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Abstract
The one-dimensional (1D) Heisenberg spin chain system (HSCS) allows to investigate
anomalous features originating from strong quantum fluctuations, which become more sig-
nificant than those in higher dimensions. A continuum model equation of the HSCS, based
on the discrete model, was constructed in the literature. It is nonlinear Schrodinger equa-
tion (NLSE) with biquadratic dispersion and fifth degree nonlinearity. Rare research works
were done in this area. Notably for deriving the exact solutions and investigate the physi-
cal phenomena produced. Our objective, here, is to obtain these solutions, which we think
they are new. Further, an analog of the different geometric solutions structures to the known
characteristics of HSCS is performed. The unified method is implemented to find the exact
solutions of the continuum model equation. A variety of solutions are obtained where they
are evaluated numerically and represented in graphs. In these graphs, it is remarked that
the solutions exhibit soliton chain (or dense soliton chain).in an analog to spin chain. In the
contour plots, they show different shapes of super lattices. Furthermore, complex chirped
waves are observed. A significant result is that these solutions are bounded by −1/4 and
1/4, which can be relevant to the spins−1/2 and 1/2. The analysis of modulation stability is
carried and it is found that there is a critical value for the dominant parameters, where below
this value, modulation instability holds otherwise modulation stability occurs.For the spec-
tral characteristics, it is shown that the wave number increases abruptly and decreases to
an asymptotic state, while the frequency is monotonic increasing. The spectrum is periodic
wave away from the origin, but near the origin it is soliton.

Keywords Heisenberg · Spin chain · Soliton chain · Super lattices · Unified method

1 Introduction

In the study of quantum phase and phase transition, and quantum computations are paradig-
matic.In quantum spin systems, lower energy state for a nuclear spin in an external field is
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spin (+1/2) while the higher energy corresponds to spin (−1/2). The quantum spin chains
in a magnetic field was studied in [1], by using Bethe-ansatz solutions which arise from
string solutions that continuously connect the mode of the lowest-energy excitation. In [2],
It was reported that antiferromagnetic HSCs, in a 1D trap, are stabilized by strong repulsive
interactions between the two spin components in the absence of an external potential. A
scheme for conditional state transfer in a HSC, produced in a transistor, was proposed and
analyzed in [3, 4]. Exact solutions of the generalized HSCS were found and the thermody-
namic features were studied on the basis of the exact solutions [5]. Analytical and numerical
studies of spin transport in a 1D Heisenberg model, in linear-response regime, were carried
[6]. In [8], the integrability of 1D classical continuum inhomogeneous biquadratic HSC and
the effect of nonlinear inhomogeneity on the soliton of completely integrable spin model
are studied.The integrability aspects of a classical one-dimensional continuum isotropic
biquadratic HSC in its continuum limit was studied. This was achieved via a differential
geometric approach, the dynamical equation for the spin chain is expressed in the form of
a higher-order NLSE [7]. The conserved quantities are expressed in terms of a sum over
simple polynomials in spin variables. Very recently, It was shown that for a NLSE, what-
ever its formulation, is integrable (or compeletly integrable) when the real and imaginary
parts are linearly dependent [9–12]. A direct construction of explicit expressions for all the
quantum integrals of motion for the isotropic Heisenberg s=1/2 spin chain was presented
[13]. Although the 1D Heisenberg ferromagnetic spin chain (HFSC) was rarely studied in
the literature, the (2+1) dimensional HFSC was remarkably considered. This may be argued
to that in the first case the model equation (ME) is taken a NLSE with biquadratic dis-
persion and fifth degree nonlinearity. While in the second case, the ME is taken a NLSE
with quadratic dispersion and Kerr nonlinearituy but in (2+1) dimensions. In [14], the
(2+1)-dimensional HFSC that describes the nonlinear dynamics of magnet was studied.
Two mathematical approaches for showing dark, bright, kink-type and singular soliton solu-
tions to the HFSCS were presented. The NLSE in (2 + 1) dimensions, with beta derivative
evolution, was considered to study nonlinear coherent structures for HFSC with magnetic
exchanges [15]. In [16], the NLSE in (2+1)-dimensions for the HFSC, with anisotropic
and bilinear interactions in the semi classical limit,. where two integrating schemes were
used, was studied. The (2+1)-dimensions HFSCS was considered for the objective of find-
ing the exact solutions via a specific transformation and adopting a modified version of the
Jacobi elliptic expansion method [17]. An ansatz method,to solve The HFSC equation was
used to get bright and dark 1-soliton solutions.Some conditions of integrability were given
which guarantee the existence of solitons [18]. In [19], constructio0n of further exact soliton
solutions of the (2 + 1)-dimensional HFSCE and investigating the nonlinear dynamics of
magnets and explains their ordering in ferromagnetic materials were carried.. The collision
dynamics of soliton in discrete classical ferromagnetic spin chain with Dzyaloshinskii-
Moriya (DM) interaction in the classical limit are analyzed [20]. In [21], The conformable
fractional derivative HFSC was considered via the complete discrimination system for poly-
nomial method. The rational combined multi-wave solutions were obtained for HFSCE
by using the logarithmic transformation and symbolic computation with ansatz functions
[22]. The NLSE that describes the spin dynamics of (2 + 1)-dimensional inhomogeneous
IHFSC with bilinear and anisotropic interactions in the semi classical limit was investi-
gated [23]. n [24], Hirota bilinear method with appropriate polynomial functions in bilinear
forms, the one-order rogue waves solution and its existence condition were obtained. Dif-
ferent methods and techniques were used to solve nonlinear evolution equations; T anh

and Exp-function [25, 26], G′
G

expansion [27], Darboux transformation [28], Kyrdiashov
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method, [29], Hirota-bilinear transformation [30], Lie symmetries of NLPDEs [31].Very
recently different methods and techniques were introduced, among them, the first integral
method, the improved q- homotopy perturbation method and the unified algebraic and aux-
iliary equation expansion methods [32–41]. Here, the unified method (UM) [42–47] is used
in this paper.

The method used here is compared with the known methods, known in the in the litera-
ture.

Indeed, the UM [36] prevails the all known methods such as, the tanh, modified,
and extended versions, the F-expansion, the exponential, the G’/G expansion method, the
Kerdyashov methods, as it is of low time cost in symbolic computation.Further, It provides
solutions which cannot be obtained by the other methods.

The outlines of the paper is in what follows. Section 2 is devoted to mathematical equa-
tions and outlines of the UM and GUM. the solutions in the polynomial form are presented
in Section 3. While the solutions in the rational forms are carried in Section 4. Section 5 is
devoted to modulation stability analysis. Conclusions are given in Section 6.

2 TheModel equation and outlines of the UM

2.1 TheModel equation

For the 1D classical HFSCS with biquadratic exchange and a bilinear exchange interaction,
the Hamiltonian is,

H = −J
∑

n

(Sn..Sn+1) − αJ
∑

n

(Sn..Sn+1)
2, Sn = (Sx

n , S
y
n , Sz

n), S
2
n = 1, (J > 0),

(1)
where Sn := Sn(t) and α is the biquadratic exchange parameter, which is considered in a
dominant parameter. By assuming that the lattice side, a, is small, in the continuum analog,
we write x = na and Sn+1 = S(x, t) + aSx(x, t) + a2Sxx(x,t)/2!+... Up to the order of a4,
the equation of motion takes the form,

St = S × [Sxx + νSxxx + β((S..Sxx)Sx + 2

3
(S..Sxxx)Sx)], (2)

whereν = a2/12 and β = αa2/(1 + 2α). The continuum model equation, based on (2) was
constructed [47]

iwt + wxx + 2w | w |2 +νwxxxx − 4δw∗
xxw

2 − 4 | w |2 wxx

−4α | w |2 wxx − 4ν0w
∗(wx)

2 − 24σ | w |4 w = 0,
(3)

where α:=4β + 9ν; μ = 2β + 3ν; ν0=2β + 7μ
2 , σ=β

2 + ν; δ=β + 2ν, and w := w(x, t).
Equation (1) is a NLSE with the highest biquadratic dispersion and highest nonlinearity of
fifth degree.

The spectral characteristics are, here, introduced. To this issue, we write,

w(x, t) =| w(x, t) | ei(Kx−�t), (4)

where K is the w2ave number and � is the frequency;

K =
∫ ∞

0 (
∫ ∞
−∞ | wx(x, t) | dx)dt

∫ ∞
0 (

∫ ∞
−∞ | w(x, t) | dx)dt

, � =
∫ ∞

0 (
∫ ∞
−∞ | wt(x, t) | dx)dt

∫ ∞
0 (

∫ ∞
−∞ | w(x, t) | dx)dt

, (5)
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and the spectrum content is,

W(k0, t} =
∞∫

−∞
e−i k0xw(x, t)dx. (6)

For the objective of finding the solutions of (3), we introduce a transformation for w(x, t)

with complex amplitude,

w(x, t) = (u(x, t) + iv(x, t))ei(kx−ωt), w(x, t)∗ = (u(x, t) − iv(x, t))e−i(kx−ωt). (7)

This transformation allows to inspect the effect of soliton- periodic wave collision, which
is elastic or inelastic depending on the waves solutions if they are smooth or not smooth.
When inserting (7) into (3) gives rise, for the real and imaginary parts respectively, to,

−4αk2u3 + 4δk2u3 + 4k2μu3 + 4k2νou3 + k4νu − k2u − 24σu5 + 2u3 + uω

−vt − 4αk2uv2 + 4δk2uv2 + 4k2μuv2 + 4k2νouv2 − 48σu3v2 + +2uv2

−24σuv4 − 4k3νvx + +8αkuvux − 16δkuvux − 2kvx − 4αu (ux)
2 − 4νou (ux)

2

−8αku2vx + 8δku2vx + 8kμu2vx + 8kνou2vx − 8δkv2vx + 8kμv2v
)
x

−6k2νuxx + +8kνov2vx − 4δu2uxx − 4μu2uxx − 8νovuxvx + uxx − 4αu (vx)
2

+4νou (vx)
2 − 4kνvxxx + νuxxxx + +4δv2uxx − 4μv2uxx − 8δuvvxx = 0,

(8)

−4αk2u2v + 4δk2u2v + 4k2μu2v + 4k2νou2v + k4νv − k2v + 2u2v + vω

2kux + ut − 4αk2v3 + 4δk2v3 + 4k2μv3 + 4k2νov3 − 48σu2v3 − 24σu4v − 24σv5

+2v3 + [−4k3ν + 8δku2 − 8kμu2 − 8kνou2 + 8αkv2 − 8δkv2 − 8kμv2 − 8kνov2]ux

−4αv (ux)
2 + 4νov (ux)

2 − 8αkuvvx + 16δkuvvx − 8 νouuxvx − 4αv (vx)
2

−4νov (vx)
2 − 6k2νvxx + 4kνuxxx + 4δvxxu(x, t)2 − 4μu2vxx − 8δuvuxx

−4δv2vxx − 4μv2vxx + νvxxxx + vxx = 0.
(9)

We search for traveling waves solutions. To this end, we use the transformations u(x, t)

= U(z), v(x, t) = V (z) and z = ax + bt . Under these transformations (8) and (9) become,
respectively,

−V ′ (8a2νoV U ′ − 4ak3ν + 8akV 2(δ − μ − νo) + 2ak + b
) + U3

(
4k2(−α + δ + μ + νo) − 48σV 2 + 2

) + 4aU2
(
a(δ + μ)U ′′ + 2kV ′(α − δ − μ − νo)

)

−24σU5 + U
(
k4ν + V 2

(
4k2(−α + δ + μ + νo) + 2

) − k2 + ω

−4a2(α + νo)
(
U ′)2 − 4a2α

(
V ′)2 + 4a2νo

(
V ′)2 − 8aV

(
aδV ′′ − k(α − 2δ)U ′)

−24σV 4) + a2
(
aν

(
aU(4) − 4kV (3)

) + U ′′ (−6k2ν + 4V 2(δ − μ) + 1
)) = 0,

(10)
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V 3
(
4k2(−α + δ + μ + νo) − 48σU2 + 2

) − 24σV 5 − k2 − 24σU4 + ω

+U ′ (−4ak3ν + 2ak + b

+8akU2(δ − μ − νo) − 8a2νoUV ′) + V
(
k4ν

+U2
(
4k2(−α + δ + μ + νo) + 2

)

+4a2(νo − α)
(
U ′)2 − 4a2α

(
V ′)2 − 4a2νo

(
V ′)2 − 8aU

(
aδU ′′ + k(α − 2δ)V ′)

)

a2
(
aν

(
aV (4) + 4kU(3)

) + V ′′ (−6k2ν + 4U2(δ − μ) + 1
))

−4aV 2
(
a(δ + μ)V ′′ + 2kU ′(−α + δ + μ + νo)

) == 0.
(11)

Here, the solutions of (10) and (11) are found by using the UM and GUM. The Um
asserts that the solutions of NLPDEs (NLODEs) are formulated in polynomial and rational
forms, in auxiliary functions that satisfy appropriate auxiliary equations AE).

2.2 Outlines of the UM

2.2.1 Polynomial forms

By considering (10) and (11), the polynomial forms are,

U(z) =
m1∑

j=0

ajg(z)j , V (z) =
m2∑

j=0

bjg(z)j , (g′(z))p =
rp∑

j=0

cjg(z)j , p = 1, 2. (12)

To determine mi, i = 1, 2 and r , we use the balance and compatibility conditions. First,
we consider the case when p = 1.The balance condition is determined by balancing the
highest order derivative and highest nonlinearity terms. In the present case, the balance
condition reads m1 = m2 = r − 1. To determine the consistency condition, we require the
following

(a) the number of equations that result from inserting (12) into (10) and (11) and by
setting the coefficients of g(z)i ., i = 0, 1, 2, ..., say h(k).

(b) the number of arbitrary parameters ai, bi, ci , say f(k). For integrable equations the
condition is h(k) − f (k) ≤ s,where s is the highest order derivative (here s = 4). In the
present case the consistency condition reads 1 ≤ r ≤ 3.

The case case when p = 2 can be analyzed by the same way. We mention that when
p = 1, the solutions of the AE are elementary functions, while they are periodic or ellptic
whenp = 2.

2.2.2 Rational forms

In the UM the rational solutions are written,

U(z) = a1g(z)+a0
s1g(z)+s0

, V (z) = b1g(z)+b0
s1g(z)+s0

,

(g′(z))p = ∑rp

j=0 cjg(z)j , p = 1, 2.
(13)

3 Polynomial solutions of (10) and (11)

Here, we consider the following cases.
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3.1 When p = 1and r = 2

In this case (12) reduces to

U(z) = a1g(z) + a0, V (z) = b1g(z) + b0, g′(z) = c2g(z)2 + c1g(z) + c0. (14)

When inserting (14) into (10) and (11), and by setting the coefficients of g(z)i = 0, i =
0, 1, .., we have, (for linearity dependent solutions, b0 = a0b1/a1),

ν =
(
a2

1+b2
1

)(
a2c2

2(α+2δ+2μ+νo)+6σ
(
a2

1+b2
1

))

6a4c24 , c2 = −r2,

ν0 = 6σ
(
a2

1+b2
1

)

a2c2
2

+ α + 4δ, δ:= 1
12c2a2

1k2
(
a2

1+b2
1

)
(
4a2

0b2
1c2

(
12b2

1σ −a2c22(α−2μ)
)

− 48a6
1c0σ + a4

1

(
4a2c0c

2
2(α − 2μ) + c2

(
48a2

0σ + 6αk2 − 3
) − 96c0b

2
1σ

)

+a2
1

(
b2

1c2
(
4a2c2c0(α − 2μ) + 96a2

0σ + 6αk2 − 3
)))

+ a2
1(+a2c23 (−4a2

0(α − 2μ) − 3
) − 48b4

1coσ))

c1 = 2a0c2
a1

, b = P
H

, P = 2ak(− (
α

(
12k2ν−1

) + 2μ−3ν
)

+ 3a4νr8
(
4k2ν + 1

)
a2r4

(
a2

1 + b2
1

)
, H = (

a2
1 + b2

1

) (
12σ

(
a2

1 + b2
1

) − a2r4(α − 2μ)
)
,

c0 = H1
H2,

, H1 = −a4r8
(
a12 (

4ao2(α − 2μ) + 12k2ν + 3
) + 4a2

0b2
1(α − 2μ)

)

+ 24a12k2σ
(
a2

1 + b2
1

)2 + a2r4
(
a2

1 + b2
1

)
,
(
a2

1

(
48a2

0σ + 2k2(5α + 2μ) − 3
) + 48a2

0b2
1σ

)

H2 = 4a2a2
1r2

(
a2

1 + b2
1

) (
a2r4(α − 2μ) − 12σ

(
a2

1 + b2
1

))
,

ω = H3
H4

, H3 = 90a10k2νr20(α − 2μ)
(
4k2ν + 1

) − 432a2k2r4
(
a2

1 + b2
1

)4
σ 2

(
2k2(α + 2μ) − 1

)

− 1728k4σ 3
(
a2

1 + b2
1

)5 − 3a8 a2
1 + b2

1 r16
(−8k2μ2

(
13k2ν + 2

)

+ 2α2k2
(
71k2ν + 4

) − α
(
232k4μν + k2(8μ + 42ν) + 3

)

+ μ
(
84k2ν + 6

)
9σ

(
112k4ν2 + 16k2ν − 3

) − α
(
232k4μν + k2(8μ + 42ν) + 3

))

+ 9a4r8σ
(
a2

1 + b2
1

)3
(4k4

(
5α2 − 28αμ − 12μ2 + 168νσ

)

+ 4k2(α + 10μ + 12σ) − 3) +α
(−144k4

(
μ2 − 14νσ

) + 12k2(8μ − 33σ) + 9
))

,

H4 = 6a4r8
(
a2

1 + b2
1

) (
a2r4(α − 2μ) − 12σ

(
a2

1 + b2
1

))2
.

(15)

By solving the AE in (14), the solutions of (8) and (9) are,

u(x, t) = a1
K tanh (

(z+A0)K

K0
)

K0

K =
√

3a4r8
(
4k2ν + 1

) − (24k2σ(a2
1 + b2

1) + M,
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M = a2r4
(
2k2(5α + 2μ) − 3

)
)
(
a2

1 + b2
1

)

K0 = 2ar2
√

a2
1 + b2

1

√
12σ

(
a2

1 + b2
1

) − a2r4(α − 2μ),

v(x, t) = b1
a1

u(x, t), z = ax + bt .

(16)

The solutions in (16) are evaluated numerical and the results are used to display Rew in
Fig. 1(i)-(v).

Figures 4 and 5. In (iv), the contour plots is displayed, while in (v) the variation of
Re wagainst x for different values of t is done.

Figure 1(i) shows “continuum” soliton chain with trapping, while Fig. 1(ii) and (iii) show
complex soliton chain. Fig. 1(iv) shows super lattices and Fig. 1(v) shows “continuum”
solton chain.

The Spectral characteristics which are given in (5) and (6) are shown in Fig. 2(i)-(iii), for
the wave number, the frequency and spectrum respectively.

Figure 2(i) shows the there a critical value of νwhere it incre4ases and decreases abruptly.
Figure 2(ii) shows that the frequency increases with ν. Figure 2(iii) shows soliton chain with
small amplitude apart near x = 0.

3.2 When p = 2and r = 2

In this case consider the solution in (14), but the AE is,

g′(z) = g(z)

√
c2g(z)2 + c1g(z) + c0. (17)

Fig. 1 The 3D plot is displayed for Re w against x and t by varying the values of αand ν when r := 1.2, k =
1.5, a := 1.2, a1 = 0.7, b1 = 0.5, σ = 0.6, μ = 0.5, A0 = −5. In (i) α = 1.5, ν = 0.3,(ii)α = 1.5, ν = 1.3
(iii) α = 2.5, ν = 0.3
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Fig. 2 The wave number, the frequency and the spectrum are shown for the same caption as in Fig. 1 (i)-(v),
but in (iii)ν = 0.5

By substituting from (14) and (17) into (10) and (11), by the same way as in Section 3.1,
we get,

a1 =
√

3a2c2ν−b2
1(−δ+μ+νo)√−δ+μ+νo

, a0 = c1
4c2

a1, c0 = 3a3c2
1kν+ac1 k

(
8k2ν−4

)−2bc2

8a3c2kν
,

σ = (α+4δ−νo)(δ−μ−νo)
18ν

, b = 2ak
(
3α

(
4k2ν−1

)+δ
(
4k2ν−7

)−4k2μν−4k2ννo+μ−3ν+νo
)

3α+8δ−2(μ+νo)
,

c2 = − a2ν(3α+8δ−2(μ+νo))c2
1

4(−6αk2ν+δ(12k2ν−1)+μ+3ν+νo)
,

ω = 3(α+4δ−νo)
(−δ−6αk2ν+12δk2ν+μ+3ν+νo

)2

4ν(δ−μ−νo)(3α+8δ−2(μ+νo))2 + k4(−ν) + k2

− 3
(
2k2(−α+δ+μ+νo)+1

)(−6αk2ν+δ
(
12k2ν−1

)+μ+3ν+νo
)

2(δ−μ−νo)(3α+8δ−2(μ+νo))
.

(18)

Finally, the solutions of (8) and (9) are,.

u(x, t) = K1
K2

, K1 = −6αk2ν + δ
(
12k2ν − 1

) + μ + 3ν

+ νo
(
exp

(
(A0 + z)

(
3ν

(
4δk2 + 1

) + μ + νo
)
K

)

+ a2c1 exp
(
(Ao + z)

(
δ + 6αk2ν

)
K

)
ν(3α + 8δ − 2(μ + νo)))

√
− 3a4c2

1ν2(3α+8δ−2(μ+νo))

4(−6αk2ν+δ(12k2ν−1)+μ+3ν+νo)
+ b2

1(δ − μ − νo),

K2 = a2c1 ν
√−δ + μ + νo3α + 8δ − 2(μ + νo)(− exp
(
( A0 + z)

(
3ν

(
4δk2 + 1

) + μ + νo
)
K

)

+ a2c1ν(3α + 8δ − 2(μ + νo)) exp
(
(A0 + z)

(
δ + 6αk2ν

)
K

))
,

K =
√

1
a2ν(2(−4δ+μ+νo)−3α)(−6αk2ν+δ(12k2ν−1)+μ+3ν+νo)

,

v(x, t) = b1
a1

u(x, t), z = ax + 2ak
(
3α

(
4k2ν−1

)+δ
(
4k2ν−7

)−4k2μν−4k2ννo+μ−3ν+νo
)

3α+8δ−2(μ+νo)
t .

(19)

The solutions in (20) are used to display Rew in Fig. 3 (i)-(iii)
When ν0 = 3.2, k := 1.5, a := 1.2, a1 = 0.7, b1 = 0.1, σ = \0.6, α = 0.5, μ :=

2.5, ν = 1.3, A0 = −5, δ = 0.1, c1 = 0.6. Theses figures show “continuum” soliton chain.
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Fig. 3 In Fig. 3(i) and , the 3D plot , contour plots are displayed for Re w, while the variation againstx for
different values oft is displayed in Fig. 3(iii)

3.3 When p = 2 and r = 2

Here, we consider the AE,

g′(z) =
√

c4g(z)4 + c2g(z)2 + c0. (20)

By inserting (14) and (20) into (10) and (11), we have,

a1 =
√

3a2c4ν−b2
1(−δ+μ+νo)√−δ+μ+νo

, a0 = 0, b = −2ak
(
2a2c2ν − 2k2ν + 1

)
,

σ = (α+4δ−νo)(δ−μ−νo)
18ν

, k =
√−6αa2c2ν−δ(16a2c2ν+1)+4a2c2μν+4a2c2ννo+μ+3ν+νo√

6
√

ν(α−2δ)
,

ω = a4ν

(
−c2

2 − 12c4co(α+δ−μ)
δ−μ−νo

)
−

(−6αa2c2ν−16a2c2δν+4a2c2μν+4a2c2ννo−δ+μ+3ν+νo
)2

36ν(α−2δ)2

+ a2cc

(−α
(
6a2c2ν+1

)−16a2c2δν+4a2c2μν+4a2c2ννo+δ+μ+3ν+νo
)

α−2δ

+ −6αa2c2ν−δ
(
16a2c2ν+1

)+4a2c2μν+4a2c2ννo+μ+3ν+νo
6ν(α−2δ)

,

c4 = m2, c0 = r2, c2 = −n2,

(21)
The solutions of (8) and (9) are,

u(x, t) =
√

3a2m2ν−b2
1(−δ+μ+νo)√−δ+μ+νo

√
2
(
n2

√
n4−4m2r2+2m2r2−n4

)
sn

(√
2r

√
m2

n2−
√

n4−4m2r2
(Ao+z),| n2−

√
n4−4m2r2

n2+
√

n4−4m2r2

)

(
n2−

√
n4−4m2r2

)2
√

m2

n2−
√

n4−4m2r2

v(x, t) = b1
a1

u(x, t), z = ax − 2ak
(
2a2c2ν − 2k2ν + 1

)
t .

(22)
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The solutions in (22) are used to display | w | in Fig. 4 (i)-(iii).
When ν0 = 3.2; k := 1.5, a = 1.2, a1 = 0.7; b1 = 0.1, σ = 0.6, α = 0.5, μ = 2.5, ν =

1.3, A0 = −5, δ = 0.3,m := 0.6, r = 1.2, n = 3.
Figure 4(i) shows complex chirped waves, while Fig. 4(ii) shows super lattices.

Figure 4(iii) shows dense “continuum” solion chain.

4 Rational solutions of (10) and (11)

We consider the solution in (13), together with AE,

g′(z) = c1g(z) + c0. (23)

By using (13) and (23) into (10) and (11), we get,

ω = 1
s4
1
(2b2

1s
2
1

(
2k2(α − δ − μ − νo) − 1

) + k2s4
1

(
1 − k2ν

)

+ 24a4
1σ + 24b4

1σ + a2
1

(
s2

1

(
4k2(α − δ − μ − νo) − 2

)) + 48b2
1σ)),

b = 1
a1c1s

4
1

(
a2b1c

2
1s

4
1

(
a2c2

1ν − 6k2ν + 1
) − 4b3

1s
2
1

(
a2c2

1(δ + μ)

+2k2(α − δ − μ − νo) − 1
)

− 2aa1c1ks2
1

(
s2

1

(
2a2c12ν − 2k2ν + 1

) + 4b2
1(δ − μ − νo)

)

+ 8aa3
1c1ks2

1 (−δ + μ + νo) − 96a4
1b1σ − 96b5

1σ

−4a21

(
b1 s2

1

(
a2c2

1(δ + μ) + 2k2(α − δ − μ − νo) − 1
) + 48b3

1σ
))

,

c0 = − 3c1s0
2s1

, μ = P1
Q

, P1 = −5a5b2
1c

5
1νs2

1 + 242a4a1b1c
4
1kνs2

1
+ 4a1b1k

(
a2

1

(
11 − 38αk2

) +b2
1

(
11 − 38αk2

) + 3k2s2
1

(
6k2ν − 1

))

+ a3c2
1s

2
1

(
456a2

1k2ν + b2
1

(
99k2ν + 1

)) + 2a2 a1b1c
2
1k

(−4α
(
a2

1 + b2
1

)

+s2
1

(
114k2ν + 13

)) + a1c1
(
b4

1

(
4 − 16αk2

) + 3b2
1k

2s12 (
1 − 6k2ν

)

− 4a2
1

(
b2

1

(
4αk2 − 1

) + 12k4νs2
1

)
), Q = 16a1b1k

(
a2

1 + b2
1

) (
3k2 − a2c12) ,

δ = P2
Q

, P2 = −102a4a1b1c
4
1kνs2

1 + 5a5b2
1c

5
1νs12

+ 12a1b1k
(
a2

1 + b2
1

) (
2αk2 − 1

)

+ ab1c
2
1

(
4a2

1

(
4αk2 − 1

) + 4b2
1

(
4αk2 − 1

) + 3k2s12 (
6k2ν − 1

))

+ 2a2a1b1c
2
1k

(
4α

(
a2

1 + b2
1

) − 3s2
1 s12 (

8k2ν + 1
))

− a3c2
1s

2
1

(
120a2

1k2ν + b2
1

(
99k2ν + 1

))
, a= k√

2c1
, k= 1

2
√

α
,

b1 = 1
4

√√
2
15 s2

1

√
σ(8α−17ν)

ασ
− 16a2

1, a0= − 4a1s0
s1

.
(24)
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Fig. 4 In Fig. 4(i) and , the 3D plot , contour plots are displayed for | w |, while the variation againstx for
different values of t is displayed in Fig. 4(iii)

The solutions of (8) and (9) are,

u(x, t) = 2A0a1s1e
c1z−5a1s0

2A0s
2
1ec1z+5a1s0

, v(x, t) = = 1
4

√

s12

√
2
15

√
σ(8α−17ν)

ασ
− 16a2

1u(x, t),

z = H3
H4

, H3 = −3σs4
1 t

(
448α2 − 8384αν + 15793ν2

)

+ 24 a1ασs2
1

√
σ(8α − 17ν)

(√
30 a1t (56α − 449ν)

+4
(−6αt + 99νt + 10α3/2x

) √
s12

√
30

√
σ(8α−17ν)−240αa12σ

ασ

)

+ 8 s12 t (8α − 17ν)(α + νo)
(
s2

1

√
30

√
σ(8α − 17ν) − 240αa2

1σ

+2
√

30αa1σ

√
s2
1

√
30

√
σ(8α−17ν)−240αa12σ

ασ

)
,

H4 = 1920
√

2α3a1c1σs2
1

√
σ(8α − 17ν)

√
s2
1

√
30

√
σ(8α−17ν)−240αa12σ

ασ
.

(25)

The results in (25) are used to display Rew in Fig. 5 (i)-(iii).
In Fig. 5(i) and (ii0, the 3D and contour plots of Rew are displayed, while the variation

of Rewagainst x fo0r different values of t is displayed.
Figure 5(i) shows “—continuum” soliton chain with trap, while )ii) shows mixed lattice-

solitons.

Fig. 5 When a1 = 0.5, ν0 = 3.2, k = 1.5, a := 1.2, σ=0.6, α=1.5, μ:=2.5, ν=0.5, A0 = 5, s1 = 3, s0 =
1.5, c1 = 2.5
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5 Modulation stability analysis

To study the modulation instability of a system, it should exhibit a normal mode. That is a
periodic standing waves. Here, (3) has a solution of the form.

wm(x, t)=Qei(rx−qt), wm(x, t)∗=Qe−i(rx−qt). (26)

By inserting (24) into (3), we get

q=4αQ2r2 − 4δQ2r2 − 4μQ2r2 − 4νoQ2r2 + 24Q4σ − 2Q2 − νr4 + r2. (27)

We write the solution expansion near wm,

w(x, t)=Qei(rx−qt)
(
1 + ε1e

λt (U(x) + iV (x)) + O(ε2)
)

w(x, t)∗=Qe−i(rx−qt)
(
1 + ε2eλt (U(x) − iV (x)) + O(ε2)

)
,

(28)

in (3) and Calculations give rise to,

H

(
ε1
ε2

)
= 0, H =

(
h11 h12
h21 h22

)
,

h11 = U
(
q + Q2

(
8r2(−α + δ + μ + νo) + 4

) − 72Q4σ + r2
(
νr2 − 1

))

+ 2rV ′ (Q2(4(μ + νo) − 2α) + 2νr2 − 1
) − 4μQ2U ′′ − 6νr2U ′′

− 4νrV (3) + νU(4) + U ′′,
h21 = V

(
q + Q2

(
8r2(−α + δ + μ + νo) + 4

) − 72Q4σ + r2
(
νr2 − 1

))′

+ 4αQ2rU − 8μQ2rU ′ − 8νoQ2rU ′ − 4μQ2V ′′ − 4νr3U ′
− 6νr2V ′′ + 4νrU(3) + 2rU ′ + λU + νV (4) + V ′′,

h12 = 2Q2U
(−24Q2σ + 2r2(−α + δ + μ + νo) + 1

)

− 4Q2
(
r(α − 2δ)V ′ + δU ′′) ,

h22 = 2Q2
(
V

(
24Q2σ + 2r2(α − δ − μ − νo) − 1

) − 2r(α − 2δ)U ′ + 2δV ′′) .

(29)

The solution of (26) is detH = 0, which yields,
(
V

(
24Q2σ + 2r2(α − δ − μ − νo) − 1

) − 2r(α − 2δ)U ′ + 2δV ′′
(
U

(
q + Q2

(
8r2(−α + δ + μ + νo) + 4

) − 72Q4σ + r2
(
νr2 − 1

)) + 2rV ′
(
Q2(4(μ + νo) − 2α) + 2νr2 − 1

) − 4μQ2U ′′ − 6νr2U ′′ − 4νrV (3) + νU(4) + U ′′)

− (
U

(−24Q2σ + 2r2(−α + δ + μ + νo) + 1
) − 2

(
r(α − 2δ)V ′ + δU ′′))

(
V

(
q + Q2

(
8r2(−α + δ + μ + νo) + 4

) − 72Q4σ + r2
(
νr2 − 1

)) + λU
′

+4αQ2rU − 8μQ2rU ′ − 8νoQ2rU ′ − 4μQ2V ′′
−4νr3U ′ − 6νr2V ′′ + 4νrU(3) + +2rU ′ + νV (4) + V ′′)) = 0.

(30)
We solve the eigenvalue problem in (27) subjected to the boundary conditions |

U(±∞) |≤ U0 and | V (±∞) |≤ V0. Thus the eigenfunctions take the form.

U(x)=U0ei(hx), V (x)=V0ei(hx). (31)

By substituting from (28) into (27), we have,

λ = 1
Q

2V0

(
2δh6ν + 2Q2

(
24Q2σ + 2r2(α − δ − μ − νo) − 1

)2

+ h4
(
ν + δ

(
8μQ2 + 30νr2 − 2

) +2νr2(−5α + μ + νo) − 24νQ2σ
)

+ h2
(− (

4Q2(δ + μ) − 1
) − 4νr4(5α − 7δ − 3(μ + νo))

(24Q2σ − 1) + 2r2
(−μ + 3ν − νo + (4α2 + 4δ2 + 4μ2 + 4μνo)Q2

+α
(
3 − 4Q2(3δ + 3μ + 2νo)

) + δ
(
4Q2(6μ + 5νo) − 5

) − 72νQ2σ
)))

,

(32)
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Fig. 6 When r=1.2, k:=1.5, δ = 0.2, h=0.5, μ=0.5, U0 = 5, V0 = 3.In (i) α=2.5, ν0 = 2.3,(ii)
, α=2.5, ν=1.3

Q:=

√
U2

0 − V 2
0

√
2h2ν + 2νr2 − 1

2
√

U2
0 (α − δ − μ − νo) + Vo2(−δ + μ + νo)

, (33)

together with as lengthy equation for σ , which will not produced here. The eigenvalue λ

given in (29) is displayed against the dominant parameters ν, α and ν0in Fig. 6 (i)-(iii)
and (iii); α=2.5, ν=1.7, ν0 = 2.3.
Figure 6(i) shows that modulation stability holds against ν. While, in Fig. 6(ii) and (iii)

there are the critical values νocr = 1.25 and αcr = 1.4,where below these values instability
hols otherwise stability occurs.

6 Conclusions

The 1D Heisenberg spin chain system is considered. In continuum analog a o equation wad
derived in the literature. Which is a nonlinear Schrodinger equation with bi-quadratic dis-
persion and fifth degree nonlinearity. Here, this equation is studied for the objectives of
finding the exact solutions and investigating the relevant phenomena vis-a-vis with spin
chain.The exact solutions are obtained by using the unified method in polynomial and
rational forms. A transformation that enables us to inspect the effects of soliton- periodic
wave collision is proposed.The collision can be elastic or inelastic according to the waves
solutions are smooth or not smooth. Numerical evaluation of the solutions are carried and
displayed in figures. It is found that the solutions exhibit “continuum” soliton chain, while
the contour plots show super lattices or lattices with trapping. It is remarked the the solu-
tions are bounded by −1/4 and 1/4 which may be relevant with the spin −1/2 and 1/2.The
modulation stability analysis is carried and it is shown that there is a critical value of the
dominant parameters that separates stability and instability. It is worth noticing that the
waves solutions found here are smooth, so waves collision is elastic.
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30. Belmonte-Beitia, J., Pérez-Garcı́a, V.M., Vekslerchik, V., Torres, P.J.: Lie Symmetries and solitons in
nonlinear Systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)

31. Akinyemi, L., Rezazadeh, H., Shic, Q.-H., Inc, M., M.A.Khater, M., Ahmad, H., Jhangeer, A.J., Ali
Akbar, M.: New optical solitons of perturbed nonlinear Schrödinger–Hirota equation with spatio-
temporal dispersion. Res.in Phys. 29, 104656 (2021)

32. Akinyemi, L., Nisar, K.S., Saleel, C.A., Rezazadeh, H., Veeresha, P., M.A.Khater, M., Inc, M.: Novel
approach to the analysis of fifth-order weakly nonlocal fractional Schrödinger equation with Caputo
derivative. Res. in Phys. 31, 104958 (2021)

33. Kilic, B., Inc, M.: On optical solitons of the resonant schrödinger’s equation in optical fibers with dual-
power law nonlinearity and time-dependent coefficients, Waves in Rand. Complex Media 25(3), 334–341
(2015)

34. Inc, M., Kilic, B., Baleanu, D.: Optical soliton solutions of the pulse propagation generalized equation
in parabolic-law media with space-modulated coefficients. Optik 127( 3), 1056–1058 (2016)

35. Kilic, B., Inc, M.: Soliton solutions for the Kundu–Eckhaus equation with the aid of unified algebraic
and auxiliary equation expansion method. J. of Elect. Waves Appli. 30(7), 371–379 (2016)

36. Silva, S.L.L.: Thermal Entanglement in 2 × 3 Heisenberg Chains via Distance Between States. Int J
Theor Phys 60, 3861–3867 (2021)

37. Zhou, Q., Liu, S.: Dark optical solitons in quadratic nonlinear media with spatio-temporal dispersion.
Nonlinear Dyn. 81, 733–738 (2015)

38. Abdel-Gawad, H.I., Tantawy, M., Mani Rajan, M.S.: Similariton regularized waves solutions of the
(1+2)-dimensional non-autonomous BBME in shallow water and stability. J. Ocean Eng. and Sci.
https://doi.org/10.1016/j.joes.2021.09.002 (2021)

39. Liu, W.: Parallel line rogue waves of a -dimensional nonlinear Schrödinger equation describing the (2+1)
Heisenberg ferromagnetic spin chain Romanian. J Phys 62(118), 1–16 (2017)

40. Alvarez, J.V., Gros, C.: Low-Temperature Transport in Heisenberg Chains. Phys. Rev. Lett. 88, 077203
(2002)

41. Abdel-Gawad H.I.: Towards a unified method for exact Solutions of evolution Equations. An application
to reaction diffusion equations with finite memory transport. J. Stat. Phys. 147, 506–521 (2012)

42. Alderremy, A.A., Abdel-Gawad, H.I., Saad, K.M., Aly, S.H.: New exact solutions of time conformable
fractional Klein Kramer equation. Opt. and Quantum Elect. 53, 693 (2021)

43. Abdel-Gawad, H.I.: Zig-zag, bright, short and long solitons formation in inhomogeneous ferromagnetic
materials. Kraenkel-Manna-Merle equation with space dependent coefficients (2021)

44. Abdel-Gawad, H.I.: Study of modulation instability and geometric structures of multisolitons in a
medium with high dispersivity and nonlinearity, Pramana 95, Article number: 146 (2021)

45. Tantawy, M., Abdel-Gawad, H.I.: On continuum model analog to zig-zag optical lattice in quantum
optics. Appl Phys. B 127, 120 (2021)

46. Abdel-Gawad, H.I.: A generalized Kundu--Eckhaus equation with an extra-dispersion: pulses configu-
ration, optical Quant. Elect. 53, Article number: 705 (2021)

47. Lakshamanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the
Heisenberg spin chain. Phys. Lett. A 133, 9 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 15 of 15 188

https://doi.org/10.1016/j.joes.2021.09.002

	Continuum Soliton Chain Analog to Heisenberg Spin Chain System. Modulation Stability and Spectral Characteristics
	Abstract
	Introduction
	The Model equation and outlines of the UM
	The Model equation
	Outlines of the UM
	Polynomial forms
	Rational forms


	Polynomial solutions of (10) and (11)
	When p=1and r=2
	When p=2and r=2
	When p=2 and r=2

	Rational solutions of (10) and (11)
	Modulation stability analysis
	Conclusions
	References




