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Abstract 
We connect two key concepts in quantum information: compatibility and divisibility of 
quantum channels. Two channels are compatible if they can be both obtained via marginali-
zation from a third channel. A channel divides another channel if it reproduces its action by 
sequential composition with a third channel. (In)compatibility is of central importance for 
studying the difference between classical and quantum dynamics. The relevance of divisibil-
ity stands in its close relationship with the onset of Markovianity. We emphasize the simu-
lability character of compatibility and divisibility, and, despite their structural difference, 
we find a set of channels – self-degradable channels – for which the two notions coincide. 
We also show that, for degradable channels, compatibility implies divisibility, and that, for 
anti-degradable channels, divisibility implies compatibility. These results provide physical 
insights and motivate further research on these classes of channels and shed new light on the 
meaning of these two largely studied notions.

Keywords  Compatibility of channels · Divisibility of channels · Quantum dynamics

1  Introduction

Quantum theory is so far the best available framework to describe the microscopic world. 
It consists of a normative set of assumptions and rules designed to deal with phenom-
ena with no classical explanation. Its predictive power is undeniable. Nonetheless, it also 
opens up room for puzzling behaviours having no classical counterpart [1–5]. The root 
cause of all these remarkably odd phenomena is still unclear [6], and even quantum-to-
classical and classical-to-quantum transitions are yet to be fully understood – although, 
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from a dynamical perspective, there have been robust proposals for obtaining such under-
standing [7–9].

What is undebatable, though, is that incompatibility of observables is a key feature of 
quantum theory [10, 11]. In this work we focus on the generalization of this notion to quan-
tum channels. Intuitively, compatibility between two quantum channels can be seen as on-
demand simulability of those channels via a third, larger CPTP map [12–18] - in much the 
same way that joint measurability can be seen as on-demand simulabililty [10, 19, 20]. For 
quantum maps, this third channel contains, at all times, the information about the two orig-
inal maps. More precisely, we say that two channels are compatible when their individual 
action can be recovered from a third quantum map via marginalization (Fig. 1) [15]. It is 
within this perspective that we associate compatibility and simulability.

Our second main concept, divisibility, has a long history within the open quantum 
dynamics community [21–24], where it is traditionally equaled to memoryless, or Mark-
ovian, processes [25–27]. Classical Markovian processes are governed by the Chapman-
Kolmogorov equations and it turns out that a divisible dynamics is described by a func-
tional expression that satisfies a similar set of equations [28]. More recently, it has become 
clearer that memoryless quantum processes deserve a different and less involved treatment 
[29, 30] and that divisibility makes no explicit reference to memory. We say that a quantum 
channel Ψ divides another channel Φ when it is possible to find a third CPTP map 𝜃 such 
that Φ = 𝜃 ∘Ψ, where ∘ denotes sequential composition (Fig. 2). In this sense, it is clear that 
divisibility of maps should not be seen as characterizing memory, but rather as a signal of 
how one can simulate the action of a given map with the aid of two others.

So far we have emphasized the simulability aspects exhibited by compatibility and 
divisibility. Undeniably, there are many other intriguing features associated with both con-
cepts [10, 31, 32] , however, in this work, it is exactly the idea that they allow for some sort 

Fig. 1   Schematic box-represen-
tation of compatible maps ψB|A 
and ϕC|A. Their compatibilizer is 
the larger black box representing 
𝜃BC|A (colours online)
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of simulability that we want to put forward and use as a motivation to bring them together. 
Compatibility amounts for the existence of a third quantum channel holding all the neces-
sary information to simulate the original channels, whereas divisibility says that one of the 
maps can be simulated as a post-processing of the other. In both it is clear the existence of 
an external channel whose use can reveal the action of (at least one of) the original chan-
nels. Simply put, the former can be seen as a sort of simulability in parallel, and the latter 
as expressing a sequential-like simulability.

Even in the light of this shared simulation feature, at a first glance, one may consider 
compatibility and divisibility as radically different concepts, with radically distinct body of 
applications. Our contribution comes to show that this is not entirely the case. Depending 
on the physical properties of the involved channels and on how the environment exchanges 
information with the evolving system, it might be the case that compatibility implies divis-
ibility, or that divisibility implies compatibility, or that compatibility equals divisibility. 
To obtain a full equivalence, we will have to touch on a third and unexpected ingredient: 
self-degradable channels [33–36]. These are channels that allow one to obtain information 
about the evolution of the system looking only at the evolution of the environment and vice 
versa (see Section 3.1 for the precise definition).

In recent years, (self-)degradable channels have been extensively studied in the litera-
ture [34, 35, 37, 38]. The main reason of their importance is that they have a simple math-
ematical form that allows one to compute (sometimes even with a closed, analytic expres-
sion) the quantum and private classical capacities [34, 35]. Our contribution highlights that 
they are not only a result of mathematical convenience, but they are the channels for which 
the physical notions of compatibility and divisibility are related. As such, they are channels 
describing a dynamics with specific physical features.

This paper is organized as follows. Section 2 presents a list with the key concepts we 
want to connect in our work. Our main findings are in Section 3, where we establish that 

Fig. 2   Schematic arrow-
representation for ψB|A dividing 
ϕC|A. The quotient map 𝜃C|B is 
represented by the black arrow 
from H

B
 to H

C
 and verifies ϕC|A 

= 𝜃C|B ∘ ψB|A (colours online)
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divisibility equals compatibility for self-degradable channels. Degradability is somehow 
a necessary and sufficient condition for the equivalence, and we comment why in sub-
Section 3.2. A physical intuition behind our results can be found in sub-Section 3.3. We 
conclude our main exposition approaching limitations and further works in Section 4. We 
have also prepared a few appendices to make the text richer and easier to read. Appendix 
A comes with an expanded discussion of all the definitions we are using in this work - 
it is intended for an audience not familiarized with the concepts we are dealing with. In 
the Appendix B present three paradigmatic examples. First, we show that plain divisibility 
does not imply compatibility. Secondly, we show that compatibility also does not imply 
divisibility. Thirdly, we explore how poor a resource theory of compatibility would be. The 
last appendix, Appendix C explains in more details why divisibility and compatibility are 
not connected in general.

2 � Main Definitions

In this preparatory section, we collect the key definitions we need to establish a bridge 
between compatibility and divisibility. Namely, we give precise definitions for what we 
mean by divisibility, compatibility and degradability. A more in-depth discussion about 
these concepts can be found in Appendix A.

Definition 2.1 (Divisibility for two channels)  Let ψB|A and ϕC|A be two cptp maps. We 
say that ψB|A dividesϕC|A whenever there exists another cptp map 𝜃C|B such that

We will refer to 𝜃C|B as the quotient map.

Remark 1  Definition 2.1 says that whenever ψB|A divides ϕC|A, it is possible to recover the 
action of the latter through the action of the former - given we have access to the quotient 
map 𝜃B|C. In other words, we can say that ϕC|A can be simulated through ψB|A.

Definition 2.2 (Compatibility)  Let ψB|A and ϕC|A be two cptp maps. We say that ψB|A is 
compatible with ϕC|A whenever there exists another cptp map

such that, for every ρA in D(HA) , the following equations

hold true. The channel 𝜃BC|A is called the compatibilizer for ψB|A and ϕC|A. When it is 
not possible to find a channel satisfying (3) and (4) above, we say that ψB|A and ϕC|A are 
incompatible.

(1)�C|A = �C|B◦�B|A.

(2)𝜃BC|A ∶ D(HA) → D(HB)⊗D(HC)

(3)�B|A(�A) = TrC

[
�BC|A(�A)

]

(4)�C|A(�A) = TrB

[
�BC|A(�A)

]
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Remark 2  Simply put, Definition 2.2 says that whenever two channels are compatible there 
exists a larger channel that can be used to recover the action of the original ones. A bit 
more precisely, if 𝜃BC|A is a compatibilizer for ψB|A and ϕC|A, then 𝜃BC|A carries simultane-
ously the information of how ψB|A and ϕC|A act on D(HA) . Finally, one should notice a clear 
asymmetry between defs. 2.2 and 2.1. Whenever ψB|A is compatible with ϕC|A, it is immedi-
ate that ϕB|A is also compatible with ψC|A. However, the same argument does not hold true 
for divisibility, as it might be the case that ψB|A divides ϕC|A but not the other way around 
- see Appendix B.

Definition 2.3 (Complementary Channel)  Let ψB|A be a quantum channel and

be its Lindblad-Stinespring representation, where V ∶ HA → HB ⊗HE is an isometry. 
The complementary channel of ψB|A, with respect to the dilation V ∶ HA → HB ⊗HE , is 
defined as:

where the trace now is performed over HB.

Remark 3  Note we are defining complementary channels with respect to a particular rep-
resentation. A given quantum channel ψB|A might end up being associated with many com-
plementary channels, as distinct dilations may lead to distinct complementary channels. In 
our work, the complementary channel to a given quantum channel will mean that we have 
tacitly assumed a particular Lindblad-Stinespring representation. We comment further on 
this issue in Appendix A.

Definition 2.4 (Degradable Maps)  A quantum channel ψB|A is called degradable when 
there exists another quantum channel λE|B such that

where �c
E|A is complementary to ψB|A. On the other hand, when �c

E|A is degradable, the orig-
inal map ψB|A is called anti-degradable.

Remark 4  We discuss degradability and anti-degradability in more details in Appendix A - 
they have been thoroughly studied in the past and are crucial for estimating channel capac-
ity bounds. For the time being, one can understand degradable maps as that class of quan-
tum channels that divides their own complementary channels - see Fig. 6. Moreover, these 
properties are independent of the particular complementary channel considered

Definition 2.5 (Self‑Degradable Maps)  A channel ψB|A is self-degradable (or self-com-
plementary) whenever it coincides with its complementary map. More precisely,

with D(HB) ≃ D(HE).

(5)�B|A(⋅) = TrE

[
V(⋅)V∗

]

(6)�c
E|A(⋅) = TrB

[
V(⋅)V∗

]
,

(7)�c
E|A = �E|B◦�B|A,

(8)�B|A = �c
E|A,
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3 � Main Results

This section contains our main results. Here we establish that the notion of degradabil-
ity is preponderant to connect divisibility and compatibility. Simply put, our result says 
that for self-degradable channels, compatibility implies divisibility, as well as divisibil-
ity implies compatibility.

The fact we need an auxiliary element to connect compatibility and divisibility may 
not be entirely clear at this stage. But it is the case that, with no further assumptions, 
neither divisibility implies compatibility nor vice-versa - see Appendices ?? and ??. 
Remarkable is that the necessary and somehow sufficient conditions for equivalence 
coalesces onto the notion of degradability, as we discuss in sub-Section 3.2.

We have already introduced the concept of degradability for quantum channels 
[33–36] in the previous section. Section 3.1 contains our main results. Section 3.2 anal-
yses the possible reasons for the success in connecting compatibility and divisibility 
when restricted to degradable channels. In sub-Section 3.3, we give a physical interpre-
tation of our results.

3.1 � (Anti)Degradable and Self‑degradable Channels ‑ Connecting Divisibility 
with Compatibility

We start off this section stating the main result that makes possible to connect divisibil-
ity with compatibility [13].

Theorem  3.1 (Compatibility and Ordering)  Two quantum channels ϕC|A and ψB|A are 
compatible if and only if there exists a cptp map 𝜃C|E such that �C|A = �C|E◦�

c
E|A.

This theorem is not new and has already appeared in the literature before - see ref. 
[13]. Simply saying, it establishes a connection between compatibility and the order-
ing determined by the composition of maps. In Appendix A we provide an alternative 
proof for this result in a language that matches with the present work and that is poten-
tially more familiar to a broader community of quantum information. We also comment 
on how the compatibility as an ordering relationship does not accept catalysis - being, 
therefore, a poor resource theory (see Appendix B).

Technically speaking, the most natural way to leverage the content of Theorem 3.1 
consists of demanding that ψB|A and its complement �c

E|A verify a composition rule. This 
is exactly the key assumption we adopt to finally put together the concepts of divisible 
maps and compatibility. At a first sight, that class of maps might seem too restrictive 
or merely an exercise of mathematical abstraction but, as it turns out, these maps have 
been thoroughly investigated in the literature [35, 38–40], or more recently in [41], and 
have a concrete physical meaning, as we will discuss in Section 3.2.

Given our purposes, we have all the ingredients needed for our main equivalence to 
hold. The proof is going to involve a combination of Theorem 3.1 and Definition 2.4.

Theorem 3.2  Let ψB|A and ϕC|A be two quantum channels. The following statements hold 
true:

International Journal of Theoretical Physics (2022) 61: 189Page 6 of 24189
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i)	 If ψB|A is degradable and ψB|A and ϕC|A are compatible, then ψB|A divides ϕC|A.
ii)	 If ψB|A is anti-degradable and ψB|A divides ϕC|A, then ψB|A and ϕC|A are compatible.

Proof  Initially, let us assume that ψB|A and ϕC|A are compatible. In this case, Theorem 3.1 
ensures that there exists 𝜃C|E such that �C|A = �C|E◦�

c
E|A . Now, because ψB|A is degradable, 

it is possible to write down its complementary map as �c
E|A = �E|B◦�B|A , with λE|B a cptp 

map. Hence, ϕC|A = (𝜃C|E ∘ λE|B) ∘ ψB|A and ψ divides ϕ.
On the other hand, let us assume now that ψB|A divides ϕC|A. In this case, there exists 𝜃C|B 

such that ϕC|A = 𝜃C|B ∘ ψB|A. Now, as we have assumed that ψB|A is anti-degradable, there 
exists another cptp map λB|E with �B|A = �B|E◦�

c
E|A . Hence, �C|A = (�C|B◦�B|E)◦�

c
E|A and, 

because of Theorem 3.1, ψ is compatible with ϕ. □

Straightforwardly from Theorem  3.2, it follows that with self-degradable channels 
we can cut out the middle maps λE|B and λB|E. In this very particular case compatibility 
equals divisibility. We formalize it in a corollary.

Corollary 3.3  Let ψB|A and ϕC|A be two quantum channels. Assume that ψB|A is self-degra-
dable. The following statements are equivalent:

i)	 ψB|A and ϕC|A are compatible.
ii)	 ψB|A divides ϕC|A.

Remark 5  To begin with, note that if we had been working within the usual framework of 
open quantum dynamics, where it is given a discrete family F = {�Xt|X0

}t of cptp maps (see 
Appendix A), in order to ensure that compatibility implies divisibility of F  , we would have 
to assume that every member of that family (but the last one) is degradable. Recursive use 
of Theorem 3.2 would guarantee that, for being two-by-two compatible, the whole dynam-
ics is Markovian. Analogously, anti-degradability plus the usual definition of divisibility 
would imply compatibility between consecutive time steps. Finally, despite being rather 
restrictive, the full equivalence expressed by Corollary 3.3 neatly bridges the two concepts. 
Recall that, for qubits, self-complementarity rules-out the simplest cases of reversible and 
completely depolarizing channels [40].

Overall, we have seen that if we assume degradability or anti-degradability we can 
see compatibility and divisibility within a closer perspective. Mathematically speaking, 
although Theorem 3.2 puts an end to the story, it remains to explain why we have been 
forced to demand for (anti)degradable maps. Moreover, it is important to reason about the 
physical meaning of the results.

3.2 � Why (anti)Degradable Maps?

Let us recall that Theorem  3.2 assumes (anti)degradability to establish a connection 
between divisibility and compatibility. It is natural to ponder over what is the role 
played by (anti)degradability in these statements. In the next proposition we show that 
(anti)degradability emerges naturally from assuming compatibility and divisibility.

International Journal of Theoretical Physics (2022) 61: 189 Page 7 of 24 189
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Proposition 3.4  If ψB|A and ϕC|A are compatible channels such that ϕC|A = 𝜃C|B ∘ ψB|A, for 
a given cptp map 𝜃C|B, then ϕC|A is anti-degradable.

Proof  To begin with, because ψB|A and ϕC|A are compatible, there is another cptp map 𝜃B|E 
such that �B|A = �B|E◦�

c
E|A . Now, as ϕC|A = 𝜃C|B ∘ ψB|A, we conclude:

□

Notice that, in Proposition 3.4, not only we are getting anti-degradability out of the 
result, rather than plain degradability, but also note that it is ϕ which ends up being anti-
degradable. Remember that in Theorem 3.2 we had to demand either degradability or anti-
degradability of ψ to obtain divisibility or compatibility, respectively.

An alternative version of the above proposition is also possible. Instead of requiring 
compatibility for the channels ψB|A and ϕC|A, we could have asked for compatibility between 
the conjugate version of the channels. Similarly to Proposition 3.4’s proof, we would have 
obtained that ψ must be degradable. Other variants can also be obtained if we move around 
the super-index indicating the conjugate channel.

3.3 � Physical Intuition

We conclude this section discussing the physical intuition behind our results. To begin 
with, consider the two diagrams displayed in Fig.  6. Roughly speaking, they show that 
degradable maps are those in which the evolution of the environment can be fully deter-
mined if we monitor the system. To be a bit more precise, the environment evolved states 
are fully encoded in the system, in the sense that one can recover any environment evolved 
state by a suitable, but fixed, physical operation that can be done on the system alone. For 
anti-degradable maps, a similar picture holds, but with the environment and system papers 
reversed. Self-degradable maps are, therefore, those in which system and environment are 
on equal footing, to the extent that we can imagine to do process tomography on the system 
to obtain the information on the evolution of the environment and vice-versa. Let us focus 
on this class of maps.

The content of Theorem 3.1 is that if ψB|A and ϕC|A are compatible, the compatibilizer 
𝜃BC|A also stores in itself the information about the environment described by �c

E|A , and 
vice versa. It is as if the black-box of Fig. 1 were taken so large that it also encompasses 
the environment of a Lindblad-Stinespring dilation for ψB|A, and so that �c

E|A contains the 
information of ϕC|A. In fact,

Now, self-degradability says that we can bring ψB|A back into the game, as environment and 
system are on equal footing, �c

E|A = �B|A . As a consequence, ψB|A ends up dividing ϕC|A, 
thus containing information about it. On the other hand, assuming that ψB|A divides ϕC|A, 
with the former being self-degradable, it is possible to write ϕC|A in terms of the environ-
ment in �c

E|A . In this way, one can find an appropriate large box 𝜃BC|A involving the envi-
ronment E for ψB|A, such that it acts as the compatibilizer for ψB|A and ϕC|A. In brief, self-
degradability bridges in both directions the evolution of environment and system (up to a 

(9)
�C|A = �C|B◦�B|A

= �C|B◦�B|E◦�
c
E|A.

(10)�C|A = TrB(�BC|A) = �C|E◦�
c
E|A.

International Journal of Theoretical Physics (2022) 61: 189Page 8 of 24189
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function), and this is the very key point in equating compatibility and divisibility, as we can 
make the compatibilizer large enough to accommodate the environment.

There is also an alternative form of seeing why anti-degradability together with divis-
ibility implies compatibility. Suppose that ψB|A is anti-degradable and, additionally, that 
it divides ϕC|A. Self-degradability of ψB|A implies that ψB|A is self-compatible (cf. Theo-
rem 3.2). In other words, there is a channel

such that:

with D(HB) ≃ D(HB� ) . As ψB|A divides ϕC|A, there must exist a cptp map 𝜃C|B verifying 
ϕC|A = 𝜃C|B ∘ ψB|A. Now, define ΘCB�|A ∶= (𝜃C|A ⊗ idB� )◦ΨBB�|A . This composition satisfies:

The newly defined quantum channel ΘCB�|A is, then, the compatibilizer of ψB|A and ϕC|A. In 
sum, the anti-degradability of ψB|A allowed for its extension as a larger channel ΨBB�|A that 
simulates on demand the action of ψ regardless the output we block. Sticking the quotient 
map 𝜃C|A into one of outputs of Ψ, we gain the compatibilizer of ψ and ϕ. This is the case 
simply because one end keeps behaving like ψ, while the other (with 𝜃) starts behaving like 
ϕ - see Fig. 3

4 � Conclusions

In this work we have established a connection between compatibility and divisibility of 
cptp maps (summarized in Fig. 4). We have shown that for self-degradable maps there is 
a direct equivalence between the two concepts: compatibility implies divisibility and vice 
versa. Slightly relaxing this hypothesis, compatible and degradable maps are divisible. 
Furthermore, divisible and anti-degradable maps are compatible. These implications and 
equivalences do not hold true if we remove (anti)degradability from the body of hypoth-
esis, as we have managed to show that neither compatibility directly implies divisibility nor 
that divisibility directly implies compatibility in general. Interestingly, the latter is a conse-
quence of the no-broadcasting theorem.

Apart from some cases, it is known that determining whether or not a certain map, or a 
family of maps, is (anti)degradable is not a trivial task. However, if one knows beforehand 
that degradability holds, Theorem 3.2 can be used to determine divisibility with a number 
of SDPs that scales with the size of the family under consideration. Recall that from an 
information theoretical perspective, the authors of ref. [42] have come up with an algo-
rithm that must implement an infinite number of SDPs to determine the divisibility of a 
single pair of maps. With extra information, our results might be useful in this case.

In addition to the usefulness of our result for assessing the divisibility or compatibility 
of this particular class of channels, we also provide physical insights into the meaning of 
(anti)degradable channels. They are not only the channels that have particularly simplified 
mathematical expressions that allow one to compute the quantum and classical capacities 
(in general, uncomputable), but they are the channels for which the physical notions of 
compatibilty and divisibility are related.

(11)ΨBB�|A ∶ D(HA) → D(HBB� )

(12)TrB[ΨBB|A] = �B|AandTrB� [ΨBB�|A] = �B�|A

(13)TrB� (ΘCB�|A) = �C|AandTrC(ΘCB�|A) = �B|A.
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There are, of course, open questions that originate from this work. A natural one is 
whether the class of self-degradable channels identifies the class of channels for which 
compatibility equals divisibility. This question alone motivates further research on this 
special class of channels. To name other open challenges, consider for instance the argu-
ment of example 3. There we constructed a situation where the maps are compatible and 
not-divisible. Our entire construction was based upon the intuition that conditionally inde-
pendent maps are not divisible. Although this makes sense, and although it works for that 
example, we still lack a general mathematical proof of this statement. We can push this 
direction even further: it is still unknown whether or not compatible maps possess at least 
one compatibilizer respecting conditional independence. This will also be explored in a 
future work.

Finally, we recognize the limitations of our work. The conditions for Theorem 3.2 
and Corollary 3.3 are quite restrictive. Nonetheless, we emphasize how our work puts 

Fig. 3   When ψB|A (green) 
is anti-degradable and 
divides ϕC|A (blue), the map 
Θ

CB�|A = (𝜃
C|B ⊗ id

B� )◦ΨBB�|A 
(orange) is the natural compatibi-
lizer for the pair. (colours online)
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together two concepts that, up to this day, had always been thought of being separate. 
Each of these concepts has its own toolbox, and we believe that our work can help to 
pave-down a new road allowing for an interplay of these toolboxes. We have also been 
able to identify open questions that should be explored in future research.

Appendix : A: Main Definitions ‑ Expanded and Commented

To facilitate the reading, we will stick with the notation of refs. [43, 44]. In other 
words,

will always represents a quantum map from D(HX) to D(HY ) . The sub-index Y |X is 
in parallel with the standard conditional probability language and ought to be read as 
Y given X.

The sections below contain the standard definitions of divisibility and compatibil-
ity. These two topics are sub-branches of quantum information and lines of research 
in their own, and, as such, we will not treat them comprehensively here. To help the 
reader, we will briefly motivate the main definitions and point to the standard literature.

(A1)�Y|X ∶ D(HX) → D(HY )

Fig. 4   Concise summary of 
results. With no restrictions 
on the class of channels, the 
difference between the parallel 
character of compatibility and 
the sequential character of 
divisibility prevails and the two 
notions are not related. If the 
channel ψB|A is degradable and 
ψB|A and ϕC|A are compatible, 
then ψB|A divides ϕC|A. If the 
channel ψB|A is anti-degradable 
and ψB|A divides ϕC|A, then ψB|A 
and ϕC|A are compatible. If ψB|A is 
self-degradable, it is equivalent 
to state that ψB|A divides ϕC|A and 
that ψB|A and ϕC|A are compatible
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A.1: Divisibility

It has become broadly accepted that discrete evolution of open quantum systems should be 
represented by a family F = {�Xk|X0

}T
k=1

 of CPTP maps [24, 26, 45]. In this family, each 
channel

represents a quantum process happening from a initial time step t = t0 to a posterior time t 
= tk. Given a quantum system evolving according to the family F  , if ρ0 represents the state 
of this system at t = t0, its evolved state at t = tk is given by �k = �Xk|X0

(�0).
This definition captures the idea that there is some quantum process happening between 

two time steps. However, the t0-to-tk evolution is not natural in a dynamical sense. Instead 
of having a family dictating the evolution from t0 to tk, one would expect to have a sequen-
tial family of CPTP maps, say F� = {�Xk+1|Xk

}T−1
k=0

 , governing how the system changes 
between to consecutive time steps tk-to-tk+ 1. It is the existence of this second collection of 
CPTP maps that divisibility, or Markovianity, talks about [25–27].

Definition A.1 (CP‑Divisibility)  Let F = {�X0|Xk
}T
k=1

 be a family of maps representing the 
dynamics of an open quantum system. Each map

being a completely positive trace preserving map. We say that this family is CP-divisi-
ble, or that the dynamics is Markovian, whenever there exists another family of maps 
F

� = {�Xk+1|Xk
}T−1
k=0

 such that

Remark 6  In other words, Definition A.1 says that a family of t0-to-tk quantum channels 
is (CP-)divisible when it is possible to find intermediate channels tk-to-tk+ 1 that “match” 
the original family. This matching is expressed by stating that it is possible to simulate any 
process happening from t0-to-tk+ 1 provided that it is known what happens in t0-to-tk and tk-
to-tk+ 1. Figure 5 illustrates this argument.

In Definition A.1 we have also used the term ”Markovianity” as a synonym of 
(CP-)divisibility. To make this choice more transparent, we need to explain this point 
in more details. Basically, a classical stochastic process is a family {Xk}k of random 
variables where it is possible to define a joint σ −algebra. This process is Marko-
vian when ℙ(Xk|Xk−1, ...,X1) = ℙ(Xk|Xk−1) holds true for every k. In plain English, 
the information necessary do determine what will happen at tk is fully determined 
by the knowledge of what happened at tk− 1, hence a memoryless process. Markovian 
processes have a neat equation governing ℙ(Xk|Xk−1) that only involves intermediate 
time-steps: the Chapman-Kolmogorov equation . Roughly speaking, if {Xk}k is Mark-
ovian, then for every t > k > r [28]:

(A2)�Xk|X0
∶ D(HX0

) → D(HXk
)

(A3)�Xk|X0
∶ D(HX0

) → D(HXk
)

(A4)∀k ∶ �Xk+1|Xk
∶ D(HXk

) → D(HXk+1
)isCPTP

(A5)∀k ∶ �Xk+1|X0
= �Xk+1|Xk

◦�Xk|X0

(A6)ℙ(Xt|Xr) =
∑

xk
ℙ(Xt|Xk = xk)ℙ(Xk = xk|Xr).
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It is exactly the parallel between (A6) and (A5) that justifies the comparison between the 
classical and quantum cases, and motivates the use of the name “Markovianity” for the 
quantum case. This is still a topic of ongoing research [25, 29, 46] and intense debate 1. We 
refer to [25] and [47, 48] for a thorough analysis of this subject - including the distinction 
between time dependent v. time independent cases.

Specializing to the case of only two maps, we can write down a more direct definition 
of divisibility. As a matter of fact, this variant definition not only turns more explicit an 
asymmetry which is always hidden away in the usual definition of divisibility, but it also 
emphasizes another mathematical aspect present in the original definition.

Definition A.2  Let ψB|A and ϕC|A be two cptp maps. We say that ψB|A dividesϕC|A when-
ever there exists another cptp map 𝜃C|B such that

We will refer to 𝜃C|B as the quotient map.

Remark 7  In general, divisibility is an asymmetric notion. In other words, with no extra 
assumptions, we cannot say that ϕC|A divides ψB|A whenever the latter divides the former. 
There are many ways to get this symmetry back, for instance one could ask for quotient 
maps that are invertible and whose inverse is cptp. In this rather restrictive case, divisibility 
becomes an equivalence relation (reflexive, transitive and symmetric). Back to the general 

(A7)�C|A = �C|B◦�B|A.

Fig. 5   Arrow-like representa-
tion of a Markovian quantum 
evolution. Black solid arrow 
mean t0-to-tk quantum processes. 
Orange dashed arrows are the 
intermediate tk-to-tk+ 1 quantum 
processes (colours online)

1  Although we are more inclined to agree with ref. [25], which is more cautious in associating divisibility 
with memoryless processes
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case, it is exactly the this lack of symmetry that renders the comparison between divisibil-
ity (asymmetric) and compatibility (symmetric) so tricky.

When considering only two maps, the alternative Definition 2.1 makes clearer the simu-
lability rationale: to obtain the action of ϕC|A it suffices to know 𝜃C|B and ψB|A. Broadly 
speaking, we can interpret the map 𝜃C|B as containing the piece of information that is nec-
essary to define ϕC|A via composition with ψB|A. We will adopt a similar perspective when 
interpreting compatibility in the next section.

A.2: Compatibility

One of the foundational cornerstones of quantum theory is the existence of observables 
that cannot be simultaneously, or jointly, measured. In other words, quantum theory does 
not rule out the presence of incompatible observables. This fact is very well known, and 
goes all the way back to the Heisenberg’s uncertainty principle. Moreover, we can say that 
incompatibility is crucial to the foundations of quantum physics, as incompatible measure-
ments are the root cause allowing for violations of Bell inequalities [10]. As a matter of 
fact, quantum (in)compatibility is not restricted only to POVM’s. This short section shows 
how to lift the concept of incompatibility from measurements to quantum channels.

Broadly speaking, two quantum channels are compatible when they can be enlarged, 
seen as being just one, and have their action recovered by tracing out part of this larger 
structure. The idea behind the concept of compatibility, therefore, is associated to the exist-
ence of a larger quantum channel that can, on-demand, be used to recover the action of the 
two original quantum channels. Precisely put [12],

Definition A.3 (Compatibility)  Let ψB|A and ϕC|A be two cptp maps. We say that ψB|A is 
compatible with ϕC|A whenever there exists another cptp map

such that, for every ρA in D(HA) , the following equations

hold true. The channel 𝜃BC|A is called the compatibilizer for ψB|A and ϕC|A. When it is not 
possible to find a channel satisfying (A9) and (A10) above, we say that ψB|A and ϕC|A are 
incompatible.

A.3: Complementary and Compatibility

We here follow the standard treatment for describing the evolution of an open quantum sys-
tem: for not being isolated, it interacts with a (multipartite) environment; initially the pair 
system-environment is described by a product state; following a closed dynamics, system 
and environment evolve according to a family of unitary maps Ut ; the state of the system 
is, at any posterior time, obtained by tracing out the degrees of freedom of the environment 

(A8)𝜃BC|A ∶ D(HA) → D(HB)⊗D(HC)

(A9)�B|A(�A) = TrC

[
�BC|A(�A)

]

(A10)�C|A(�A) = TrB

[
�BC|A(�A)

]
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[9, 49]. The resultant of this process is a family of cptp maps {ψt|0}t where the environment 
is always being traced-out:

What if, instead of tracing-out the environment, we trace out the system? The authors 
of [9] have thoroughly explored the consequences of doing this. Here, closely following 
[33–36] we will implement a more modest approach. Referring back to the main topic of 
this work, the main idea here is to show how one can use this natural way of constructing 
channels to reconcile divisibility and compatibility. We begin with a definition [34]:

Definition A.4 (Complementary Channel)  Let ψB|A be a quantum channel and

be its Lindblad-Stinespring representation, where V ∶ HA → HB ⊗HE is an isometry. 
The complementary channel of ψB|A is defined as:

where the trace now is performed over HB.

Broadly speaking, the complementary channel �c
E|A describes the evolution of the envi-

ronment in correspondence to the evolution of the system described by ψB|A.

Remark 8  There are alternative, equivalent ways to introduce complementary channels. 
For example, instead of starting from the Lindblad-Stinespring representation, if we had 
started from a Kraus decomposition �B�A(⋅) =

∑M

i=1
Ki(⋅)K

∗
i
 , the complementary map �c

B|A 
to this channel, with this particular Kraus representation, would be:

The connection between (A13) and (A14) is established noticing that from an isom-
etry V ∶ HA → HB ⊗HE it is possible to define a valid set of Kraus operators 
{Ki ∶= V ⊗ �i⟩}dE

i=1
 and, vice versa, that from a set of Kraus operators {Ki}

M
i=1

 it is possible 
to form an isometry V ∶=

∑M

i=1
Ki ⊗ �i⟩.

The study of complementary channels goes back to the works of A. Holevo [36], M. B. 
Ruskai plus collaborators [34, 50] and I. Devetak with P. Shor [37]. This class of channels 
play a role in quantum information theory and, remarkably, as we mentioned before, in the 
foundations of quantum mechanics in the attempt to explain the emergence of an objec-
tive macroscopic reality [9]. Expanding the former role a bit further, in this work, we will 
use the concept of complementarity as a mechanism to connect compatible with divisible 
maps. The theorem below (proven in ref. [13]) is the very first to do so.

Theorem A.5 (Compatibility and Ordering)  Two quantum channels ϕC|A and ψB|A are 
compatible if and only if there exists a cptp map 𝜃C|E such that �C|A = �C|E◦�

c
E|A.

In other words, the compatibility between ϕC|A and ψB|A means that �c
E|A divides ϕC|A. 

This theorem connects the parallel character of compatibility with the sequential character 

(A11)𝜓t�0(𝜌S) = TrE

�
U∗(𝜌S ⊗ �0⟩⟨0�)U

�
.

(A12)�B|A(⋅) = TrE

[
V(⋅)V∗

]

(A13)�c
E|A(⋅) = TrB

[
V(⋅)V∗

]
,

(A14)�c
E�A(⋅) =

M�

i,j=1

Tr
�
K∗
i
Kj(⋅)

�
�j⟩⟨i�E.
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of divisibility (of the complementary channel). It is also important to notice about Theo-
rem A.5 that it restores the symmetry lost in our first attempt. With the cost of considering 
the complement of a map not the map itself, the theorem says that not only we can write 
ϕC|A using a manipulated version of ψB|A, but also that the other way round does hold true: 
we can write ψB|A via a modification of ϕC|A.

Secondly, within the proof of the Theorem A.5 it is already present the construction of 
a possible map making the passage between �c

B|A and ϕC|A. We here provide a sketch of the 
proof. We refer to [13] for an alternative and full proof of Theorem A.5.

Assuming ψB|A and ϕC|A compatible, their compatibilizer 𝜃BC|A has a Lindblad-Stine-
spring form

where V ∶ HA → (HB ⊗HC)⊗HE is an isometry. Now, we can extract an alternative 
Lindblad-Stinespring form for ψB|A via (A15), and use this alternative form to define a 
complementary map. This direct construction will suffice to conclude the argument. As a 
matter of fact,

and considering HC ⊗HE as a new environment, we can define

To conclude,

by simply rewriting 𝜃C|E as the partial trace.
Third, in Theorem A.5 we are tacitly assuming the existence of one particular Lindblad-

Stinespring dilation for ψB|A. Even though the result holds true for a particular dilation, and 
its equivalence class, it might be the case that for other distinct dilations the result does 
not hold true [13]. Although this is an important point to bear in mind, it does not affect 
nor weaken our main results. It suffices to think of ψB|A as the quantum channel originat-
ing from the interaction with a fixed environment E, so its action and, more importantly, 
its dilation is already naturally given by �B|A(�A) = TrCE

[
V�AV

∗
]
 . This is exactly how the 

complementary maps were originally introduced in the literature.
Finally, the theorem clearly indicates which sub-collection of cptp maps we must con-

sider. Intuitively, we will work with those classes of channels in which there is a relation 
between them and their complementary.

A.4: (Anti)Degradable and Self‑degradable Channels

Technically speaking, the most natural way to leverage the content of Theorem A.5 con-
sists of demanding that ψB|A and its complement �c

E|A verify a composition rule. This is 

(A15)�BC|A(�A) = TrE

(
V�aV

∗
)
,

(A16)�B|A(�A) = TrC

[
�BC|A(�A)

]
= TrCE

[
V�AV

∗
]
,

(A17)�c
CE|A ∶= TrB

[
V�AV

∗
]
.

(A18)
�C|A(�A) = TrB

[
�BC|A(�A)

]
= TrBE

[
V�AV

∗
]

= TrE◦TrB

[
V�AV

∗
]
= TrE◦�

c
CE|A

= �C|E◦�
c
CE|A,
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exactly the key assumption we adopt to finally put together the concepts of divisible maps 
and compatibility. At a first sight, that class of maps might seem too restrictive or merely 
an exercise of mathematical abstraction but, as it turns out, these maps have been thor-
oughly investigated in the literature [35, 38–40], or more recently in [41], and have a con-
crete physical meaning, as we will discuss in Section 3.2 in the main text. We begin this 
section formally defining such class of maps (see Fig. 6):

Definition A.6 (Degradable Maps)  A quantum channel ψB|A is called degradable when 
there exists another quantum channel λE|B such that

where �c
E|A is complementary to ψB|A. On the other hand, when �c

E|A is degradable, the orig-
inal map ψB|A is called anti-degradable.

Remark 9  Simply put, a degradable channel is a channel that appropriately divides its 
complementary channel.

As we mentioned, the structure of degradable and anti-degradable maps has been 
deeply explored in the literature before, mainly in the context of quantum informa-
tion. As an example, it has been shown that, for these channels, the calculation of 
quantum and private classical capacities (two quantities not even known to be com-
putable in general) simplify massively, to the point that for some degradable channels 
it is even possible to obtain closed, analytic expressions [34, 35]. Additionally, even 
though the set of all degradable channels is not convex, it is known that the set of 
anti-degradable channels is convex and properly contains all the prepare-and-measure 

(A19)�c
E|A = �E|B◦�B|A,

Fig. 6   Schematic arrow-representation of (a) degradable and (b) anti-degradable maps. On the left, the 
orange dashed arrow points downwards, from the output space to the environment. On the right, the orange 
dashed arrow points upwards, from the environment onto the output space. (colours online)
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maps [34], which implies that anti-degradable maps have positive measure within the 
set of all channels. In terms of structures, in ref. [37], the authors have shown that 
channels having simultaneously diagonalizable Kraus maps are degradable. Addi-
tionally, approximate notions of degradability and anti-degradability have also been 
recently explored in the literature [38].

Albeit being very particular, a special case is when λE|B is the identity channel idE. This 
special case will be useful later in our discussions and we denote it as follows.

Definition A.7 (Self‑Degradable Maps)  A channel ψB|A is self-degradable (or self-com-
plementary) whenever it coincides with its complementary map. More precisely,

One can easily read from (A19) and (A20) that it must be the case that output and 
environment are the same, in other words HE = HB . As a simple example, consider 
also the case where dim(HA) = dim(HB) = 2 . In this case it has been shown that nor 
the completely depolarizing channel nor any unitary channel is self-complementary 
[39]. Roughly speaking, we can interpret this argument as to showing that self-com-
plementary channels cannot be too noisy nor too reversible. For qubits, the general 
structure of these channels was investigated in ref. [39]. Any Kraus decomposition 
{K1,K2} of a self-complementary channel must obey:

with α ∈ [0,π] and β ∈ [0, 2π]. The most paradigmatic example being the dephasing chan-
nel, where α = 0 =β.

Appendix : B: Examples and Counter‑Examples

Example 1  The most paradigmatic example of incompatibility, that will be used later on, 
is related to the no-broadcasting theorem [13, 15, 32]: consider ψA|A = idA = ϕA|A, where 
(id)A ∶ D(HA) → D(HA) is the identity channel. If there existed a compatibilizer for this 
case, there would exist a linear map 𝜃AA|A such that:

which would, in turn, imply a universal broadcast machine. We are forced to conclude that 
the identity map idA is not self-compatible [13]. This example shows also that compat-
ibility of quantum channels is mathematically rich and complex, despite having a simple 
definition and a very straightforward information theoretical interpretation.

Example 2  The second example shows how we can construct as many compatible 
channels as we want and, on top of that, the following construction also explicitly 
exhibits the compatibilizer. Given two non-trivial and finite-dimensional Hilbert 

(A20)�B|A = �c
E|A.

(A21)

K1 =

�
sin � 0

0
1√
2

�
K2 =

�
0

1√
2

eiβ cos � 0

�
or

K1 =

�
1 0

0
1√
2
sin �

�
K2 =

�
0

1√
2
sin �

0 eiβ cos �

�
,

(B1)∀�A ∈ D(HA) ∶ �A = TrA

[
�AA|A(�A)

]
,
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spaces HB and HC , define HA ∶= HB ⊗HC . Now, chose 𝜓̃B|B and 𝜙̃C|C arbitrarily. 
Finally, define ψB|A and ψC|A acting on D(HA) via:

for every �A ∈ HA . Now, the main claim is that ψB|A and ψC|A are compatible and, addition-
ally, that 𝜓̃B|B ⊗ 𝜙̃C|C is their compatibilizer. As a matter of fact:

Note that this series of equations is simply a consequence of trace-preservation. With the 
same argument it can be shown that TrC

[
(𝜓̃B|B ⊗ 𝜙̃C|C)𝜌A

]
= 𝜙C|A(𝜌A) . In conclusion, 

not only the maps defined in (B2) and (B3) are compatible, but also the factorized map 
𝜓̃B|B ⊗ 𝜙̃C|C is their compatibilizer.

Intuitively, two ingredients are necessary to run the second example. First, we have 
defined HA to be the tensor product of HB and HC ; we have opened room for paral-
lel and independent action of the two channels. Secondly, we have explored this room 
and defined ψB|A as if it was acting only on B and, likewise, ϕC|A as if it was acting 
only on C. Even though there might be correlations between B and C codified in ρA, 
the knowledge of what is happening in A renders B and C conditionally independent 
[43, 51]. Basically, in this example, the compatibility of the two maps is a direct con-
sequence of these two points. The tensor structure of A opened up space for enlarg-
ing the maps, and their conditional independence was crucial to remove either one 
on-demand.

Example 3  This last example shows that, in contrast with the resource theory of 
entanglement [52, 53], there is no catalysis [54, 55] of compatibility . More pre-
cisely, we will see that if 𝜓B|A ⊗ 𝜒B′|A′ is compatible with 𝜙C|A ⊗ 𝜒B′′|A′ , then ψB|A and 
ϕC|A are also compatible. As a matter of fact, compatibility between 𝜓B|A ⊗ 𝜒B′|A′ and 
𝜙C|A ⊗ 𝜒B′′|A′ implies the existence of 𝜃BB′CB′′|AA′ such that

and

for every �AA′ . We define a compatibilizer for ψB|A and ϕC|A using (B5) and (B6) above as:

(B2)𝜓B|A(𝜌A) ∶=
(
𝜓̃B|B◦TrC

)(
𝜌A
)

(B3)𝜙C|A(𝜌A) ∶=
(
𝜙̃C|C◦TrB

)(
𝜌A
)
,

(B4)

∀ 𝜌A ∈ D(HA) ∶ TrC

�
(𝜓̃B�B ⊗ 𝜙̃C�C)𝜌A

�
=

=
∑

i,j

∑
k,l𝛼

kl
ij
TrC

�
(𝜓̃B�B ⊗ 𝜙̃C�C)�i⟩⟨j�B ⊗ �k⟩⟨l�C

�

=
∑

i,j

∑
k,l𝛼

kl
ij
TrC

�
𝜙̃C�C(�k⟩⟨l�C)

�
𝜓̃B�B(�i⟩⟨j�B)

=
∑

i,j

∑
k𝛼

kk
ij
𝜓̃B�B

�
�i⟩⟨j�B

�
= 𝜓̃B�B

�∑
i,j

∑
k𝛼

kk
ij
�i⟩⟨j�B

�

=
�
𝜓̃B�B◦TrC

��
𝜌A
�
= 𝜓B�A(𝜌A).

(B5)𝜓B|A ⊗ 𝜒B�|A(𝜌AA� ) = TrCB��

[
𝜃BB�CB��|AA� (𝜌AA� )

]

(B6)𝜙C|A ⊗ 𝜒B��|A(𝜌AA� ) = TrBB�

[
𝜃BB�CB��|AA� (𝜌AA� )

]

(B7)𝜃BC|A(𝜌A) ∶= TrB�B��

[
𝜃BB�CB��|AA�

(
𝜌A ⊗

idA�

dA�

)]
,
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for each ρA, where d A′ is the dimension of HA′ . To check that 𝜃BC|A is a valid compatibilizer, 
it suffices to trace either system out of (B7):

Similarly, the same argument leads to TrB
[
�BC|A(�A)

]
= �C|A(�A) for every ρA. To sum 

up, our construction says that it does not matter if an auxiliary channel is plugged into ψB|A 
and ϕC|A. If those channels are not compatible to begin with, they will remain incompat-
ible even with the help of an external channel �B′|A . In other words, in the sense of [54, 55] 
there is no catalysis of compatibility.

As will become clearer, the examples we explore here have only been chosen because 
they will be useful to investigate the connection between compatibility and divisibility later 
on. Nonetheless, we hope that they have been sufficiently illustrative to the reader who is 
unfamiliar with the field. Compatibility constitutes an active research topic, and this short 
sub-section does not represent an exhaustive review of it. For recent developments on com-
patibility we suggest [13] and [15].

Appendix : C: Compatibility and Divisibility are not Connected 
in General

As hinted in the introduction (Section 1), divisibility and compatibility can be both associ-
ated with the notion of simulability. Although the simulability encoded in Definition A.3 
comes, intuitively, in a parallel form and the simulability of Definition A.2 in a sequential 
form, they both consist of writing down a map in terms of others. It is exactly this shared 
common feature that has originally motivated our study. We wanted to know if parallel 
simulability implied sequential simulability and also if sequential simulability implied par-
allel simulability.

Section  C, makes clear that these implications do not hold true in general, and sub-
Section C addresses what is wrong with them. The main reason lies indeed in the conflict 
between the sequential and parallel characters of the two notions.

Nonetheless, as shown in the main text, it is remarkable that if we restrict our argument 
to a certain class of important quantum channels, we can readily connect the two concepts. 
The Section 3 in the main text addresses exactly this point. We think it is instructive to 
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discuss our original guesses and the counter-examples to them. We dedicate this appendix 
to that discussion.

C.1: Conjectures and Counter‑Examples

Let us start with a first attempt. Conjecture 1 states that divisibility should imply com-
patibility. In other words, it says that parallel simulability could be turned into sequential 
simulability.

Conjecture 1  If ψB|A divides ϕC|A, then it must be the case that ψB|A is compatible with 
ϕC|A.

It is not so difficult to come up with a counter-example for this statement. As it turns 
out, we have already discussed a counter-example for this conjecture before, more precisely 
in Section A. Referring back to example 1, it suffices to take HA = HB = HC and ψB|A = 
idA = ϕC|A. Even though ψB|A divides ϕC|A – with the quotient map being nothing but 𝜃C|B = 
idA, there is no compatibilizer for this case. In conclusion, the first conjecture does not hold 
true in general.

Because we are building our argument upon the non-universal broadcasting theorem, 
we can formulate, in this context, a follow-up question: what if one requires more structure 
on A? For instance, if we restricted ourselves, and considered divisibility and compatibility 
only on A , a commuting sub-algebra of D(HA) , then in this case the conjecture 1 would 
follow [16]. As we will be focusing on general properties of channels, in this work we 
will not approach restricted domains for the channels. We leave this point open for further 
investigations.

The second conjecture talks about the converse direction. It explores the possibility of 
having sequential-like simulability as a building block for parallel simulability.

Conjecture 2  If ψB|A is compatible with ϕC|A, then it must be the case that ψB|A divides 
ϕC|A.

As we had already anticipated, this conjecture also does not hold true. To show this we 
will use again a previous example. We have learned from Example 2, in Appendix B, how 
to construct compatible maps ψB|A and ϕC|A whose compatibilizer is 𝜓̃B|B and 𝜙̃C|C . It suf-
fices, for instance, to consider the case where 𝜓̃B|B is the completely depolarizing map [45] 
and 𝜙̃C|C = idC . If there existed a quotient map 𝜃C|B for this example, it would be a many-
to-one relation, and therefore not even a function.

In conclusion, both conjectures do not hold true at this level of generality, and we will 
try and explain the reasons why in the section below.

C.2: Discussion: What Went Wrong?

To begin with, conjecture 1 expresses the idea that divisible channels can be seen as a 
realization of a larger channel that allows to recover the original channels by the appropri-
ate tracing out. This is indeed a too strong claim. First, note that if we assume divisibil-
ity, the quotient channel has, in general, a preferred direction; ψB|A dividing ϕC|A implies a 
channel from B to C such that ϕC|A = 𝜃C|B ∘ ψB|A. In this sense, not only the simulability is 
a sequential-like simulability, but also it has a preferred direction. In opposition, because 
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of the parallel character, compatibility is more symmetrical. This very aspect also plagues 
conjecture 2, as we will see in the next paragraph. Secondly, as we pointed out before, the 
set of channels considered in our conjecture is too broad and too general. We mentioned 
that if one is willing to pay the cost of restricting the domain of the involved channels to 
something smaller and with more structure, it is the case that the trade-off must secure a 
truth value for the statement. Although we think this is a point deserving further investiga-
tion, we will not do so here, as we are more concerned with which properties of the chan-
nels that can make the conjectures to be true.

Conjecture 2 not only suffers from the same symmetry v. asymmetry issue already dis-
cussed before, but also from the tension between divisibility and the parallel character 
defining compatibility. The symmetry v. asymmetry tension manifested here is due to the 
lack of preferred direction of compatible channels. With no further assumptions, if compat-
ibility implied ψ dividing ϕ, it should also be true that ϕ divided ψ, and we have already 
discussed a case ruling out this possibility. The second point, that of exploring the par-
allel simulability of the channels, is what we tried and explored in example 2. It shows 
that independent, or conditionally independent, channels might be compatible as well as 
not-divisible for the very same reason: their action is, broadly speaking, in parallel. Once 
again, although we think that a connection between conditional independent channels and 
compatibility is expected, we will not investigate any further their relationship in this work.
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