
respectively, and � ∈ P(G) is called the smearing measure.

E.g., with � = δ in (21), we get

ρ
υ	 σ ≡ ρ

υ	
δ

σ =
∫

G
dμG(g) tr

(
ρ(SU (g)υ)

)
(SU (g)σ ), (22)

namely, the un-smeared twirled product generated by the pair (U , υ) (see Section 5).

4 Banach Algebra Structure, Covariance, Invariance and Equivariance

By the following results (see [10] for their proof), the twirled product turns out to satisfy our
initial assumptions (A1)–(A6); see Section 1. The further assumption (A7), concerning the
case where G = R

n × R
n , will be discussed in Section 6.

Theorem 1 The twirled product

(·) υ	
�

(·) : D(H) × D(H) → D(H), (23)

generated by the triple (U , υ,�) — for any square integrable projective representation
U : G → U(H), any probe υ ∈ D(H) and any smearing measure � ∈ P(G) — is
an associative quantum stochastic product. Extending this product to a state-preserving
bilinear map on the space T (H) of trace class operators, one obtains a Banach algebra; i.e.,
a stochastic Banach algebra. In particular, in the case where the l.c.s.c. group G is abelian,
this algebra is commutative.

Wewill now argue that every twirled product enjoys a natural property of covariancew.r.t.
the action of the relevant group G on the input state of the product.

Besides, two further properties regarding, instead, families of twirled products — i.e.,
invariance and equivariance — are also satisfied. To define these properties, we consider a
G-space [16] X endowed with a (left) group action

(·)[·] : G × X � (g, x) �→ g[x] ∈ X . (24)
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Definition 4 Let the points of X label a family of quantum stochastic products, namely,
{
(·) x	 (·) : D(H) × D(H) → D(H)

}

x∈X
. (25)

This family is called invariant w.r.t. the action (·)[·] : G × X → X if

ρ
x	 σ = ρ

g[x]	 σ, ∀g ∈ G, ∀x ∈ X , ∀ρ, σ ∈ D(H). (26)

Moreover, we say that the family of products (25) is right inner equivariant w.r.t. the pair
((·)[·] : G × X → X , U ), where U : G → U(H) is a projective representation, if

ρ
x	 (SU (g−1)σ ) = ρ

g[x]	 σ, ∀g ∈ G, ∀x ∈ X , ∀ρ, σ ∈ D(H). (27)

Theorem 2 The twirled product generated by the triple (U , υ,�) is left-covariant w.r.t. the
representation U, namely, it satisfies the relation

ρg
υ	
�

σ =
(
ρ

υ	
�

σ
)

g
, ∀g ∈ G, ∀ρ, σ ∈ D(H), (28)

where we have set ρg ≡ SU (g)ρ.
Moreover, the family of twirled products

{
(·) υ	

�
(·) : υ ∈ D(H), � ∈ P(G)

}
(29)

is invariant w.r.t. the group action (·)[·] : G × (D(H) × P(G)) → D(H) × P(G), where

g[(υ,�)] := (υg ≡ SU (g)υ,� g); (30)

namely, we have:

ρ
υ	
�

σ = ρ
υg	
� g

σ, ∀g ∈ G, ∀ρ, υ, σ ∈ D(H), ∀� ∈ P(G). (31)

Finally, the family of twirled products (29) is right inner equivariant w.r.t. the pair
((·)[·], U ), where this time the group action (·)[·] : G × (D(H)×P(G)) → D(H)×P(G)

is of the form
g[(υ,�)] := (υ,�g); (32)

namely, we have:

ρ
υ	
�

σg−1 = ρ
υ	

�g
σ, ∀g ∈ G, ∀ρ, υ, σ ∈ D(H), ∀� ∈ P(G). (33)

5 Physical Contents of the Construction

Let us now briefly comment about the physical meaning of some mathematical objects used
in the construction of twirled products:

1. The linear map μ[U ] : T (H) → T (H) defined by (17) in Proposition 3—which is often
called twirling (super-)operator —plays a remarkable role in the theory of open quantum
systems and quantum decoherence [27–32].
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2. Taking into account that quantum measurements can be described in terms of positive
operator-valued measures (POVMs, or quantum observables) and of quantum instru-
ments [7], one can easily check that, for every probe υ ∈ D(H), the mapping

B(G) � E �→
∫

E
dμG(g) (SU (g)υ) =: Eυ(E), (34)

where U is square integrable, is a group-covariant quantum observable — see [10,
33], and references therein — namely, a POVM which is covariant w.r.t. the projective
representation U :

Eυ(gE) = SU (g)Eυ(E), ∀g ∈ G, ∀E ∈ B(G). (35)

3. By the preceding point, denoting by L1(G)+n the convex set of all normalized positive ele-
ments of L1(G) (regarded as probability densities w.r.t. the Haar measure), the probability
density

pρ,υ = tr
(
ρ(SU (·)υ)

) ∈ L1(G)+n , (36)

that is involved in the construction of the un-smeared twirled product (20), is nothing but
the probability distribution on G of the quantum observable Eυ w.r.t. the state ρ. Namely,
the Borel function pρ,υ is the Radon-Nikodym derivative of the probability measure
νρ,υ : B(G) � E �→ ∫

E dμG(g) tr
(
ρ(SU (g)υ)

) ∈ R
+ — see Proposition 4 — w.r.t. the

Haar measure μG .
4. For every Borel set E ∈ B(G), the map I υ,σ

E : T (H) → T (H) defined by

I υ,σ
E T :=

∫

E
dμG(g) tr

(
T (SU (g)υ)

)
(SU (g)σ ), T ∈ T (H) (37)

— where U is square integrable — is a quantum operation [7]; in particular, for E = G, a
trace-preserving, positive linear map (i.e., a linear stochastic map, or quantum channel).
The associated mapping

I υ,σ
(·) : B(G) � E �→ I υ,σ

E (38)

is a quantum instrument; more precisely, a U -covariant quantum instrument based on
G [10, 34], i.e.,

I υ,σ
gE (SU (g)T ) = SU (g)

(
I υ,σ

E T
)
, ∀g ∈ G, ∀E ∈ B(G), ∀T ∈ T (H). (39)

5. A connection between the quantum instrument I υ,σ
(·) and the covariant POVM (34) is

provided by the following relation:

tr(ρEυ(E)) = tr
(
I υ,σ

E ρ
)
, ∀ρ, υ, σ ∈ D(H), ∀E ∈ B(G). (40)

Namely, for every whirligig σ , the quantum instrument I υ,σ
(·) is compatible [7] with

the POVM Eυ associated with the same probe υ. From the physical point of view, this
observation entails that the instrument and the POVM describe the same measurement
outcome probabilities. More precisely, every Eυ -compatible quantum instrument I υ,σ

(·) ,
with σ ∈ D(H), describes a certain way of measuring the observable Eυ , which produces
a certain type of state transformation depending on the whirligig σ .

6. Clearly, the un-smeared twirled product generated by the pair (U , υ) can be recovered
from the quantum operation (37) simply putting E = G; i.e., it can be expressed in terms
of the quantum channel I υ,σ

G :

ρ
υ	 σ = I υ,σ

G ρ. (41)
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7. Interestingly, the associativity of the (un-smeared) twirled product entails the following
relation involving the composition of the pair of quantum channels I υ,ρ

G and I υ,σ
G :

I υ,σ
G ◦ I

υ,ρ
G = I υ,τ

G , where τ = ρ
υ	 σ. (42)

8. In the case where � �= δ, the quantum observable Eυ defined by (34) is replaced with the
smeared observable Eυ|� = Eυ � � ; i.e., with the convolution of the covariant POVM
Eυ with the smearing measure � :

Eυ � �(E) :=
∫

G
d�(h) Eυ(Eh) =

∫

G
d�(h)

∫

E
dμG(g) (SU (gh−1)υ). (43)

Accordingly, the probability density pρ,υ is replaced with the smeared density

pρ,υ|� = pρ,υ � � =
∫

G
d�(h) pρ,υ((·)h−1). (44)

9. A similar smearing occurs, in the case where � �= δ, for the quantum instrument
I υ,σ

(·) : B(G) � E �→ I υ,σ
E . Explicitly, the un-smeared instrument I υ,σ

(·) is replaced
with the following:

I
υ|�,σ

(·) = I υ,σ
(·) � � =

∫

G
d�(h) I υ,σ

Eh−1 . (45)

6 Two Remarkable Examples

We will now focus on the explicit examples (T1) and (T2) considered in Section 3.2.

6.1 The Compact Case: Stochastic Products in Any Finite Dimension

Suppose that U : G → U(H) is an irreducible unitary representation of a compact group.
Then, in relation (8), γ ≡ 1— i.e., the multiplier is trivial— and dim(H) = N < ∞. As pre-
viously observed, the representation U is square integrable, and choosing the normalization
of the Haar measure so that μG(G) = N, by the Peter-Weyl theorem we have that cU = 1 in
the Schur orthogonality relations (11). Therefore, the twirled product generated by the triple
(U , υ,�), for some υ ∈ D(H) and � ∈ P(G), is precisely of the form (21). If we choose,
in particular, the input, the probe or the whirligig of the twirled product to be the maximally
mixed state [32] — namely, the unit-trace multiple of the identity � := N−1Id ∈ D(H) —
we obtain the following interesting relations [10]:

�
υ	
�

σ = �, ρ
�	
�

σ = �, ρ
υ	
�

� = �, ∀ρ, υ, σ ∈ D(H), ∀� ∈ P(G). (46)

Note that, according to the second of these relations, by choosing � as a probe we trivialize
the stochastic product; i.e., the associated twirled product does not depend on its arguments.
Similarly, by choosing the invariant measure � ≡ νG = N−1μG ∈ P(G) as a smearing
measure, one obtains a trivial stochastic product too [10]:

ρ
υ	
νG

σ = �, ∀ρ, υ, σ ∈ D(H). (47)
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We stress that twirled products exist for every finite Hilbert space dimension. In fact, using,
e.g., the irreducible unitary representations of the group SU(2), one can construct nontrivial
products for dim(H) ≥ 2.

6.2 Phase-Space Translations: The Quantum Convolution

As anticipated, the twirled product satisfies our final ansatz (A7) in Section 1, as well. To
illustrate this claim, let G be the group of translations on phase space with, say, n position
degrees of freedom (i.e., G = R

n × R
n). In this case, the relevant Hilbert space H will be

identifiedwith L2(Rn), and—putting� ≡ h = 1— the (genuinely projective) representation
U is the Weyl system [24–26, 35]:

(
U (q, p) f

)
(q̃) := e−iq·p/2eip·q̃ f (q̃ − q), (q, p) ∈ R

n × R
n . (48)

Otherwise stated, in terms of the standard (vector) position and momentum operators q̂ and
p̂ in L2(Rn), we have:

U (q, p) = e−iq·p/2eip·q̂e−iq· p̂. (49)

This irreducible representation is characterized by the multiplier γ : R
2n × R

2n → T —
with γ (q, p; q̃, p̃) = exp(i(q · p̃ − p · q̃)/2) — and is square integrable. Moreover, if we set
L2(G) = L2(Rn × R

n, (2π)−ndnqdn p; C), we have that cU = 1. Therefore, in this case we
get the following expression for the twirled product:

τ = ρ
υ	
�

σ =
∫

dnqdn p

(2π)n
tr
(
ρ(eip·q̂e−iq· p̂υ eiq· p̂e−ip·q̂)

)

×
∫

d�(q̃, p̃)
(
ei(p+ p̃)·q̂e−i(q+q̃)· p̂σ ei(q+q̃)· p̂e−i(p+ p̃)·q̂)

. (50)

This product is called the phase-space quantum stochastic product [10]. By the last claim
of Theorem 1, it is commutative, because it arises from an abelian group. E.g., by choosing
the measure � ≡ δ (the Dirac measure at the origin), we get the un-smeared phase-space
quantum stochastic product, or quantum convolution [10]:

τ = ρ
υ	 σ

=
∫

dnqdn p

(2π)n
tr
(
ρ(eip·q̂e−iq· p̂υ eiq· p̂e−ip·q̂)

)(
eip·q̂e−iq· p̂σ eiq· p̂e−ip·q̂)

. (51)

Endowed with this product, the trace class T
(
L2(Rn)

)
becomes a Banach algebra, the

so-called quantum phase-space convolution algebra associated with the probe υ.

6.3 The Quantum Convolution in Terms ofWigner Distributions

The reader will have noticed that both the commutativity of the product (51), as well as
the adopted term of ‘quantum convolution’, do not emerge clearly from its expression. To
properly clarify this point, we can then suitably re-elaborate this expression in terms of the
Wigner distributions [9, 18, 24, 25, 35–38] Wρ , Wυ , Wσ , Wτ associated, respectively, with
the states ρ (the input), υ (the probe), σ (the whirligig) and τ (the output).

Setting Ŵυ(x) := Wυ(−x), x ≡ (q, p) ∈ R
2n , one can derive the following expression:

Wτ (z) =
∫

d2n x

( ∫
d2n y Wρ(y) Ŵυ(x − y)

)
Wσ (z − x), x, y, z ∈ R

2n . (52)
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It is now clear that

• On the r.h.s. of (52), we can note a double convolution of Wigner ‘quasi-probability’
distributions.

• The function Wυ — the Wigner distribution of the probe state υ — here plays a peculiar
role that has no natural parallel in the classical case.

• Moreover, the function (q, p) �→ ∫
dnq̃dn p̃ Wρ(q̃, p̃) Ŵυ(q − q̃, p − p̃) is a genuine

probability distribution w.r.t. the Lebesgue measure on R
n × R

n (whereas a Wigner
distribution, in general, is not).

• If we put, say, n = 1 and we take, as a probe υ, the (pure) Gaussian state |ψ〉〈ψ |,
with ψ(q) = (2π)−1/4e−q2/4 — recall that the associated Wigner distribution is of the
form Wυ(q, p) ≡ Wψ(q, p) = π−1 e−(q2+p2) — we obtain the following probability
distribution on phase space:

(
(q, p) �→ Qρ(q, p) := 1

π

∫
dq̃d p̃ Wρ(q̃, p̃) e−(q−q̃)2−(p− p̃)2

)
∈ L1(R×R)+n . (53)

• Recall thatQρ is theHusimi-Kano function of the input state ρ [36]. Therefore, expressed
in terms of functions on phase space, the quantum convolution with the Gaussian probe
υ ≡ |ψ〉〈ψ | is in the form of a convolution on the group of phase-space translations:

Wτ (q, p) =
∫

dq̃d p̃ Qρ(q̃, p̃)Wσ (q − q̃, p − p̃), with τ = ρ
|ψ〉〈ψ |	 σ. (54)

6.4 The Crucial Role of the Probe State: FromWigner Distributions to Quantum
Characteristic Functions

Having unveiled the nature of the quantum convolution, it is now worth highlighting the
essential role played by the the probe υ in this product. To this end, note that the twirled
product admits a very simple form once expressed in terms of the covariant symbols of the
states ρ, υ and σ . Let us clarify this point.

Given a square integrable projective representation U : G → U(H) — where we still
assume that the l.c.s.c. group G is unimodular — and a trace class operator T ∈ T (H), the
(covariant) symbol T̆ of T is a complex function on G defined by (recall formula (12))

T̆ (g) := d−1
U tr(U (g)∗T ). (55)

We can write this function as T̆ = DT , where D : S(H) → L2(G) ≡ L2(G, μG; C) is an
isometry that maps the Hilbert space S(H) of Hilbert-Schmidt operators — endowed with
the Hilbert-Schmidt scalar product 〈·, ·〉HS : S(H)×S(H) � (S, T ) �→ tr(S∗T ) =: 〈S, T 〉HS
— into L2(G). This isometry can be thought of as a dequantization map, and the operator T
can be reconstructed back from its symbol T̆ via the quantization map Q = D∗ : L2(G) →
S(H) [24].

In the case where G is the vector group R
n × R

n and U is the Weyl system, the map
D is related to the Wigner transform [9, 18, 24, 25, 35]. Given a density state ρ ∈ D(H),
with H = L2(Rn), the associated symbol ρ̆ is also known as the quantum characteristic
function of ρ. In fact, ρ̆ is the (symplectic) Fourier transform of the Wigner function Wρ ,
in analogy with the ‘classical’ characteristic function of a probability measure on a l.c.s.c.
abelian group [9, 25, 37, 38].
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Precisely, for every � ∈ P(G), G = R
n × R

n , one can identify the characteristic
function of � — its Fourier-Stieltjes transform �̂ : Ĝ → C, where Ĝ is the dual of G à la
Pontryagin [13]—with �̆ : R

n×R
n → C,where �̆ (q, p) = ∫

d�(q̃, p̃) exp(i(q· p̃−p·q̃)).
At this point, with L2(G) = L2(Rn × R

n, (2π)−ndnqdn p; C), the twirled product gen-
erated by the triple (U , υ,�) — in terms of the characteristic function �̆ of the smearing
measure � and of the covariant symbols (q, p) �→ ρ̆(q, p) := tr(U (q, p)∗ρ), ῠ, σ̆ of the
states ρ, υ, σ (input, probe, whirligig) — takes an elementary form, i.e.,

(
ρ

υ	
�

σ
)�

(q, p) = �̆ (q, p)ρ̆(q, p)ῠ(q, p)σ̆ (q, p) =:
(
ρ̆

ῠ
�
�̆

σ̆
)
(q, p). (56)

The r.h.s. of this expression defines aweighted pointwise product on phase space. Clearly, the
input and the whirligig can be interchanged, since this product is manifestly commutative.
Once again, for � = δ — equivalently, for �̆ ≡ 1 — we say that the weighted pointwise
product is un-smeared.

Remark 4 It is interesting to compare the (say, un-smeared) weighted pointwise product,
realizing the phase-space stochastic product in terms of characteristic functions, with the —
non-commutative and, in the case of two generic states ρ and σ , un-physical — operator
product ρσ , that, expressed in terms of the associated characteristic functions, has the form
of a twisted convolution à la Grossmann-Loupias-Stein [24, 39]:

(
D(ρσ )

)
(q, p) = (

ρ̆�̂σ̆
)
(q, p)

:=
∫

dnq̃dn p̃

(2π)n
ρ̆(q̃, p̃)σ̆ (q − q̃, p − p̃) exp(i(q · p̃ − p · q̃)/2). (57)

In hindsight, theweighted pointwise product (56)may be regarded as a direct way to define
a commutative stochastic product. Indeed, one can show that the standard pointwise product
of two quantum characteristic functions is not, in general, a function of the same kind, but
the pointwise product of a ‘classical’ characteristic function on phase space — namely, the
Fourier-Stieltjes transform of a probability measure on the group R

n × R
n — by a quantum

characteristic function, is a function of the latter type; see [37, 38]. Furthermore, for every
pair of density states ρ, υ ∈ D(H), ρ̆ῠ is a classical characteristic function; namely, the
(symplectic) Fourier-Stieltjes transform of the probability measure νρ,υ on R

n × R
n , with

dνρ,υ(q, p) = (2π)−n tr
(
ρ(SU (q, p)υ)

)
dnqdn p. (58)

Indeed, considering the convolution Wρ � Ŵυ of Wρ with Ŵυ — Ŵυ(q, p) := Wυ(−q,−p)

—we have that

(
ρ̆ῠ

)
(q, p) =

∫
dnq̃dn p̃

(2π)n
tr
(
ρ(ei p̃·q̂e−iq̃· p̂υeiq̃· p̂e−i p̃·q̂)

)
exp(i(q · p̃ − p · q̃))

=
∫

dnq̃dn p̃
(
Wρ � Ŵυ

)
(q̃, p̃) exp(i(q · p̃ − p · q̃)). (59)

In conclusion, the weighted product (ρ̆, σ̆ ) �→ �̆ ρ̆ῠσ̆ may be thought of as the pointwise
product of two classical characteristic functions — �̆ and ρ̆ῠ —which is still a function of
this type (i.e., the Fourier-Stieltjes transform of the convolution of two probability measures),
multiplied (again pointwise) by the quantum characteristic function σ̆ , which eventually
provides a function of the latter kind. We stress that exploiting the quantum characteristic
function ῠ of the probe υ, as a suitable ‘weight’, in the pointwise product cannot be dispensed
with if one wants to achieve a state-preserving binary operation.
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6.5 Quantizing theWeighted Pointwise Product

We close our analysis of the phase-space stochastic product with the observation that it can
be obtained by quantizing the weighted pointwise product. In addition, we show that the
purity of the output state of the product cannot exceed the purity of the input, the probe and
the whirligig; precisely, we have:

Proposition 5 The phase-space stochastic product admits the expression

τ ≡ ρ
υ	
�

σ =
∫

dnqdn p

(2π)n
�̆ (q, p)ρ̆(q, p)ῠ(q, p)σ̆ (q, p) e−iq·p/2eip·q̂e−iq· p̂, (60)

where a weak integral is understood. Moreover, for the purity of the states τ , ρ, υ and σ the
following inequality holds:

tr(τ 2) ≤ min
{
tr(ρ2), tr(υ2), tr(σ 2)

}
. (61)

Proof ThemapQ :=D∗ : L2(G)→S(H), where L2(G) = L2(Rn ×R
n, (2π)−ndnqdn p; C)

and H = L2(Rn), is of the form [24]

f �→
∫

dnqdn p

(2π)n
f (q, p) e−iq·p/2eip·q̂e−iq· p̂ (weak integral). (62)

Hence, formula (60) follows directly from the expression (56). Observe, moreover, that, since
the dequantization map D : S(H) → L2(G) is an isometry, we have:

tr(τ 2) = 〈τ, τ 〉HS =
∫

dnqdn p

(2π)n
|�̆ (q, p)|2|ρ̆(q, p)|2|ῠ(q, p)|2|σ̆ (q, p)|2. (63)

Here, the characteristic function �̆ of the probability measure � is such that |�̆ (q, p)| ≤
|�̆ (0)| = 1 and, analogously, we have that |ρ̆(q, p)| ≤ 1, |ῠ(q, p)| ≤ 1, |σ̆ (q, p)| ≤ 1.
Then, relation (61) follows immediately. ��

7 Conclusions and Prospects

We have presented a notion of stochastic product of two quantum states as a binary operation
on the convex set of density operators that preserves the convex structure. We have also
shown that, by a group-theoretical construction, it is possible to achieve a class of associative
stochastic products, the so-called twirled products. The twirled products exist for every
Hilbert space dimension and admit a remarkable physical interpretation in the framework
of quantum measurement theory and quantum information. In the case where the relevant
group involved in the construction is the group of phase-space translations, one obtains
a commutative stochastic product that may be regarded as a quantum counterpart of the
‘classical’ convolution product on the same group.

Interestingly, a quantum stochastic product, together with the standard operator product,
gives rise, in a natural way, to an abstract notion of stochastic H∗-algebra [10], which is
now under study. The extension of the group-theoretical construction underlying the twirled
products to the casewhere the relevant group is, in general,not unimodular, and the expression
of these generalized twirled products in terms of the covariant symbols of quantum states is
also work in progress.
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