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Abstract
Quantum algorithms can greatly speed up computation in solving some classical problems,
while the computational power of quantum computers should also be restricted by laws
of physics. Due to quantum time-energy uncertainty relation, there is a lower limit of the
evolution time for a given quantum operation, and therefore the time complexity must be
considered when the number of serial quantum operations is particularly large. When the
key length is about at the level of KB (encryption and decryption can be completed in
a few minutes by using standard programs), it will take at least 50-100 years for NTC
(Neighbor-only, Two-qubit gate, Concurrent) architecture ion-trap quantum computers to
execute Shor’s algorithm. For NTC architecture superconducting quantum computers with a
code distance 27 for error-correcting, when the key length increased to 16 KB, the cracking
time will also increase to 100 years that far exceeds the coherence time. This shows the
robustness of the updated RSA against practical quantum computing attacks.
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1 Introduction

In the early 1980s, Benioff described the first quantum mechanical model of a computer [1],
and Feynman pointed out that the exact simulation of quantum physical systems can be
ideally achieved with computers governed by quantum mechanics [2]. The groundbreak-
ing was that Shor discovered a polynomial time algorithm for calculating prime number
decomposition and discrete logarithm [3, 4], which threatened the security of RSA public
key cryptosystem. On account of the wide use of the RSA algorithm in modern elec-
tronic commerce for information encryption, the cracking of RSA public key cryptosystem
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by quantum algorithm will pose a serious threat to everyone’s information and property
security. After that, Shor’s quantum algorithm become a widely concerned subject that
needs to be studied urgently due to the rapid development of quantum computing. In
experiment, there are many applicable candidate for quantum computation, including ion
trap systems [5–7], linear optics systems [8, 9], semiconductor quantum dot systems [10,
11] and superconducting systems [12]. Recently, the superconducting systems advanced
rapidly because the circuit chips can be processed with traditional semiconductor tech-
nology. Google lately realized a 53-qubits quantum processor by using a superconducting
system [13]. Another notable candidate for quantum computing is trapped ion systems that
has advantages in ultrashort operation time τop and high-fidelity. In 2018, IonQ achieved the
trapped ion quantum computation of 160-bit storage qubits and 79-bit single-qubit opera-
tions, and built an 11-qubit quantum processor to calculate the ground-state energy of water
molecules [14, 15].

Although quantum algorithms can speed up the calculation, it still takes a certain amount
of time to complete a quantum algorithm in practice. If the cracking time exceeds a set
time, the results obtained are overdue and therefore useless, which is especially true in the
field of cryptography. For example, when the time required to crack a ciphertext exceeds
its confidentiality period, the cracking is obviously unsuccessful. On the security of RSA, it
has been discussed by Bernstein et al. that it needs 244 multiplication modulo n operations
to solve the 4096-bit 1 TB key length PQRSA protocol with the Shor’s algorithm [16].
Under this huge-scale inputs, a total of 2100 qubit operations were finally estimated. On
the one hand, 1 TB key length input may be too large for the public key cryptosystem,
since it will greatly reduce the efficiency of the actual information transmission due to the
too long decryption time. On the other hand, 2100 qubit operations may cause the time
overhead actually far exceeding the security requirement. Therefore, finding a key length
that can both quickly encrypt and decrypt and ensure security under quantum algorithm
attacks is an interesting matter in the field of RSA public key cryptography and even public
key cryptography.

Quantum algorithms are accelerated by the support of physical principles, but the com-
putational speed of quantum computers will also be restricted by laws of physics. For
example, there is a minimum time to complete a quantum operation due to the time-energy
uncertainty relation, based on which one can theoretically estimate the time cost of Shor’s
algorithm, and obtain the minimum number of bits required for the RSA public key cryp-
tosystem. When the number of key bits is gradually increased, the time overhead of the
quantum computing attacks will become gradually unbearable since quantum computing
has a computational speed limit that is restricted by laws of physics. The key is safe if
practical quantum computers take longer time to crack the key than the key needs to be
kept secret. In theory, there are two different architecture for practical quantum comput-
ers, the AC (Abstract, Current) architecture, and the NTC (Neighbor-only, Two-qubit gate,
Concurrent) architecture. Since the AC architecture leads to possible unwanted couplings
that will significantly reduce of the coherence time of the qubits, the NTC architecture is
more adopted in experiments. In this paper, we theoretically show that, if the key length
is about at the level of tens KB, the time required for NTC architecture ion trap quantum
computers to successfully crack the key will be more than 50 years, which can meet the con-
fidentiality requirements of most commercial secrets. This paper is organized as follows.
The algorithm complexity of RSA public key system and Shor’s algorithm are reviewed in
Section 2. In Section 3, the energy-time uncertainty relation and quantum operation time
limit are described first, and then we enumerate the ion trap system for quantum operation
to estimate the specific time overhead. Finally, we discuss and conclude.
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2 RSA Public Key and Shor’s Algorithm

Let us briefly review the RSA public key cryptosystem and Shor’s algorithm in this section.

2.1 RSA Public Key

As an asymmetric public key cryptosystem, the security of RSA is based on the difficulty
of integer modular exponentiation and large integer factorization. The key generation steps
are as follows:

1. Generate two large prime numbers p, q, let N = pq be the modulus of the public key
system.

2. Select the public key exponent e, e is co-prime with the Euler function of N , ϕ(n) =
(p − 1)(q − 1).

3. The private key d is obtained by the relationship ed = 1 (mod ϕ(n)), and then (N, e),
(N, d) are packaged as the public key and the private key respectively.

The RSA key size n = log N currently used is generally 1024 bits, or 2048 bits. The public
key exponent e can be selected manually, but it should not be too small to achieve relative
security, and also not be too large to reduce encryption time. It is common in the industry to
use e = 65537(216 + 1 in binary system), which is the smallest prime number in the form
of 22k + 1 except for 2, 3, 5, 17, 257.

The length of plaintext M requires 0 < M � N (M can be grouped when M > N ,
so that each group of plaintext Mi � N ). Then C = Me (mod N) is calculated to obtain
ciphertext, and recover the plaintext by obtain M = Cd (mod N). In this way, the encryp-
tion algorithm only needs to perform a few times multiplication modular exponentiations
(for the specific e = 65537) with a relatively long private key, and the decryption time is
also acceptable.

2.2 Shor’s Algorithm

The keypoint to Shor’s algorithm is to turn the factoring problem into the problem of finding
the period of a function [3, 4]. Take an arbitrary positive integer a, which satisfies {a ∈
Z|a < N, gcd(a,N) = 1}, and r is the order of a (it requires r to be an even number to
execute the subsequent algorithm), i.e., ar = 1 (mod N). One can get

(ar/2 − 1)(ar/2 + 1) = 0 (mod N). (1)

Then use Euclidean algorithm to find gcd(ar/2 − 1, N), gcd(ar/2 + 1, N), and get the non-
trivial factors of N .

From ar = 1 (mod N), ax = ax+jr (mod N) can be obtained. Thus, finding the order
r of a can be transformed into solving a periodic problem of the function f (x) = ax

(mod N). The time overhead of running Shor’s algorithm depends on the complexity of the
quantum circuits (Actually the overhead of the classical part of the algorithm is the same
as or even smaller than the quantum part, including the continued fraction expansion and
the Euclidean algorithm. See Section 5.3.1 in [17]). The QFT can get the integers which
are the closest to the integer multiples of N/r with the probability of �(1). The execution
time complexity of the standard QFT circuits is O(n2). If parallelism is adopted, QFT cir-
cuit complexity will be smaller [18]. However, the total complexity of the algorithm mainly
depends on the modular exponentiation. So we will not discuss the complexity of QFT fur-
ther here. The most time-consuming part is to calculate ax (mod N), which is the modular
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exponentiation with the complexity O(n3) [17] (See more in Appendix). It’s worth noting
that O(n3) is the complexity of modular exponentiation in a serial NTC (neighbor-only,
two-qubit-gate, concurrent) structure. There are also parallel schemes, which make the time
complexity of modular exponentiation reach to the order of O(log3 n) [19]. The reduc-
tion of time is always accompanied by the increase of qubits. In addition to the increase of
qubits required, the parallel architecture has a limitation on long distance multi-qubit gates.
Detailed analysis will be discussed in Section 4. We use the order O(n3) complexity for
estimation in the following.

Therefore, the complexity of the overall quantum circuit is O(n3), and the probability
of successful calculation of r is at the O(1) level. The success probability determines the
repeat times of algorithm when considering the time overhead. As the key length n = log N

increases, the time overhead of Shor’s algorithm increase at a rate of O(n3). If one increases
the key length log N appropriately in practice, the time overhead of running Shor’s algo-
rithm will be too huge to crack the key timely. On the other side, the key length cannot be
too long to perform the encryption and decryption, which makes it important to find out an
appropriate log N for RSA against quantum computing attacks.

The difference between some Shor’s algorithm variants is the coefficients before n3,
which has no effect on the complexity function, but a greater impact on the specific time
overhead. For example, if the coefficient is in the range of 0.1 ∼ 100, it can produce a mul-
tiple of 103. This has an influence on our estimation of the specific tolerable time cost, and
therefore on the estimation of RSA key length. In the following, we default the coefficient
as 1 to estimate the secure key length, and discuss the secure key length n against optimized
Shor’s algorithms.

3 Speed Limit and Time Overhead

With the time-consuming for each quantum operation, we can estimate the time overhead
of running Shor’s algorithm step by step.

3.1 Time-energy Uncertainty Relation and Speed Limit

Every step of the quantum computer changes the state of the system and consumes a certain
amount of time. This time is actually the evolution time of a quantum state in one operation.
Whether it is a single-qubit gate or a multiple, one can record the evolution time of the
controlled qubit as the shortest time of an operation. So the total time is the sum of the time
of all operations.

The concept of quantum speed limit is gradually formed [20–23], after Aharonov and
Bohm [24] explained the energy-time uncertainty relationship as the relationship of time
interval �t of the quantum state change rate and the dispersion �E of its energy. If the
Hamiltonian is independent of time, the quantum speed limit can be written as followed,

tQSL � �

�E0
arccos | 〈ψ0|ψt 〉 |, (2)

where �E0 =
√〈

H 2
0

〉 − 〈H0〉2 is the energy standard deviation of initial Hamiltonian in
initial state, and |ψ0〉 and |ψt 〉 are the initial state and the final state of the evolution
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respectively [22]. This states that the evolution time of a quantum system has a minimum
lower bound restricted by physical principles.

The basic network to realize modular exponentiation is modular addition. The ordinary
addition network can be composed of two controlled-not gates to complete the addition
operation, two Toffolli gates and a controlled-not gate to complete the carry operation. And
the modular addition network can also be composed of several above adders [25]. So if one
takes the two-qubit gate as the basic operation, such a chain structure makes the circuit time
complexity of modular addition proportional to the input n.

Next we just need to estimate the operation time of each basic operation. Considering that
all universal quantum gates can be composed of single qubit gates and two-qubit gates [17],
and the two-qubit gates commonly used in adders are the controlled-not gates, we take the
operation time of single-bit gate instead of two-bit gate in the following calculation as the
basic operation time. The reasons are as follows: the operation time of a single qubit gate
is less than that of a two-qubit gate (as can be seen from the trapped ion model we will
use), and what we are estimating is the lower bound of time, so our model is feasible and
reasonable.

It is worth noting that in classic computers, the operation speed is limited by the clock
speed. The similar concept in quantum computing is that, the clock frequency can be under-
stood as the time required to evolve between two distinguishable states, that is, the time to
transform between |0〉 and |1〉. In the following section, whether the evolution time between
orthogonal states can be used as the operation time of the quantum gates will be discussed
in detail in the following section. Finally, we will find that the actual quantum gate opera-
tion time can indeed be estimated by Eq. (2), and the deviation will not affect the magnitude
of the key length estimation presented at the end of this article.

3.2 Time Overhead for NTC Architecture Trapped-ion Quantum Computing

Trapped ion quantum computer system is one of the most promising architectures for a
scalable universal quantum computer. There are currently two schemes for applying trapped
ions as qubits. (a) Using the electronic ground state and metastable excited state as qubits,
such as 40Ca+ ground state S1/2 and the excited state D5/2 [26]. (b) Using the Zeeman
effect energy levels or hyperfine structure energy levels of the electronic ground state as the
two-level system of the qubit [27], which has a considerable advantage in terms of lifetime.

Take the trapped 40Ca+ to illustrate our point. The eigenstates in the Sz direction of the
ground state S1/2 and the excited state D5/2 are taken as the qubits |0〉 and |1〉. The interac-
tion Hamiltonian between the spin magnetic moment and the magnetic field is HI = −μ·B.
Here, the electron’s spin magnetic moment μ = μm · �σ

2 , the magnetic field B is selected
from the x-axis B = B0x cos (kzz − ωt + ϕ), z = z0

(
a† + a

)
describes the creation and

annihilation of a phonon, z0 = √
�/ (2mωt) is the spatial extension of ion’s ground state

wave function in the harmonic oscillator, η = kzz0 is the Lamb-Dicke parameter, and Rabi
oscillation frequency � = −μmB0/2�. Then the interaction Hamiltonian can be reduced to
the following form [17],

HI = −μm

�σ
2

· B0x̂ · cos
[
kzz0

(
a† + a

)
− ωt + ϕ

]

= ��

2
· (σ+ + σ−)

{
cos

[
η

(
a†+a

)]
cos(ωt−ϕ) + sin

[
η

(
a†+a

)]
sin(ωt−ϕ)

}
. (3)
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Using the Lamb-Dicke approximation η

√〈(
a† + a

)2
〉

� 1, then keeping the first order of

Taylor expansion of the sine and cosine function, and taking the rotation wave approxima-
tion, one can obtain

HI ≈ ��

4 ·[σ+ei(ϕ−ωt)+ σ−ei(ωt−ϕ)
]+ iη��

4 (σ++σ−)
(
a†+a

) [
ei(−ωt+ϕ)−ei(ωt−ϕ)

]
. (4)

The first polynomial describes the change of the spin state, and the spin isn’t entangled with
the harmonic oscillator. The second polynomial is a coupling term of spin and harmonic
oscillator, describes the mode of the sideband transition. One can find that the first term
corresponds to a single qubit operation, and the second term related to a two-qubit operation.
The difference between these two are the coefficient η, and the different Rabi frequencies of
sideband transition and the carrier transition(the former is smaller than the latter). Therefore,
it is easy to find that the time limit of a two-qubit gate is longer than that of a single-qubit
gate when the same calculation is carried out.

For simplicity, let us consider the Hamiltonian of a single qubit operation in the follow-
ing. In the interaction picture, this item can be simplified when the free Hamiltonian H0 is
set as the reference system, but also can be ignored when considering single-qubit opera-
tion. By setting the external magnetic field oscillation frequency ω be the spin frequency
ω0, detuning between spin and harmonic oscillator becomes 0, only the spin energy level
changes. In this way, the Hamiltonian can be rewritten as

HI = ��

4
·
(
σ+eiϕ + σ−e−iϕ

)
. (5)

According to HI , one can get the standard deviation of energy in the initial state

�E0 =
√〈

0
∣∣(HI )

2
∣∣ 0

〉 − (〈0 |HI | 0〉)2. (6)

Recall that σx |0〉 = |1〉, σx |1〉 = |0〉, σy |0〉 = i|1〉 and σy |1〉 = −i|0〉, and one can get

�E0 =
√〈

0

∣∣∣∣
��

2

(
cos ϕ · σx −sin ϕ · σy

)2
∣∣∣∣ 0

〉
−

[〈
0

∣∣∣∣
��

2

(
cos ϕ · σx −sin ϕ · σy

)∣∣∣∣0
〉]2

(7)

Combining the Eqs. (2) and (7), one can obtain the time limit τort for the initial state to
evolve to its orthogonal state through a single-qubit operation in the trapped ion system,

τort = �

�E0
· arccos(〈0|1〉) = π

�
= 1

2
TRabi. (8)

It can be seen that the time boundary in Eq. (8) is inversely proportional to the Rabi fre-
quency. The Rabi oscillation period between the S1/2 − D5/2 of 40Ca+ is about 11 μs [28],
so we can know that the theoretical time for a single-qubit operation of the quantum com-
puting of the trapped 40Ca+ system is 1

2TRabi , which is about 5.5 μs. The Rabi oscillation
period of IonQ’s 171Yb+ system is 12.0 μs, which is about equivalent to that of 40Ca+ [27].

Normally, the operation speed of a single-qubit gate is about 10 times faster than that of
a two-qubit gate [28]. We just assume that the completion of the algorithm is all built by
single-qubit gates, so the estimated time is lower than that needed. The single-qubit flippng
time calculated from the time evolution limit is consistent with the half Rabi oscillation
period needed to control the bit flipping in experiments, which is corroborative evidence
with each other. With single operation time, we can now list the time cost of different
numbers of operations.

Table 1 shows the change in the total time consumed as the number of quantum opera-
tions increases. We can see that at 250 times, the shortest time for serial operation is about
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Table 1 The number of
operations and the corresponding
time overhead

Number of operations Total duration T

210 5.632 × 10−3s

220 5.767s

230 5.905 × 103s (1.64h)

240 6.047 × 106s (69.98days)

250 6.192 × 109s (196.342years)

200 years, which is an unacceptable range for cracking RSA public key using quantum
computing when considering quantum decoherence. And the validity time of highly confi-
dential information needs to reach 50 or even 100 years, which is the time corresponding
to 248 and 249 operations. For practical quantum computers, more than 100 years of com-
puting time means they are completely decoherent before obtaining correct results. Even if
the decoherence does not occur due to perfect error-correction codes (the cracking time will
significantly increased when running error-correcting codes), the cracking time of 50 years
or more is enough safe for commercial applications.

Then, we may find n3 	 248, roughly estimate that n ∼ 216, which is about 8 KB for
public key length. Under the current public key system, the KB-level public key length is
not yet universal, but it can also be applied in some high security areas. In the future, the
computing and storage capabilities will continue to increase, and the RSA public key length
may really be completely acceptable in the KB level.

4 Discussion

Quantum error correction. The aforementioned complexity and time overhead have not
taken into account the cost of error correction. The actual circuits construction and
physical implementation need to build physical qubits into abstract qubits (fault-tolerant
qubits) to ensure the complete operation of the algorithm. There are many types of
quantum error correction schemes [17]. As the circuit complexity increases, the error
correction capability also needs to be improved. When considering the necessity of quan-
tum error correction in practical system, the RSA public key cryptosystem will be more
robust against quantum computing attacks.

Surface code is a widely used error correction scheme up to now. If we use the same
scheme as that in [25, 29] to estimate the time overhead including error correction,
each Toffoli gate consists of 7 T̂L non-Clifford gates in a 3-1-3 serial structure (3 means
three gates are parallel), the time complexity of the whole circuit will be tripled. In the
system of superconducting quantum computing, the operation time t of the single-qubit
gate is about 10 ns, and the cycle time of each surface code is about 100 ns [30]. If
the same error correction scheme is adopted, the surface code cycle time of the ion trap
system is estimated to be 50 μs with the single qubit operation time of the ion trap about
5 μs. Therefore, the total circuit time T with error correction is about 30 times than
the previous result (the serial complexity of the circuit becomes 3 times, and the single
operation time with error correction is 10 times.). If we consider it approximately 30
times, this increase of time cost reduces the safe number for RSA to about 2.57 KB. Our
estimate with error correction may be rather rough, more detailed calculation of surface
code error correction can be referred to [30]).
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Complexity. To evaluate a quantum algorithm, we need to investigate both its time and
space complexity. Fowler [30] listed time and space complexities of the different Shor’s
algorithm implementations, which differ in circuits depth and number of qubits required.
As the number of qubits used increases, more parallel operations can be performed. The
parallel schemes reduce the time complexity of Shor’s algorithm, which is less than the
complexity O(n3) used in this paper. However, the required qubits of these schemes
increase exponentially. For example, the parallel scheme used in [19] reduces the time
complexity of Shor’s algorithm to the order of O(log3 n), but increases the space com-
plexity from O(n) to O(n3). As a result, the spacetime volume of the circuits doesn’t
decrease.

If n equals 2048, then O(n3) will be 233 (1 GB logical qubits). However, when n

grows to the order of 8 KB (our result above) magnitude, the space complexity will reach
approximately 248, which is 2.56·1014 qubits (32 TB). That requires a quantum computer
to have at least 32 terabytes of memory, which is not achievable easily. So the parallel
scheme is currently not a high priority.

In Google scheme [31], they estimates that 22 million physical qubits are needed,
which are 14,238 logical qubits, corresponding to 1.8 KB of qubits memory. When n

reaches the magnitude of tens of KB, the required memory is approximately 0.2 ∼ 1
MB. The number of qubits required in their scheme is already considerable, but it is still
negligible compared with the parallel scheme.

Besides requiring a large amount of qubits memory, the parallel scheme has a lim-
itation in circuit structure. The circuit architecture of the O(log3 n) scheme is AC
architecture, while the O(n3) scheme is NTC architecture [32]. The difference between
them is that the AC architecture is fully connected, and the NTC architecture is a
neighbor-only interaction circuit model. In AC architecture, the quantum gate must be
able to be constructed between two qubits with long distance, and no penalty. It does
not support arbitrary control strings on control operations, only Toffoli gates with two
ones as control. The NTC architecture does not support Toffoli gates, but only two-qubit
gates.

Fully connected architecture allows multi-qubit gates to be built over long distance,
such as Toffoli gates, which can be constructed directly. In NTC architecture, these gates
need to be decomposed into adjacent single-qubit and two-qubit gates. As the num-
ber of qubits increases, the AC structure will be more and more difficult to be realized
experimentally. Because multi-qubit gates are the operations between qubits through the
coupling of external fields or their own interaction essentially. The precise control of
long-distance coupling will become more and more difficult when circuit qubits increase.
That is the reason why we mainly consider the NTC architecture scheme with time
complexity of O(n3).

Feasibility. The most time-consuming part of running Shor’s factoring algorithm is modu-
lar exponentiations, while modular exponentiations can be performed quickly in modern
electronic computers. This makes it possible to ensure security of the RSA cryptography
against quantum computing attacks by increasing the length of the key. In principle, the
length of the RSA public key can be infinitely increased, so that the cracking time by
quantum computing becomes unbearable. In practice, the key system serves daily infor-
mation communication, and the time for encryption and decryption must be within an
acceptable range to be reasonable. The currently widely used RSA public key length is
2048-bit, which is 256 B. The encryption and decryption of the 8 KB key can be com-
pleted in a few minutes, which is completely acceptable. Furthermore, hundreds KB key
length may be chosen to ensure the security. Although encryption and decryption time
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is too long for instant secure communication with the key length increasing, it can be
applied to distribute secure key bits that can be used as symmetric key later.

Optimum. In our calculations, we did not optimize the algorithm, but used the original
Shor’s algorithm. Gidney etc. [31] discussed the crack of the 2048-bit RSA takes about 7
hours to run the quantum part of the algorithm. Compared with the ion trap systems, the
superconducting quantum computing system may have a shorter quantum operation time
due to its adjustable, e.g., maybe 1000 times faster. In practice, different systems have
different advantages and disadvantages. The superconducting qubit is an artificial atom,
whose preparation and calculation fidelity is not as good as that of the natural atoms
in the trapped ion system, which will cost more quantum resources in initialization and
error correction. Based on the conclusion that cracking 2048-bit RSA costs 7 hours in
the superconducting quantum computing system, the key length of RSA for 100 years
information security is at least 16 KB, i.e., 3

√
100 · 365 · 24 ÷ 7 × 211 ≈ 217 = 16 KB.

At the same time, our estimation doesn’t consider the construction and simulation
of algorithm circuits in detail, we only give estimates on the order of magnitude. The
time overhead can be reduced by several times or even tens of times by optimizing the
algorithm, but there can be no substantial reduction. And definitely, the reduction cannot
resist the increase of the key length.

Decoherence. The biggest obstacle to manufacturing quantum computers is how to main-
tain quantum coherence for an enough long time. The task must be completed before
the decoherence occurs, otherwise the task fails. In order to overcome the occurrence of
decoherence, it is necessary to use quantum error-correction codes in quantum compu-
tation. However, even if quantum error-correction codes are applied, it is impossible for
any quantum computer to maintain the coherence time for more than 50 years in prac-
tice when considered time-energy uncertainty relation.1 Therefore, more than 50 years
cracking time of RSA with 8 KB key length is enough safe against quantum computing
attacks.

5 Conclusion

By exploring the time overhead of the Shor’s algorithm in the trapped ion quantum comput-
ing systems, we have evaluated the practical security of the RSA public key cryptosystem.
Based on our calculations, we can speculate that, even if a universal quantum computer with
NTC architecture can be successfully built in the future, with the length of the RSA public
key increased to the order of KB, the actual cracking time will also become unbearable. The
limit of the public key length will fluctuate due to factors such as different quantum com-
puting models and the optimized implementation of Shor’s algorithm, but this proposal will
undoubtedly provide an avenue towards keeping information confidential against quantum
computing attacks. Since RSA public key cryptosystem is currently widely used, an slightly
improved RSA scheme against quantum computing attacks is clearly the most economical
cryptographic scheme in the coming era of quantum computing.

1The energy-time uncertainty relation indicates that the lifetime of excited states is limited. The lifetime of
metastable of atoms may be millisecond class, but it is so far from 50 years. So, 50 years cracking time is
enough safe for some commercial applications of RSA. For a superconducting quantum computing system,
quantum coherence can also maintain with millisecond class. A detailed calculation about the limit life of
quantum coherence for quantum superconducting systems will be presented in the future.
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Appendix: Modular Exponentiation

The biggest circuit cost in implementing the Shor’s algorithm is to calculate the modu-
lar exponentiation |ax (mod N)〉. The algorithm for performing modular exponentiation
in classic circuits is mature, which takes less than one second to calculate the modular
exponentiation of thousands of bits. However, the difficulty in implementing modular expo-
nentiation in the Shor’s algorithm depends on the superposition of exponents, which requires
quantum circuits and qubits to implement operations such as calculation and memory. This
is also the focus of our work. When the same modular exponentiation operation is moved
from classical computers to the quantum, the circuit cost and time overhead consumed must
be completely different.

The calculation of the modular exponentiation is usually divided into two steps. First,
binarize the exponent, and calculate the exponent of each bit separately, and then multiply
these result. Specifically:

1. The exponent x = xt2t−1 · xt−12t−2 · . . . · x120, t ∼ N . For the j -th exponent oper-
ation, the result can be obtained by continuously squaring and modulo multiplication,
squaring x (mod N) to get x2 (mod N), squaring to get x4 (mod N), and multiply-
ing x (mod N) to get x5 (mod N), and so on. So the number of overall multiplication
operations is on the order of O(N), the complexity of the multiplication is O(N2), and
the total overhead is on the order of O(N3).

2. ax (mod N) =
(
axt 2t−1

(mod N)
) (

axt−12t−2
(mod N)

)
· · ·

(
ax120

(mod N)
)

. With

the result of the modulo exponent of each bit, the modulo multiplication operation
requires a total of O(N3) operations.

Therefore, the total cost of the modular exponentiation operations is on the order of
O(N3). But it is only an estimate of the modular exponentiation algorithm in the classic
circuit. If it is applied to a fully reversible quantum circuit, there will be some limitations.
Vedral et al. [25] studied quantum circuit constructed for modular addition, modular mul-
tiplication, and modular exponentiation operations with a little bits. The conclusion shows
that the circuit cost of modular multiplication operations is indeed of the order of O(N3).
But from all the construction of modular addition, modular multiplication and modular
exponent, the number of basic gates of those three-packed arithmetic unit has a constant
coefficient, which makes the coefficient before the final N3 item reach hundreds. Although
there must be some more simplified schemes for building modular exponentiation quantum
circuits, the circuit construction will become more complicated as the number of N bits
increases. And the influence of the coefficients before the N3 item will become smaller.
Just as has been reduced to 0.3 [31], which might be the smallest complexity at present, it
won’t produce an essential effect on the issues concerned in this paper.
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