Skip to main content
Log in

Many-Body Localization of Haldane-Shastry Model with Periodic Driving

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we study the property of many-body localization(MBL) in the Haldane-Shastry(HS) chain which is driven by an additional time-dependent perturbation periodically. The Haldane-Shastry (HS) model is the integrable one-dimensional quantum spin chain with long-range interactions, it is the generalized Heisenberg XXX model which only contain nearest two body interaction. By using HS model, we consider the global two-body interaction and expand the field of MBL. In this paper, we establish a Floquet operator by adding a time-periodic field formed as trigonometric function to a closed and disordered HS model in this periodic driven system. We use the exact matrix diagonalization to probe the property of MBL with different disorders and system sizes. When we drive the HS model in MBL phase, it shows that there is a significant change in the diagrams with when driving strength T reach to Tc which is the critical driving strength. We get that at large T (T > Tc), MBL phase will be broken and a transition from localized phase to delocalized phase will happen, conversely, at small T (T < Tc), MBL phase will be retained. The stronger disorder taken in system, the more stable the localized phase is and the higher Tc is needed to drive the transition. However, there is no MBL phase transition when we drive the HS model in ergodic phase with periodic driving. In contrast to the Heisenberg XXX model with the same situation which we have studied recently, the phase transition from delocalized phase to localized phase occurs. We also explore the non-disorder system of HS model with the same driving to explore the properties of MBL, it shows that under periodic driving, the non-disordered HS system has the quantum phase transition rather than MBL phase transition. This illustrates the important role of disorder on MBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. Lett. 109, 1492 (1958)

    ADS  Google Scholar 

  2. Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)

    Article  ADS  Google Scholar 

  3. Kjall, J.A., Bardarson, J.H., Pollmann, F.: Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett. 113, 107204 (2014)

    Article  ADS  Google Scholar 

  4. Huo, T.T., Xue, K., Li, X., Zhang, Y., Ren, H.: Fidelity of the diagonal ensemble signals the many-body localization transition. Phys. Rev. E 94, 052119 (2016)

    Article  ADS  Google Scholar 

  5. Petsch, S., Schuhladen, S., Dreesen, L., Zappe, H.: The engineered eyeball, a tunable imaging system using soft-matter micro-optics. Light Sci. Appl. 5, e16068 (2016)

    Article  ADS  Google Scholar 

  6. Ponte, P., Chandran, A., Papic, Z., Abanin, D.A.: Periodically driven ergodic and many-body localized quantum systems. Ann. Phys. 353, 196–204 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Biasco, S., Beere, H.E., Ritchie, D.A., Li, L., Giles Davies, A., Linfield, E.H., Vitiello, M.S.: Frequency-tunable continuous-wave random lasers at terahertz frequencies. Light Sci. Appl. 8, 43 (2019)

    Article  ADS  Google Scholar 

  8. Mishra, U., Prabuh, R., Rakshit, D.: Quantum correlations in periodically driven spin chains: revivals and steady-state properties. J. Magn. Magn. Mater 491, 165546 (2019)

    Article  Google Scholar 

  9. Rubin, S., Hong, B., Fainman, Y.: Subnanometer imaging and controlled dynamical patterning of thermocapillary driven deformation of thin liquid films. Light Sci. Appl 8, 77 (2019)

    Article  Google Scholar 

  10. Alessio, L.D., Polkovnikov, A.: Dynamically induce mamy-body localization. Ann. Phys. 333, 19–33 (2013)

    Article  ADS  Google Scholar 

  11. Etezadi, D., Warner, J.B. IV, Ruggeri, F.S, Dietler, G., Lashuel, H.A, Altug, H.: Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection. Light Sci. Appl. 6, e17029 (2017)

    Article  ADS  Google Scholar 

  12. Ponte, P., Papic, Z., Huveneers, F., Abanin, D.A.: Many-body localization in periodically driven system. Phys. Rev. Lett. 144, 140401 (2015)

    Article  Google Scholar 

  13. Qu, Y., Li, Q., Lu, C., Pan, M., Ghosh, P., Du, K., Qiu, M.: Thermal camouflage based on the phase-changing material GST. Light Sci. Appl. 7, 26 (2018)

    Article  ADS  Google Scholar 

  14. Choi, S., Abanin, D.A., Lukin, M.D.: Dynamically induce mamy-body localization. Phys. Rev. B 97, 100301(R) (2010)

    Article  Google Scholar 

  15. Dutt, A., Minkov, M., Williamson, I.A.D., Fan, S.: Higher-order topological insulators in synthetic dimensions. Light Sci. Appl. 9, 131 (2020)

    Article  ADS  Google Scholar 

  16. Bairey, E., Refael, G., Lindner, N.H.: Driving induce mamy-body localization. Phys. Rev. B 96, 020201(R) (2017)

    Article  ADS  Google Scholar 

  17. Strek, W., Cichy, B., Radosinski, L., Gluchowski, P., Marciniak, L., Lukaszewicz, M., Hreniak, D.: Laser-induced white-light emission from graphene ceramics-opening a band gap in graphene. Light Sci. Appl 4, e237 (2015)

    Article  ADS  Google Scholar 

  18. Hahn, E.L.: Spin echoes. Phys. Rev. 80, 580 (1950)

    Article  ADS  Google Scholar 

  19. Ovadyahu, Z.: Suppression of inelastic Electron-Electron scattering in anderson insulators. Phys. Rev. Lett. 108, 156602 (2012)

    Article  ADS  Google Scholar 

  20. Tochitsky, S.Y., Narang, R., Filip, C.V., Musumeci, P., Clayton, C.E., Yoder, R.B., Marsh, K.A., Rosenzweig, J.B., Pellegrini, C., Joshi, C.: Enhanced acceleration of injected electrons in a Laser-Beat-Wave-Induced plasma channel. Phys. Rev. Lett. 92, 095004 (2004)

    Article  ADS  Google Scholar 

  21. Fishman, S., Grempel, D.R., Prange, R.E.: Chaos, quantum recurrences,and anderson localization. Phys. Rev. Lett. 49, 509 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  22. Matrasulov, D.U., Milibaeva, G.M., Salomov, U.R., Sundaram, B.: Ralativistic kicked rotor. Phys. Rev. E 72, 016213 (2005)

    Article  ADS  Google Scholar 

  23. Alessio, L.D., Rigol, M.: Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 040048 (2014)

    Google Scholar 

  24. Grifoni, M., Hanggi, P.: Driven quantum tunneling. Phys. Reports 304, 229–354 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  25. Eckardt, A., Weiss, C., Holthaus, M.: Superfluid-insulator transition in a periodically driven optical lattice. Phys. Rev. Letts. 95, 260404 (2005)

    Article  ADS  Google Scholar 

  26. Katan, Y.T., Podolsky, D.: Modulated floquet topological insulators. Phys. Rev. Letts. 110, 016802 (2013)

    Article  ADS  Google Scholar 

  27. Polychronakos, A.P.: Lattice integrable systems of Haldane-Shastry type. Phys. Rev. Letts. 70, 15 (1993)

    Article  Google Scholar 

  28. You, W.L., Li, Y.W., Gu, S.J.: Fidelity, dynamic struture factor, and susceptibility in critical phenomena. Phys. Rev. E 76, 022101 (2007)

    Article  ADS  Google Scholar 

  29. Zanardi, P., Paunkovic, N.: Ground state overlap and quantum phase transitions. Phys. Rev. E 74, 031123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. Chen, S., Wang, L., Gu, S.J., Wang, Y.P.: Fidelity and quantum phase transition for the Heisenberg chain with next-nearest-neighbor interaction. Phys. Rev. E 76, 061108 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by “the Fundamental Research Funds for the Central Universities (No. 2412019FZ037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyue Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Hu, T., Xue, K. et al. Many-Body Localization of Haldane-Shastry Model with Periodic Driving. Int J Theor Phys 60, 2066–2073 (2021). https://doi.org/10.1007/s10773-021-04823-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04823-y

Keywords

Navigation