Skip to main content
Log in

Quantum State Recovery Via Environment-assisted Measurement and Weak Measurement

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a quantum state recovery scheme based on environment assisted measurement with weak measurements and flip operations. Before the decoherence channel the weak measurement and flip operators are applied to gain some information about the state of the system and transfer it to a more robust state. Then we utilize environment assisted measurement and post-flip operations to bring the system as close as possible to its initial state. We illustrate our scheme and compare it with a scheme based on environment assisted measurement and weak measurement reversal in the case of a decoherence channel. We show that the success probability of our proposed scheme is significantly improved for all initial states. The proposed scheme is applicable for recovery of N-qubit state from any type of decoherence with at least one invertible Kraus operator. Also, the explicit formula of total fidelity and success probability for recovery of N-qubit GHZ state are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  2. Cong, S.: Control of Quantum Systems: Theory and Methods. Wiley, London (2014)

    Book  Google Scholar 

  3. Cao, Y., Tian, G., Zhang, Z., Yang, Y., Wen, Q., Gao, F.: Composite control for protecting two nonorthogonal qubit states against decoherence. Phys. Rev. A. 032313, 1–9 (2017). https://doi.org/10.1103/PhysRevA.95.032313

    Google Scholar 

  4. Harraz, S., Cong, S., Kuang, S.: Optimal noise suppression of phase damping quantum systems via weak measurement. J. Syst. Sci. Complex. 32, 1264–1279 (2019). https://doi.org/10.1007/s11424-018-7392-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Li-bing, C., Rui-bo, J., Hong, L., Balouchi, A., Jacobs, K., Hessian, H.A., Mohammed, F.A., Mohamed, B.A.: Quantum state preparation and protection by Measurement-Based feedback control against decoherence (2015)

  6. Zhang, J., Wu, R.-B., Li, C.-W., Tarn, T.-J.: Protecting coherence and entanglement by quantum feedback controls. IEEE Trans. Automat. Contr. 55, 619–633 (2010)

    Article  MathSciNet  Google Scholar 

  7. Harraz, S., Cong, S., Li, K.: Two-qubit state recovery from amplitude damping based on weak measurement. Quantum Inf. Process. 19, 1–22 (2020)

    Article  MathSciNet  Google Scholar 

  8. Harraz, S., Cong, S.: N-qubit state protection against amplitude damping by quantum feed-forward control and its reversal. IEEE J. Sel. Top. Quantum Electron. 26. https://doi.org/10.1109/JSTQE.2020.2969574https://doi.org/10.1109/JSTQE.2020.2969574 (2020)

  9. Wang, C., Xu, B., Zou, J., He, Z., Yan, Y., Li, J., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A. 89, 032303 (2014). https://doi.org/10.1103/PhysRevA.89.032303

    Article  ADS  Google Scholar 

  10. Li, X.-G., Zou, J., Shao, B.: Protecting nonlocality of multipartite states by feed-forward control. Quantum Inf. Process. 17, 1–18 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wang, M., Xia, Y., Li, Y., Yang, Y., Cao, L., Zhang, Q., Zhao, J.: Protecting Qutrit-Qutrit entanglement under decoherence via weak measurement and measurement reversal. Int. J. Theor. Phys. 59, 3696–3704 (2020)

    Article  Google Scholar 

  12. Kim, Y.-S., Cho, Y.-W., Ra, Y.-S., Kim, Y.-H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express. 17, 11978–11985 (2009)

    Article  ADS  Google Scholar 

  13. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence via weak quantum measurement. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  14. Lim, H.-T., Lee, J.-C., Hong, K.-H., Kim, Y.-H.: Avoiding entanglement sudden death using single-qubit quantum measurement reversal. Opt. Express. 22, 19055–19068 (2014)

    Article  ADS  Google Scholar 

  15. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  16. Im, D., Lee, C., Kim, Y., Nha, H., Kim, M.S., Lee, S.-W., Kim, Y.-H.: Optimal teleportation via noisy quantum channels without additional qubit resources. npj Quantum Inf. 7, 86 (2021). https://doi.org/10.1038/s41534-021-00426-x

    Article  ADS  Google Scholar 

  17. Wang, Q., Tang, J.-S., He, Z., Yuan, J.-B.: Decoherence suppression in phase decoherence environment using weak measurement and quantum measurement reversal. Int. J. Theor. Phys. 57, 3682–3688 (2018)

    Article  MathSciNet  Google Scholar 

  18. De Lange, G., Van Der Sar, T., Blok, M., Wang, Z.-H., Dobrovitski, V., Hanson, R.: Controlling the quantum dynamics of a mesoscopic spin bath in diamond. Sci. Rep. 2, 1–5 (2012)

    Article  Google Scholar 

  19. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V., Yacoby, A.: Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nat. Phys. 5, 903–908 (2009)

    Article  Google Scholar 

  20. Latta, C., Högele, A., Zhao, Y., Vamivakas, A.N., Maletinsky, P., Kroner, M., Dreiser, J., Carusotto, I., Badolato, A., Schuh, D.: Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nat. Phys. 5, 758–763 (2009)

    Article  Google Scholar 

  21. Xu, X., Yao, W., Sun, B., Steel, D.G., Bracker, A.S., Gammon, D., Sham, L.J.: Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009)

    Article  ADS  Google Scholar 

  22. Gregoratti, M., Werner, R.F.: Quantum lost and found. J. Mod. Opt. 50–6, 915–933 (2003). https://doi.org/10.1080/09500340308234541

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhao, X., Hedemann, S.R., Yu, T.: Restoration of a quantum state in a dephasing channel via environment-assisted error correction. Phys. Rev. A - At. Mol. Opt. Phys. 88, 1–8 (2013). https://doi.org/10.1103/PhysRevA.88.022321

    Google Scholar 

  24. Memarzadeh, L., Macchiavello, C., Mancini, S.: Recovering quantum information through partial access to the environment. New J. Phys. 13. https://doi.org/10.1088/1367-2630/13/10/103031 (2011)

  25. Memarzadeh, L., Cafaro, C., Mancini, S.: Quantum information reclaiming after amplitude damping. J. Phys. A Math. Theor. 44. https://doi.org/10.1088/1751-8113/44/4/045304 (2011)

  26. Wang, K., Zhao, X., Yu, T.: Environment-assisted quantum state restoration via weak measurements. Phys. Rev. A - At. Mol. Opt. Phys. 89, 1–6 (2014). https://doi.org/10.1103/PhysRevA.89.042320

    Article  Google Scholar 

  27. Wang, Q., Xu, L., He, Z.: Restoring quantum states from decoherence of finite temperature using Environment-Assisted measurement. Int. J. Theor. Phys. 59, 2471–2479 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Li, Y.-L., Wei, D.-M., Zu, C.-J.: Improving the capacity of quantum dense coding via environment-assisted measurement and quantum measurement reversal. Int. J. Theor. Phys. 58, 1–9 (2019)

    Article  Google Scholar 

  29. Li, Y.L., Sun, F., Yang, J., Xiao, X.: Enhancing the teleportation of quantum Fisher information by weak measurement and environment-assisted measurement. Quantum Inf. Process. 20, 1–19 (2021). https://doi.org/10.1007/s11128-021-02998-1

    Article  ADS  MathSciNet  Google Scholar 

  30. Pirandola, S., Ottaviani, C., Jacobsen, C.S., Spedalieri, G., Braunstein, S.L., Gehring, T., Andersen, U.L.: Environment-assisted bosonic quantum communications. npj Quantum Inf. 1–7. https://doi.org/10.1038/s41534-021-00413-2https://doi.org/10.1038/s41534-021-00413-2 (2020)

  31. Xu, X.-M., Cheng, L.-Y., Liu, A.-P., Su, S.-L., Wang, H.-F., Zhang, S.: Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Inf. Process. 14, 4147–4162 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Wakamura, H., Kawakubo, R., Koike, T.: State protection by quantum control before and after noise processes. Phys. Rev. A. 96, 1–7 (2017). https://doi.org/10.1103/PhysRevA.96.022325

    Article  Google Scholar 

  33. Wakamura, H.: Noise suppression by quantum control before and after the noise. Phys. Rev. A - At. Mol. Opt. Phys. 022321, 1–9 (2017). https://doi.org/10.1103/PhysRevA.95.022321

    Google Scholar 

  34. Gillett, G.G., Dalton, R.B., Lanyon, B.P., Almeida, M.P., Barbieri, M., Pryde, G.J., O’Brien, J.L., Resch, K.J., Bartlett, S.D., White, A.G.: Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett. 104, 3–6 (2010). https://doi.org/10.1103/PhysRevLett.104.080503

    Article  Google Scholar 

  35. Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109. https://doi.org/10.1103/PhysRevLett.109.150402 (2012)

  36. Kojima, Y., Nakajima, T., Noiri, A., Yoneda, J., Otsuka, T., Takeda, K., Li, S., Bartlett, S.D., Ludwig, A., Wieck, A.D., Tarucha, S.: Probabilistic teleportation of a quantum dot spin qubit. npj Quantum Inf. 7. https://doi.org/10.1038/s41534-021-00403-4 (2021)

  37. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photonics. 9, 641–652 (2015)

    Article  ADS  Google Scholar 

  38. Verma, V.: Bidirectional quantum teleportation by using two GHZ-states as the quantum channel. IEEE Commun. Lett. 25, 936–939 (2020)

    Article  Google Scholar 

  39. Cacciapuoti, A.S., Caleffi, M., Van Meter, R., Hanzo, L.: When entanglement meets classical communications: Quantum teleportation for the quantum internet. IEEE Trans. Commun. 68, 3808–3833 (2020)

    Article  Google Scholar 

  40. Chin, H.-M., Jain, N., Zibar, D., Andersen, U.L., Gehring, T.: Machine learning aided carrier recovery in continuous-variable quantum key distribution. npj Quantum Inf. 7, 1–6 (2021)

    Article  Google Scholar 

  41. Ren, Z.-A., Chen, Y.-P., Liu, J.-Y., Ding, H.-J., Wang, Q.: Implementation of machine learning in quantum key distributions. IEEE Commun. Lett. 25, 940–944 (2020)

    Article  Google Scholar 

  42. Currás-Lorenzo, G., Navarrete, Á., Azuma, K., Kato, G., Curty, M., Razavi, M.: Tight finite-key security for twin-field quantum key distribution. npj Quantum Inf. 7, 1–9 (2021)

    Article  Google Scholar 

  43. Wang, L.-J., Zhang, K.-Y., Wang, J.-Y., Cheng, J., Yang, Y.-H., Tang, S.-B., Yan, D., Tang, Y.-L., Liu, Z., Yu, Y.: Experimental authentication of quantum key distribution with post-quantum cryptography. npj Quantum Inf. 7, 1–7 (2021)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under grant no. 61973290. The research of JJN has been partially supported by the Agencia Estatal de Investigacion (AEI) of Spain, projects MTM2016-75140-P and PID2020-113275GB-I00 and by the European Fund for Regional Development (FEDER). Also by Xunta de Galicia under grant ED431C 2019/02.

Author information

Authors and Affiliations

Authors

Contributions

S.H. conceived and developed the idea of EA-WMF, performed the experiments and analyzed the results. S.C. conceived and supervised the project. J.J.N. discussed the results, and commented on the manuscript.

Corresponding author

Correspondence to Sajede Harraz.

Ethics declarations

Conflict of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Availability of data and materials

Not applicable. For all requests relating to the paper, please contact the first author.

Financial interests

The authors declare they have no financial interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harraz, S., Cong, S. & Nieto, J.J. Quantum State Recovery Via Environment-assisted Measurement and Weak Measurement. Int J Theor Phys 61, 140 (2022). https://doi.org/10.1007/s10773-022-05055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05055-4

Keywords

Navigation