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Abstract
The Suppes-Zanotti inequalities involving the joint expectations of just three binary quan-
tum observables are (re-)derived by the hull computation of the respective correlation
polytope. A min-max calculation reveals its maximal quantum violations correspond to a
generalized Tsirelson bound. Notions of “contextuality” motivated by such violations are
critically reviewed.

Keywords Suppes-Zanotti inequalities · Greenberger-Horne-Zeilinger argument ·
Kochen-Specker theorem · Born rule · Min-max calculation · Convex polytope ·
Contextuality

1 Two-Partite Vector-Based Expectations not Satisfying Classical
Bounds

Classical bounds on probabilities and expectations can be expected to be “violated” by or
“being different” from quantum probabilities and expectations because the latter are based
on multi-dimensional vectorial entities whereas the former are based on scalars in (sub)sets
of power sets. Exactly how these violations are operationalized and measured has developed
from an intuitive, heuristic search in the early days [1–3] into a systematic method [4–8].

The most elementary expression of the classical versus quantum difference quoted earlier
is the two-partite correlation function of two dichotomic observables X, Y ∈ {−1,+1}.
It is empirically collected from a series of N measurements of X and Y and defined by
〈X, Y 〉s ≈ 1

N

∑N
i=1 XiYi , where the index i refers to the ith measurement, and s refers

to a specific (unaltered) state on which these repetitive measurements are performed. It is
assumed that, if N increases, the limit exists and is monotonically approached – that is, for
“large enough” N , 〈X, Y 〉s is a “good approximation” [9].
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1.1 Classical Predictions on “singlet-type” States

It is not too difficult to model a classical two-partite state q which shows “singlet-like” char-
acteristics – an example would be the angular momentum in a particular spacial direction of
two fragments of a bomb which originally had no angular momentum in any direction [10].
An argument involving equidistribution of angular momenta of the fragments reveals a lin-
ear classical correlation on such a state; that is, 〈X, Y 〉c = E(X, Y ) = E(θ) = −1 + 2θ/π ,
where the angle 0 ≤ θ ≤ π characterizes the “spatial separation” of the directions of these
observables X and Y .

1.2 General Classical Predictions

To construct a generic classical situation, a generalized urn model [11] is introduced which
can also be phrased in terms of finite-state identification problems of automata allowing
complementarity [12]. Its formalization is in terms of set-theoretic partitions [13] and power
sets.

In terms of generalized urn models, we consider urns filled with black balls painted with
three different colors, one color per observable X, Y , and Z. Since each observable may
have two different outcomes we can, for instance, label these outcomes by “+” and “−”,
printed on these balls in the respective colors. There are eight such ball types. As the urn
is filled with an arbitrary distribution of ball types, it can only be ascertained that they
occur with probabilities 0 ≤ λ±±± ≤ 1, were the indices refer to the respective symbols
in the colors associated with our three observables. Since in such a scheme the ball types
are mutually exclusive and their enumeration is complete (i.e., exhaustive), we can suppose
that

∑
i,j,k∈{+,−} λijk = 1, and the joint expectations add up accordingly; e.g., E(X, Y ) =

∑
k∈{+,−}

[
λ++,k + λ−−,k − (

λ+−,k + λ−+,k

)]
.

1.3 Quantum Predictions on a Singlet State

The quantum predictions of a single observable in an arbitrary direction characterized by
the spherical coordinates 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π is derived from the Pauli spin
matrices σx , σy and σz forming the spin operator σ (θ, ϕ) = σx sin θ cos ϕ +σy sin θ sin ϕ +
σz cos θ and the single particle projection operator S±(θ, ϕ) = 1

2 [I2 ± σ (θ, ϕ)] for
the states “−” and “+”, respectively. The respective two-partite projection operators are
S±1±2(θ1, ϕ1, θ2, ϕ2) = S±1(θ1, ϕ1)⊗S±2(θ2, ϕ2). Finally, the operator associated with the
two-partite expectations is F(X, Y ) = F(θ1, ϕ1, θ2, ϕ2) = S++ + S−− − (S+− + S−+) =
σ (θ1, ϕ1) ⊗ σ (θ2, ϕ2).

Suppose we are interested in the correlation function for a singlet state in the Bell
basis q = |�−〉〈�−| with |�−〉 = 1√

2

(
0, 1,−1, 0

)ᵀ
, then the quantum prediction yields

〈X, Y 〉q = F(θ1, ϕ1, θ2, ϕ2) = − [cos θ1 cos θ2 + cos(ϕ1 − ϕ2) sin θ1 sin θ2]. For ϕ1 = ϕ2
this reduces to the well-known cosine form 〈X, Y 〉q = F(θ1, 0, θ2, 0) = F(θ1 − θ2) =
− cos(θ1 − θ2), that is, the two-partite correlation for dichotomic observables X, Y = ±1
of the two-partite singlet state is proportional to the Euclidean scalar product between the
vectors associated with X and Y .

The maximal quantum-to-classical violations

max
θ∈{0,π}

|E(θ) − F(θ)| =
√

1 −
(

2

π

)2

− 2

π
cos−1 2

π
≈ 0.2 (1)
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resulting from less, as well as more, equal occurrences of the joint observables ++/−− and
+−/−+, occur at angles (d/dθ) [E(θ) − F(θ)] = 0, that is, at

θ = sin−1 2

π
as well as

θ = π − sin−1 2

π
, respectively. (2)

1.4 Quantum Predictions onmore General Pure States

By a min-max calculation [14] it is not too difficult to compute those quantum states which,
given arbitrary angles between the two observables X and Y , yield the minimal and maximal
correlations: all that is needed is the eigensystem of F(θ1, ϕ1, θ2, ϕ2). Rather than enumer-
ating this eigensystem in full generality the special case θ1 = θ and θ2 = ϕ1 = ϕ2 = 0 is
posted, resulting in the (decomposable) vectors (modulo normalization)

|ψ1,min〉 = (
0, cos θ + 1, 0, sin θ

)ᵀ
as well as

|ψ2,min〉 = (
cos θ − 1, 0, sin θ, 0

)ᵀ
(3)

for the minimal expectation 〈X, Y 〉 = −1; and

|ψ1,max〉 = (
0, cos θ − 1, 0, sin θ

)ᵀ
as well as

|ψ2,max〉 = (
cos θ + 1, 0, sin θ, 0

)ᵀ
(4)

for the maximal expectation 〈X, Y 〉 = 1, respectively.

2 The Case of Three Observables

2.1 Classical Bounds

One might as well stop here, contemplate the elementary difference between two forms of
probabilities based on scalars and power sets in the classical case, and on vectors and the
vector space spanned by them in the quantum case, and leave it at that. However, this is
not what happened historically: Bell and others tried to find criteria for non-compliance
with classical behavior involving more than just two observables. In particular, Suppes
and Zanotti [15–17] presented special cases of what Boole called “conditions of possible
experience” [18, 19] involving just three dichotomic observables X, Y,Z ∈ {−1,+1}.

The original method of deriving these bounds is rather involved. But with today’s con-
vex polytope techniques [4, 7, 20] it is not too difficult to derive those inequalities: (i) form
all possible combinations of joint occurrences by multiplying the respective dichotomic
observables – in this case E(X, Y ) = XY , E(X,Z) = XZ, E(Y, Z) = YZ; (ii) form
the 3-tuples (that is, the finite ordered list or sequence) of all three numbers for particu-
lar instances of X, Y,Z ∈ {−1,+1} (

E(X, Y ), E(X,Z), E(Y, Z)
) = (

XY,XZ, YZ
)
, (iii)

pretend these 3-tuples are coordinates (with respect to the Cartesian three-dimensional stan-
dard basis) of vertices of a convex polytope, and (iv) according to the Minkowski-Weyl
“main” representation theorem [21–23] represent this polytope as its facets obtained by the
hull computation [23, 24]. These facet (in)equalities represent Boole-Bell type “conditions
of possible (classical) experience”.

With three dichotomic observables, such procedures result in eight three-dimensional
row vectors. Four of them are linearly independent. They are interpreted as the vertices of a
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correlation polytope. The row vectors, stacked on top of one another, form a 4×3 Travis [25]
matrix [26]

Tij =

⎛

⎜
⎜
⎝

+1 +1 +1
+1 −1 −1
−1 +1 −1
−1 −1 +1

⎞

⎟
⎟
⎠ . (5)

The hull computation (eg, by pycddlib [27], a Python wrapper of Fukuda’s cddlib
algorithm [28] implementing the Double Description Method [29]) yields the four Suppes-
Zanotti-Brodi inequalities [15, 16]

−1 ≤ E(X, Y ) + E(X,Z) + E(Y, Z),

−1 ≤ −E(X, Y ) − E(X,Z) + E(Y, Z),

−1 ≤ E(X, Y ) − E(X,Z) − E(Y, Z),

−1 ≤ −E(X, Y ) + E(X,Z) − E(Y, Z).

(6)

2.2 Quantum Bounds byMin-Max Calculation

The min-max calculations [14] of the associated operators F(X, Y )±F(X,Z)±F(Y, Z) with
the quantum expectation F as defined earlier amounts to summing up the separate terms and
determining the eigensystem of these new observables. It yields quantum bounds allowing
ranges bounded by

− 3 < F(X, Y ) ± F(X,Z) ± F(Y, Z) < 3 (7)

which violate the classical ones (6) by almost the greatest algebraically possible amount.
For the sake of more concrete realizations, we shall set all azimuthal angles to zero and

take equidistant polar angles such that the directions of X, Y , and Z in configuration space
are 0, θ , and 2θ , respectively. Then the min-max computation associated with F(0, θ) +
F(0, 2θ) + F(θ, 2θ) exhibits two eigenvalues

μ1 = −(5 + 4 cos θ)1/2 ≤ −(1 + 2 cos θ) = μ2 (8)

which, in a certain domain of θ , violate the first inequality in (6). The associated pure states
are proportional to

|x1〉 = (
a, b, −b, a

)ᵀ
, where

a = 2(cos θ + 1) sin θ and

b = 2 cos θ + cos(2θ) + √
5 + 4 cos θ , as well as

|x2〉 = (− sin θ, cos θ, cos θ, sin θ)ᵀ, respectively. (9)

Note that for θ → 0 these two states converge to indecomposable vectors proportional to
the Bell basis states (0, 1, −1, 0)ᵀ as well as (0, 1, 1, 0)ᵀ. Indeed, for θ → 0, the two other
eigenstates rendering the two eigenvalues (5 + 4 cos θ)1/2, 1 + 2 cos θ → 3, converge to the
remaining states in the Bell basis.

2.3 Composition of Higher-Order Distribution by Lower-Order Ones

For some “practical” application recall Specker’s story about [30] “a wise man from Ninive
. . . who was . . . concerned almost exclusively about his daughter” and an oracle potential
suitors had to cope with: “The suitors were led in front of a table on which three boxes
were positioned in a row, and they were ordered to indicate which of the boxes contained a
gem and which were empty. And now no matter how many times they tried, it seemed to be
impossible to solve the task. After their predictions, each of the suitors was ordered to open



International Journal of Theoretical Physics

two boxes which they had indicated to be both empty or both not empty: it turned out each
time that one contained a gem and the other did not, and, to be precise, sometimes the gem
was in the first, sometimes in the second of the boxes that were opened. But how can it be
possible that from three boxes neither two can be indicated as empty, nor as not empty?”

A similar scheme was mentioned by Garg and Mermin [5]: “if we have three dichotomic
variables each of which assumes either the value 1 or -1 with equal probability and all the
pair distributions vanish unless the members of the pair have different values . . . .”

These scenarios mention three observables and strict anti-correlations between pairs of
observable outcomes, such that E(X, Y ) = E(X,Z) = E(Y, Z) = −1. As can be read-
ily checked by the (maximal) violation of the first Suppes-Zanotti-Brodi inequalities (6) no
classical global probability distribution allows this. But quantum mechanics can “almost”
provide a realization as it yields “almost perfect” anti-correlations at “almost vanishing”
angles 0 < θ 
 1. The “reason” for this is threefold: (i) the quantum expectation func-
tion, as mentioned earlier, is 〈X, Y 〉q = F(θ1, 0, θ2, 0) = − cos(θ1 − θ2); (ii) the three
expectation functions are complementary and therefore cannot be measured simultaneously
– they have no simultaneous value definiteness; and (iii) the quantum resources exploit a
four-dimensional Hilbert space with probabilities based on vectors rather than scalars.

It might be worth noting that Greenberger, Horne, and Zeilinger proposed another, adap-
tive, protocol involving expectations of order three and going beyond stochastic quantum
violations of classical predictions [31–33] which could be rewritten as a game “people
play” [34–36] in which particular quantum states allow certain players always to win
whereas this is not guaranteed classically [37].

3 The Case of Four andmore Observables

For completeness, we just mention that the addition of an additional variable yields the well-
known Clauser-Horne-Shimony-Holt inequalities [2]. A polytope derivation can be found
in Refs. [4, 7, 20]. Its quantum bound −2

√
2 ≤ F(W, Y )+F(W,Z)+F(X, Y )−F(X,Z) ≤

2
√

2 derived by Cirel’son (aka Tsirelson) [38] can be straightforwardly obtained from a
min-max calculation [14] of its eigensystem. The quantum states rendering this bound
can be represented by the vectors proportional to (−1, 1, 1, 1)ᵀ and (−1,−1,−1, 1)ᵀ,
respectively.

The polytope method can be straightforwardly scaled to derive Boolean “bounds of clas-
sical experience” for over four observables [39–41]. Their respective quantum violations
can again be derived by a min-max calculation [14].

4 “Contextuality” in Context

Let me add a cautionary remark on the widely held opinion that violations of classical
Boolean criteria such as the Suppes-Zanotti-Brodi inequalities suggest or even imply “con-
textuality”. Presently the term “contextual” [42–52] is often heuristically used as “violation
of some inequality that is derived by assuming classical probability distributions” [53, 54].
There are a variety of notions [55] and accompanying measures [45, 56–58] for the term
“contextuality”.

This “modern” quantitative use of the word can be contrasted with Bohr’s synthetic sug-
gestion of a conditionality of phenomena by [45, 46, 59] “the impossibility of any sharp
separation between the behavior of atomic objects and the interaction with the measuring
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instruments which serve to define the conditions under which the phenomena appear.” A
related proposition from the realist Bell contends that [60] “the result of an observation may
reasonably depend . . . on the complete disposition of the apparatus.”

In this line of thought an experimental outcome—or, in another wording, a phenomenon
that should be considered as [61–63] “the comprehension of the effects observed under
given experimental conditions”—is composed of contributions from both the measured
object as well as from the measurement apparatus. Therefore the entire experimental
configuration—effectively the experimental context—needs to be taken into account. As
not all experimental contexts can be expected to be physically realizable simultaneously,
not all observables can be expected to be jointly measurable. In essence this view sug-
gests that contextuality reduces to what Bohr considers to be complementarity [45, B1–B3];
and also to Heisenberg’s related Principle of Indeterminacy or Uncertainty Principle—
contextuality from indeterminacy [46, 47, 64]. (See also Glauber’s concrete quantum
amplifier model [65–67], as well as the “Humpty-Dumpty” model of spin measurements
[68, 69].)

However, this does not imply – and it may be even misleading to believe – that these
conceivable “results of an observation” (aka outcome/event) are “dormant” properties of
the object (alone) which become “visible/actuated” by some “complete disposition of the
apparatus” (aka context). More precisely, there need not be any functional (in the sense of
uniqueness) dependency of the outcome that originates from inherent information, causes
or factors residing in or determined by the observed system; no value definite intrinsic prop-
erty of the object alone. One could understand Bohr and Bell also by their insistence that
the value definite properties (characterizing its physical state) of the object become “amal-
gamated” with (properties of) the measurement apparatus, so that an observation signals the
combined information both of the object as well as of the measurement apparatus.

If one prepares a quantized system to be in a pure state formalized by a vector, then
it is perfectly value definite for observable properties corresponding to that same prepara-
tion (context). But if there is a mismatch between preparation and measurement, the latter
environment distorts value definiteness by an “inflow” of information from “outside of” the
object. Consequently, it makes no sense to speak of any such measurement result as “being
an element of physical reality” associated with the observed system alone – one has to add
the (open) environment which “translates” the preparation into the measurement, thereby
introducing (external with respect to the object) noise [67, 70].

5 What Propositions Support which Probabilities?

For comparing probabilities and expectations on propositional structures I maintain that in
all such considerations two issues need to be distinguished as separate criteria:

(i) Given some particular type of propositional structure (aka logics); which variety of
probability distribution(s) is(are) supported by this propositional structure?

(ii) Given two or more such varieties of probability distributions, exactly what types of
probability distributions should be compared with one another? Is this not a question
that needs to be settled for the particular type of systems dealt with?

I am unaware of any systematic way of answering the first question (i). One approach,
motivated by Gleason-type theorems [71–76], is in terms of is Cauchy-type functional
equations.
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For instance, the same propositional structure may, on the one hand, support a classical
hidden variable theory based on scalars as well as on (subsets of) a single Boolean algebra,
while on the other hand, accommodate a quantum interpretation based on multi-dimensional
vector space entities [77]. Take, for example, the Specker bug/cat’s cradle [78–80], or
the house/pentagon/pentagram [81–83] logics: both have a classical interpretation in terms
of partitions of the sets of two-valued measures [13] as well as a faithful orthogonal
representation [84, 85] as vectors.

But there are also structures that do not allow any global classical probability distribution
yet support a vector coordinatization (aka faithful orthogonal representation). Examples are
the Specker bug combo denoted by 	3 by Kochen and Specker [86] that has a nonseparable
set of two-valued states. In the extreme case there exists no classical truth assignment (rel-
ative to admissibility; ie, exclusivity and completeness): take, for example, 	2 [86], or the
logics introduced in Refs. [87, 88]. One “demarcation criterion” is the separability of the
observables by two-valued states, as expressed in Kochen and Specker’s Theorem 0 [86].

Conversely, there exists a plethora of propositional structures [77] that allow a partition
logic interpretation, and therefore global classical probability distributions; and yet they
do not support any faithful orthogonal representation, and therefore no quantization and
no quantum probabilities. The simplest such example are three observables which, when
depicted in a hypergraph [89–91], form a cyclical triangular structure.

It might not be too unreasonably to state that quantum “contextuality” needs only to
show up if the observables satisfy Kochen and Specker’s demarcation criterion by form-
ing some propositional structure that has no classical realization and no joint probability
distribution [52]. Before that one is talking about “complementary” configurations, which
also allow global classical probability distributions – albeit with different probabilistic
predictions yielding violations of Boole’s “conditions of possible (classical) experience”.

6 Contextuality as Object Constructions

As has been mentioned earlier, most investigations into “contextuality” concentrate on the
second criterion (ii) and compare discords between classical versus quantum probabilis-
tic predictions. Thereby a presumption is an insistence that one is only willing to accept
classical Boolean propositional structures representable by (power) sets as ontological
entities.

This presumption is meshed with what Bell claimed to be true: that “everything has
definite properties” [92]. That is, there is a common belief in “Omni-definiteness”, that
any outcome of some measurement reflects an “inner property” or “element of physical
reality” [93] of the “object” one is pretending to “measure”. No doubts are raised about
the construction of this “object” which may involve important signal contributions from the
measurement apparatus. Pointedly stated: the very notion of “physical object” [94] – rather
than an “image of our mind” in the sense of Hertz [95, 96] – may be a naive conception that
is inappropriate for situations in which one is dealing with certain types of complementary
“observables” and, in particular, that have no simultaneous value definiteness [88, 97]. If,
for instance, one would also be willing to contemplate vectors as fundamental ontological
entities, then value definiteness ensues as pure states, and arguments based on the scarcity
or even absence of classical “non-contextual” truth assignments decay into thin air.
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