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Abstract
Some ones have showed the first-order phase transition of the Horava-Lifshitz (HL) AdS
black holes has unique characters from other AdS black holes. While the coexistence zone
of the first-order phase transition was not exhibited. As well known the coexistence curve
of a black hole carries a lot of information about black hole, which provides a powerful
diagnostic of the thermodynamic properties on black hole. We study the first-order phase
transition coexistence curves of the HL AdS black holes by the Maxwell’s equal-area law,
and give the boundary of two-phase coexistence zone. It is very interesting that the first-
order phase transition point is determined by the pressure F on the surface of the HL AdS
black hole’s horizon, instead of only the pressure P (or the temperature T). This unique
property distinguishes the HL AdS black hole from the other AdS black hole systems. Fur-
thermore, this black hole system have the critical curves, and on which every point stands
for a critical point.
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1 Introduction

Recently, people pay more attention to the phase transition of Anti-de-Sitter (AdS) and de-
Sitter (dS) black holes by regarding the cosmological constant of a n-dimensional AdS black
hole � = − n(n−1)

2l2
as the pressure P = n(n−1)

16πl2
. Especially the critical phenomena of phase

transition of a AdS black hole in the P-V diagram were investigated in Refs. [1–23]. The
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research of the phase transition will not only help us to understand the nature of black holes
more deeply, but also understand some phase transition behaviors in conformal field. The
authors in Ref. [24] found when choosing Q2 − � as the independent dual parameters, the
charged AdS black hole has the similar phase transition to that in the van der Waals (vdW).
Furthermore, people found that for the more parameters black hole, the behavior of phase
transition is similar to that of vdW by adopting the different independent dual parameters
[15, 25–36]. And the entanglement entropy in the AdS black holes also has the similar
vdW’s Phase Transition [37–44]. The authors investigated the phase transition of a AdS
black hole by the Maxwell’s equal area law and the adoption of independent dual parameters
T − S, and found the phase transition point of the entanglement entropy is consistent with
the first-order phase transition point. Moreover there exists one kind of black holes, whose
has the three-phase coexistence point with similar vdW’s system [4, 7, 8, 25, 45–48].

In Refs. [49–51], the CP − T curve near the critical point of the LoveLock AdS black
holes and the Horava-Lifshitz (HL) AdS black holes is consistent with the CV − T curve of
4He. As what we have known, there exists the λ phase transition as 4He into the superfluid
state. And the reasonable physical explanation have been given: the λ phase transition may
be a Bose condensation, and superfluid is related to the Bose body condensed at zero energy
level. Therefore, the physical explanation of the similar phase transition of black holes is
also an interesting issue. In order to give the corresponding physical explanation of phase
transition, we should explore more thermodynamical properties of black holes deeply. The
HL gravity, which is proposed by Horava, is a power-counting renormalizable gravity theory
and can be regarded as an ultraviolet complete candidate for general relativity [52, 53].
And the black hole solutions, thermodynamics and phase transitions of the HL black hole
have attracted a lot of attention [54–59]. People have given the condition of second-order
phase transition and the critical exponents of HL AdS black holes by investigating the P-V
diagram. Note that the first-order phase transition point of HL AdS black holes is a curve
with a certain condition, and the CP − T curve near the second-order point is similar the λ

phase transition.
From the classification of the phase transition by Ehrenfest, we know that there are the

obviously difference between the first-order phase transition and the second-order λ one.
For the liquid-gas phase transition in a vdW system, the λ phase transition has the obvious
signal: the heat capacity has a sharp increase before reaching the critical temperature, while
the divergence of the first-order phase transition occurs when two phases coexist. The first-
order phase transition will be transformed to the second-order one as T → Tc (T < Tc).
For example, when the liquid-gas phase transition T < Tc, the entropy is discontinuity.
And this discontinuity will be more and more small as T → Tc, until it becomes zero for
T = Tc or P = Pc. At the same time, there is a vertical slope in the T-S diagram, that is the
corresponding λ phase transition. Therefore, there are some questions naturally: whether
there is the vdW-like first-order phase transition for the HL AdS black holes? If the answer
is yes, what is the condition and the corresponding physical reason of the phase transition
for the HL AdS black holes?

In this paper, the first-order phase transition of the four-dimensional HL AdS black holes
thermodynamic system is explored by Maxwell’s equal area law. We will exhibit the the
condition of the two phases coexisting by adopting the independent dual parameters T-S and
give the corresponding physical explanation. Furthermore the factors, which will affect the
coexistence zone of the first-order phase transition, are also analyzed.
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2 Thermodynamic Quantities of Horava-Lifshitz Black Holes

In this section, we will present the extended thermodynamics of the generalized topological
HL black holes. The action of the HL gravity without the detailed-balance condition is [53]:

I =
∫

dtddx
[
L0 + (1 − ε2)L1 + Lm

]
(2.1)

with the Lagrangian of other matter fields Lm and

L0 = √
gN

[
2

k2
(KijK

ij − λK2) + k2μ2[(d − 2)�R − d�2]
8(1 − dλ)

]
, (2.2)

L1 = √
gN

[
k2μ2R2

8(1 − dλ)

(
1 − d

4
− λ

)
− k2

2ω4
ZijZ

ij

]
. (2.3)

Here Zij = Cij − μω2

2 Rij with the Cotton tensor Cij . In this theory, there are several
parameters: ε, k2, λ, μ, ω and �.

Compared with the general relativity, there are the relations for the parameters:

c = k2μ

4

√
�

1 − dλ
, G = k2c

32π
, �̄ = d�

2(d − 2)
, (2.4)

where c, G and �̄ are Newton’s constant, speed of light and consmological constant,
respectively. We will fix λ = 1 in the following, only for which the general relativity can
be reconvered in the large distance approximation. In addition, we will only consider the
general values of ε with the region 0 ≤ ε2 ≤ 1.

In this system there are the arbitrary dimensional topological AdS black holes with the
metric [50]:

ds = −f (r)dt2 + f −1(r)dr2 + r2d�2
d−1,k (2.5)

with

f (r) = k + 32πPr2

(1 − ε2)d(d − 1)
− 4r2−d/2

×
√

(d − 2)MPπ

d(1 − ε2)
+ 64ε2P 2π2rd

d2(1 − ε2)2(d − 1)2
. (2.6)

Here d�2
d−1,k denotes the line element of a (d-1)-dimensional manifold with the constant

scalar curvature (d −1), and k = 0, ±1 indicate different topology of the spatial spaces. In
AdS spacetime, the cosmological constant is introduced as the thermodynamical pressure
[1]: P = − �

8π
The mass of this system reads

M = 64πPrd+
d(d − 1)2(d − 2)

+ 1 − ε2dk2rd−2+
16Pπ(d − 2)

+ 4krd−2+
(d − 1)(d − 2)

, (2.7)

where r+ denotes the event horizon which the largest positive root of f (r+) = 0. The
conjugate thermodynamic volume of pressure, the entropy and temperature are presented
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[28] in the following forms:

V = 64πrd+
d(d − 1)2(d − 2)

− (1 − ε2)dk2rd−4+
16P 2π(d − 2)

, (2.8)

S =

⎧⎪⎪⎨
⎪⎪⎩

4πr2+
(
1 + 3k(1−ε2) ln r+

8πPr2+

)
+ S0 d = 3

16πrd−1+
(d−1)2(d−2)

(
1 + kd(d−1)2(d−2)(1−ε2)

32(d−2)(d−3)Pπr2+
+ S0

)
d ≥ 4

, (2.9)

T = 1

8(d − 1)πr+[32πr2+P + kd(d − 1)(1 − ε2)]
×

{
1024P 2π2r4+ + 64k(d − 1)(d − 2)Pπr2+

+k2d(d − 1)2(d − 4)(1 − ε2)

}
. (2.10)

It is easy to check the first law of thermodynamics as

dM = T dS + V dP + �dε2 (2.11)

with the potential

� = − dk2rd−4+
16Pπ(d − 2)

. (2.12)

3 The Construction of the Equal-Area Law in T − SDiagram

For the HL AdS black hole thermodynamic system with the unchanged pressure in the
equilibrium state, the entropies at the boundary of the two-phase coexistence area are S1
and S2, respectively. And the corresponding temperature is T0, which is less than the critical
temperature Tc and is determined by the horizon radius r+. Therefore, from the Maxwell’s
equal-area law T0(S2 −S1) = ∫ S2

S1
T dS, we have in the four-dimensional spacetime (d = 3)

0 = T0

(
4πr22 (1 − x2) − 3k(1 − ε2) ln x

2P

)
− 2kr2(1 − x)

−16

3
Pπr32 (1 − x3) + 3k2(1 − ε2)(1 − x)

16πPr2x
(3.1)

with x = r1
r2
. From the (2.10), there are the following expresses:

2T0 = 6kε2P

(
r1

16πPr21 + 3k(1 − ε2)
+ r2

16πPr22 + 3k(1 − ε2)

)

+2(r1 + r2)P − k

8π
(1/r1 + 1/r2), (3.2)

0 = 6kε2P

(
r1

16πPr21 + 3k(1 − ε2)
− r2

16πPr22 + 3k(1 − ε2)

)

+2(r1 − r2)P − k

8π
(1/r1 − 1/r2). (3.3)
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For the simplicity we define the parameter as y ≡ 16πr2+
k

P , so there are

y1 ≡ 16πr21

k
P, y2 ≡ 16πr22

k
P (3.4)

at the boundary of the two-phase coexistence area. The above equations can be rewritten as

T0 = y2k

16πr2
×

[ [1 + x][y2x − 1]
y2x

+ 3ε2x

y2x2 + 3(1 − ε2)
+ 3ε2

y2 + 3(1 − ε2)

]
, (3.5)

0 = y3
2x

3 + y2
2x

[
3(1 + x2)(1 − ε2) + x(1 − 3ε2)

]

+3y2(1 − ε2)[1 + 3x + x2] + 9(1 − ε2)2, (3.6)

and the (3.1) becomes

4πr2T0

k

(
1 + x − 6(1 − ε2) ln x

y2(1 − x)

)

= y2(1 + x + x2)

3
+ 2 − 3(1 − ε2)

y2x
. (3.7)

From the (2.9) and (2.10), we can obtain the critical parameters as

yc = 2
√
3 − 1

3
, ε2c = 4

9

(
1 + 2√

3

)
. (3.8)

For the critical point (x = 1), substituting y = yc and ε = εc into the (2.10), the critical
temperature (Tc), pressure (Pc) and horizon radius (rc) satisfy the following expressions

8πrcTc = 4
√
3k

3
, (3.9)

16πr2c Pc = kyc = (2
√
3 − 1)k

3
. (3.10)

For similarity, we introduce the new parameter ξ = 1−ε2

1−ε2c
, the (3.6) can be transformed into

0 = 3

11
(15 + 8

√
3)x3y3

2 + y2ξ(1 + 3x + x2) + 1

9
(15 − 8

√
3)ξ2

+xy2
2

[
(1 + x + x2)ξ − 6

11
(15 + 8

√
3)x

]
(3.11)

Combining the (3.5) and (3.7), the expression related with y2 and x reads

[1 − x]
(
3(1 + x + x2)xy2

2 + 18xy2 − (15 − 8
√
3)ξ

)

xy2[9(1 − x2)y2 − 2(15 − 8
√
3)ξ ln x]

= (1 + x)(xy2 − 1)

xy2
+ 27x − (15 − 8

√
3)ξx

9x2y2 + (15 − 8
√
3)ξ

+ 27 − (15 − 8
√
3)ξ

9y2 + (15 − 8
√
3)ξ

. (3.12)

It is obviously that for the given parameters ξ and k, the solutions of y2 and x can be obtained
by solving the (3.11) and (3.12). Thus for the first-order phase transition of the HL AdS
black hole with the given pressure, we can obtain the phase transition temperature T0 and
the horizons (r1 and r2) of the black hole in two different phases by substituting the values
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Fig. 1 The T −S curves of the Horava-lifshitz AdS black hole with the different parameter values ξ = 1−ε2

1−ε2c
.

We set the pressure P = 0.1 and k = 1

of ξ and k into the (3.4) and (3.7). The phase transition curves T − S of the HL AdS black
hole with different parameter values ξ and the unchanged pressure P = 0.1 are shown in
Fig. 1.

From Fig. 1 we know that the phase transition of the HL AdS black hole will appear
when the redefined parameter ξ is less than one (namely, ε > εc), and the temperature T0 is
bigger than the critical one Tc. These behaviors are fully different from the other AdS black
holes [1, 8, 12, 14, 15, 24, 25, 34, 36, 39, 55]. That maybe mean this system has the fully
new structure from others and the physical mechanism of the phase transition is also unique.

For the first-order phase transition point of the HL AdS black hole with the given
parameters (k, ξ ), because of y1

y2
= x2, there is y = y2, or y = y1, namely

16πr22P = ky2 = kF2, or 16πr21P = ky1 = kF1. (3.13)

That indicates the first-order phase transition point is related with the horizon radius and
pressure. As what we have known the pressure F on the surface of the black hole’s horizon
reads: F = AP = 16πr2+P = kP . Thus the defined parameter y stands for the pressure F

on the surface of the black hole’s horizon. In the other words, the first-order phase transition
point is only determined by the pressure F on the surface of the black hole’s horizon, that is
different from the charged AdS black holes [1, 58, 59]. When the pressure F on the surface
of the black hole’s horizon satisfies 16πr2c P = kyc, the difference of the phase transition
between this system and other charged AdS black holes will disappear.

From the (3.9) and (3.10), we can see that the critical temperature Tc and pressure Pc are
not unique and are both related with the critical horizon radius. That means the parameters
influencing the phase transition of the HL AdS black hole are different from other normal
thermodynamic systems. With the above analyze, we find for the different values of ξ in the
HL AdS black hole with any given pressure, there may be a first-order phase transition, or a
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second-order, or nothing. Note that for the HL AdS black hole with a fixed parameter value
(ε > εc), there is a critical curve of phase transition, not only is a critical point.

4 Discussions and Conclusions

In this paper we mainly study the first-order phase transition of the HL AdS black hole
by the construction of the equal-area law in T − S diagram. With the above analyze, the
characteristics of the thermodynamic property for the HL AdS black hole are summarized
as: i) It is easy to see that from the (2.8) in the four-dimensional spacetime, the thermody-
namical volume is zero when y2 = 9(1 − ε2), while the horizon radius is not zero. That
indicates there is the minimal horizon, which is related with the parameter ε and pressure
P (16πPr2min/k = 3(1 − ε2)1/2). ii) Since the location of horizon is independent with the
temperature from the (3.11) and (3.12), the temperature is not the only factor to determine
the phase transition, which is different from the other AdS black holes. iii) The phase transi-
tion is related with the pressure F on the surface of the black hole’s horizon. In other words
the phase transition of the four-dimensional HL AdS black hole with other fixed parameters
(k, ε) is only determined by the pressure F on the surface of horizon.
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