Skip to main content
Log in

Quantifying Quantum Non-Markovianity Based on Two Kinds of Coherence Measures

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Non-Markovianity measures of open quantum systems are given based on two kinds of quantum coherence measures, which are defined from the perspective of norms and fidelity, respectively. These non-Markovianity measures are applied to find the conditions for the occurrence of non-Markovian processes in a single-qubit state under three typical noisy channels: phase damping channel, amplitude damping channel and random unitary channel. For the phase damping channel and the amplitude damping channel, our conditions are the same as those given by known methods, such as quantum trace distance, dynamical divisibility, and quantum mutual information, whereas in the random unitary channel, new and incompletely equivalent conditions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Feller, W.: An introduction to probability theory and its applications. Phys. Today 20(5), 76 (1967)

    Article  MATH  Google Scholar 

  2. Bellomo, B., Lo Franco, R., Compagno, G.: Non-markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  3. Zhang, Y.J., Man, Z.X., Xia, Y.J.: Non-markovian effects on entanglement dynamics in lossy cavities. Eur. Phys. J. D. 55, 173–179 (2009)

    Article  ADS  Google Scholar 

  4. Xiao, X., Fang, M.F., Li, Y.L., Zeng, K., Wu, C.: Robust entanglement preserving by detuning in non-Markovian regime. Phys. B: At. Mol. Opt. Phys. 42, 235502 (2009)

    Article  ADS  Google Scholar 

  5. Xiao, X., Fang, M.F., Li, Y.L.: Non-markovian dynamics of two qubits driven by classical fields: Population trapping and entanglement preservation. Phys. B: At. Mol. Opt. Phys. 43, 185505 (2010)

    Article  ADS  Google Scholar 

  6. Han, W., Cui, W.K., Zhang, Y.J., Xia, Y.J.: Comparison of Bell type entangled state decay behavior under different environment models. Acta. Phys. Sin. 61, 230302 (2012)

    Article  Google Scholar 

  7. Shan, C.J., Liu, J.B., Chen, T., Liu, T.K., Huang, Y.X., Li, H.: Entanglement dynamics of three qubits in the Non-Markovian environments. Chin. Phys. Lett. 27, 100301 (2010)

    Article  ADS  Google Scholar 

  8. Xiao, X., Fang, M.F., Li, Y.L., Kang, G.D., Wu, C.: Quantum discord in non-Markovian environments. Opt. Commun. 283, 3001–3005 (2010)

    Article  ADS  Google Scholar 

  9. Li, C.F., Wang, H.T., Yuan, H.Y., Ge, R.C., Guo, G.C.: Non-Markovian dynamics of quantum and classical correlations in the presence of system-bath coherence. Chin. Phys. Lett. 28, 120302 (2011)

    Article  ADS  Google Scholar 

  10. Han, W., Zhang, Y.J., Xia, Y.J.: Creation of quantum correlations via the initial classical-mixed states. Chin. Phys. B. 22, 010306 (2013)

    Article  ADS  Google Scholar 

  11. He, Z., Li, L.W.: Quantum correlation dynamics of two two level atoms in a common environment. Acta. Phys. Sin. 62, 180301 (2013)

    Article  Google Scholar 

  12. Zheng, L.M., Wang, F.Q., Liu, S.H.: Phase evolution of atoms in non-Markovian environment. Acta. Phys. Sin. 58, 243005 (2009)

    Google Scholar 

  13. Xiao, X., Fang, M.F., Hu, Y.M.: Protecting the squeezing of a two-level system by detuning in non-Markovian environments. Phys. Scr. 84, 045011 (2011)

    Article  ADS  MATH  Google Scholar 

  14. Cai, C.J., Fang, M.F., Xiao, X., Huang, J.: Entropy squeezing of atoms in classical field driven Jaynes-Cummings model in non-Markovian environment. Acta. Phys. Sin. 61, 210303 (2012)

    Article  Google Scholar 

  15. Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Rivas, A., Huelga, S.F., Plenio, M.B.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev Lett. 105, 050403 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lu, X.M., Wang, X.G., Sun, C.P.: Quantum Fisher information flow in non-Markovian processes of open systems. Phys. Rev. A. 82, 042103 (2010)

    Article  ADS  Google Scholar 

  18. Vasile, R., Maniscalco, S., Paris, M.G.A., Breuer, H.P., Piilo, J.: Quantifying non-Markovianity of continuous-variable gaussian dynamical maps. Phys. Rev. A. 84, 052118 (2011)

    Article  ADS  Google Scholar 

  19. Luo, S., Fu, S., Song, H.: Quantifying non-Markovianity via correlations. Phys. Rev. A. 86, 04401 (2012)

    Google Scholar 

  20. Lorenzo, S., Plastina, F., Paternostro, M.: Geometrical characterization of non-Markovianity. Phys. Rev. A. 88, 020102 (2013)

    Article  ADS  Google Scholar 

  21. Bylicka, B., Chruscinski, D., Maniscalco, S.: Non-markovianity and reservoir memory of quantum channels: A quantum information theory perspective. Sci. Rep. 4, 5720 (2014)

    Article  ADS  Google Scholar 

  22. Chanda, T., Bhattacharya, S.: Delineating incoherent non-Markovian dynamics using quantum coherence. Ann. Phys. NY 366, 1 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. He, Z., Li, L., Yao, C.M., Li, Y.: Non-markovity of open two-level system by means of quantum coherence. Acta. Phys. Sin. 64, 140302 (2015)

    Article  Google Scholar 

  24. He, Z., Zeng, H.S., Li, Y., Wang, Q., Yao, C.: Non-markovianity measure based on the relative entropy of coherence in an extended space. Phys. Rev. A. 96, 022106 (2017)

    Article  ADS  Google Scholar 

  25. Shao, L.H., Zhang, Y.R., Luo, Y., Xi, Z., Fei, S.M.: Quantifying quantum non-Markovianity based on quantum coherence via skew information. Laser. Phys. Lett. 17, 015202 (2020)

    Article  ADS  Google Scholar 

  26. Xiong, C.H.: The Distinction Between Quantum Coherence Measure and Quantum State. Zhejiang University, Hangzhou (2018)

    Google Scholar 

  27. Shao, L.H.: Quantum Coherence Measurement and Related Problems. Shaanxi Normal University, Xian (2017)

    Google Scholar 

  28. Pei, C.X.: Quantum Communication. Xidian University Press, Xian (2013)

    Google Scholar 

  29. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  30. Yu, X.D., Zhang, D.J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A. 94, 060302 (2016)

    Article  ADS  Google Scholar 

  31. Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: The fidelity and trace norm distances for quantifying coherence. Phys. Rev. A. 91, 042120 (2015)

    Article  ADS  Google Scholar 

  32. Liu, C.L., Zhang, D.J., Yu, X.D., Ding, Q.M., Liu, L.J.: A new coherence measure based on fidelity. Quant. Inf. Proc. 16, 198 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. Zhang, F.G., Shao, L.H., Luo, Y., Li, Y.M.: Ordering states with Tsallis relative α-entropies of coherence. Quant. Inf. Proc. 16, 31 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shao, L.H., Li, Y.M., Luo, Y., Xi, Z.J.: Quantum coherence quantifiers based on the rényi α-relative entropy. Commun. Theor. Phys. 67(06), 631–636 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A. 95, 042337 (2017)

    Article  ADS  Google Scholar 

  37. Xiong, C.H., Kumar, A., Wu, J.D.: Family of coherence measures and duality between quantum coherence and path distinguishability. Phys. Rev. A. 98, 032324 (2018)

    Article  ADS  Google Scholar 

  38. Chen, B., Fei, S.M.: Notes on modified trace distance measure of coherence. Quant. Inf. Proc. 17, 107 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  40. Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)

    Article  ADS  Google Scholar 

  41. Haikka, P., McEndoo, S., De Chiara, G., Palma, G.M., Maniscalco, S.: Quantifying, characterizing and controlling information flow in ultracold atomic gases. Phys. Rev. A 84, 031602 (2011)

    Article  ADS  Google Scholar 

  42. Vacchini, B.: A classical appraisal of quantum definitions of non-Markovian dynamics. Phys. B: At. Mol. Opt. Phys. 45, 154007 (2012)

    Article  ADS  Google Scholar 

  43. Chruscinski, D., Wudarski, F.: Non-Markovian random unitary qubit dynamics. Phys. Lett. A. 377, 1425 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Jiang, M., Luo, S.: Comparing quantum markovianities: distinguishability versus correlations. Phys. Rev. A. 88, 034101 (2013)

    Article  ADS  Google Scholar 

  45. Guo, X.L., Zhang, Y.L, Zhou, Q.P.: Dynamic characteristics of quantum Fisher information of atomic system in amplitude damping channel. Journal of Jishou University (2017)

  46. Dhar, H.S., Bera, M.N., Adesso, G.: Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A 91, 032115 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L. Sun and Y. H. Tao wrote the main manuscript text. All of the authors reviewed the manuscript.

Corresponding author

Correspondence to Yuan-Hong Tao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC under No. 11761073.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Li, JP., Tao, YH. et al. Quantifying Quantum Non-Markovianity Based on Two Kinds of Coherence Measures. Int J Theor Phys 61, 134 (2022). https://doi.org/10.1007/s10773-022-05086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05086-x

Keywords

Navigation