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Abstract
In this paper, we describe the properties of quantum entanglement and teleportation between
Alice and Bob who is freely falling toward the Schwarzschild black hole. To this aim, in the
flat Minkowski spacetime before a black hole is formed, Alice and Bob share a two-mode
entangled coherent state (ECS) generated by Kerr medium and the beam splitter. We will
show that the degree of entanglement decreases with increasing the radius of black hole
r. Moreover, the fidelity of quantum teleportation via ECS, as a quantum channel, is also
reduced because of the Hawking-Unruh effect.
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1 Introduction

Quantum entanglement as an important resource, plays an essential role in quantum infor-
mation theory as well as for quantum teleportation [1], communication and quantum
computing [2, 3]. A pair of quantum systems in an entangled state can be used as a quan-
tum teleportation channel to transfer the quantum state of a particle onto another particle.
So the generation of the entangled state attracts tremendous interest in the last decades. In
the original work by Bennett et al. [1] the system is considered to be isolated from external
forces, and the maximally entangled qubit pair (Bell state) is unitarily evolved.

The importance of understanding entanglement in a relativistic setting has received
considerable attention recently [4–6]. The properties of quantum entanglement and tele-
portation in the background of stationary and rotating curved spacetimes via a maximally
entangled Bell state were studied in [7], and it was found that a maximally entangled Bell
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state in an inertial frame becomes less entangled in curved spacetime due to the well-known
Hawking–Unruh effect.
In 2003, in [8], teleportation was investigated between Alice and Bob so that Bob was in a
uniform acceleration frame relative to Alice. It has also been shown that fidelity decreases
due to the Unruh radiation within the framework of Bob. Almost a year after the paper,
Schuller and his colleague Mann in the [9] examined two observers that determine the
entanglement of two free bosonic modes. They concluded that the entanglement of the state
which is maximally entangled, decreases in the inertial frame, if the frames are accelerated
relative to each other. This phenomenon, which is a consequence of the Unruh effect, shows
that the entanglement in the non-inertial frames, is an observer-dependent quantity. In [10],
the entanglement between two modes of free Dirac fields is studied by two accelerated
observers. In this paper, it is shown that the entanglement is suppressed due to the Unruh
effect and asymptotically reaches a minimum value at very large acceleration. In [11, 12],
the entanglement between the two scalar and Dirac-free field modes have been examined
from the point of view of accelerated observers, which yielded similar results to previous
works. In confirmation of previous results in [13, 14], the entanglement of fermionic fields
as well as arbitrary spin fields has been studied and it has been concluded that at infinite
acceleration there is no significant difference between the different spin fields. In [15], the
suppression of entanglement in the tripartite GHZ (Greenberger-Horne-Zielinger) and W
modes were studied from the perspective of accelerated moving observers. As another step
along the lines of previous works, Ling et al in [16], examined quantum entanglement of
the electromagnetic field specifically the entangled state of the photon helicity in the non-
inertial framework and showed that unlike previous works, the logarithmic negativity in
non-inertial and inertial framework is similar. In [17], the behavior of quantum and classi-
cal correlations in space-like regions with an event horizon between fermionic and bosonic
fields were studied. This paper concluded that the emergence of stability laws in quantum
and classical entanglement suggests that the statistical distribution function plays a funda-
mental role in the teleportation of information in the horizon. In [18], an interesting method
is proposed for storing quantum information in the field modes of cavities which are mov-
ing in spacetime. In contrast to previous results, they found the quantum information in
such systems is screened. In [19], the entanglement between particle and antiparticle modes
of a Dirac field was investigated from the perspective of inertial and accelerated observers.
They have shown that at infinite acceleration, redistribution of entanglement between the
particle and antiparticle states plays a key role in the survival of the fermion entanglement.
Whereas, for charged boson field modes in [20], different behaviors were observed, so that
redistribution did not prevent the entanglement from disappearing in the infinite acceleration
limit.

Due to the extensive use of coherent states in quantum optics, they are of particular
importance. Coherent states of the simple harmonic oscillator are well known since the
foundational work of Schrodinger [21]. Generation of multipartite ECS’s and entanglement
of multipartite states have been investigated in [22, 23]. In [24], the entanglement properties
of the generalized balanced N-mode coherent states generated by the beam splitter have
been stated which is a general form of the two-mode ECS

|ψ〉 = 1√
M

(|α〉|α〉 + μ|β〉|β〉). (1)

In this paper, we assume that Alice and Bob share a two-mode entangled coherent state. In
Ref. [24], an experimental set up is used for generating N-mode entangled coherent state,
using the parity, displacement, and beam splitting operator. In order to produce a two-mode
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ECS, one must first obtain the superposition of two coherent states [25, 26]. μ is complex
parameter which depends on the amplitude of coherent states. In this work, we will use two-
mode ECS, |ψ〉 = (1/

√
M)(|α〉|α〉 + μ| − α〉| − α〉) in which two coherent states |α〉 and

| − α〉 are in general nonorthogonal and span a two-dimensional qubit like Hilbert space
{|0〉, |1〉}. By definition the orthonormal basis as

|0〉 = |α〉 , |1〉 = |−α〉 − p |α〉
√
1 − p2

, (2)

the two-mode ECS, |ψ〉 can be recast in a two-qubit form so we can use it as a quantum
channel to transfer the quantum state from sender (Alice) to receiver (Bob). The main pur-
pose of this work is to investigate the entanglement of two-mode ECS and teleportation in
Schwarzschild black hole spacetime [27]. After some mass collapses to form a black hole,
Alice stays stationary at the flat region of a black hole while Bob moves from Alice’s place
toward the black hole. We study the influences of this effect on entanglement using neg-
ativity. Moreover, the measurements of teleportation can be performed between Alice and
Bob in curved spacetime, so we will found that the fidelity of teleportation decreases with
increasing the radius of black hole r.

The outline of this paper is as follows: In Section 2, we will discuss the normal mode
solutions for a Schwarzschild black hole. In Section 3, we will study entanglement of
entangled coherent states in noninertial frames. Moreover, we recall the usual flat space tele-
portation protocol and explore the degradation of the fidelity of the teleported state when
one of the participants undergoes uniform radius of black hole. Finally, conclusions are
discussed in Section 4.

2 Normal Mode Solutions for Schwarzschild Black Hole

The stationary Schwarzschild black hole is represented by the metric [28]:

ds2 = −
(
1 − 2M

r

)
dt2 + dr2

1 − 2M
r

+ r2(dθ2 + Sin2θdφ2), (3)

where the metric is written in spherical coordinates so r represents the radial coordinate.
When r = 2M , the singularity appears, in other words, this radius is called the black
hole radius indicated by rs . In (3), M is the mass of the black hole and at rs = 2M , the
Schwarzschild spacetime has an event horizon. In the Schwarzschild metric, the scalar
field � which corresponds to a massless particle with zero spin, applies in the following
equation [29]:

√−g∂μ[gμν√−g∂ν]�(x) = 0, (4)

where the Schwarzschild metric is defined as follows:

gμν =

⎡

⎢⎢⎢
⎣

−(1 − 2M
r

) 0 0 0
0 1

1− 2M
r

0 0

0 0 r2 0
0 0 0 r2Sin2θ

⎤

⎥⎥⎥
⎦
. (5)
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Perhaps the simplest way of treating a partial differential equation such as (3) is to split it
into a set of ordinary differential equations [30]. This may be done as follows, let

�(x) = 1√
2πω

e−iωtFωl(r)Ylm(θ, φ), (6)

here we have chosen the positive frequency normal mode solution. By substituting into (3),
we obtain a differential equation for Fωl :

∂2Fωl(r)

∂r∗2 + ω2Fωl(r) −
(
1 − 2M

r

)(
l(l + 1)

r2
+ 2M

r3

)
Fωl(r) = 0, (7)

where r∗ = r + 2M ln( r
2M − 1) which is called “tortoise coordinate” [31] , r ranges

from 2M to ∞ and r∗ goes from −∞ to +∞. As you can see, the Schwarzschild metric is
singular at r = 2M , but it should be noted that this one is only a coordinate singularity. This
kind of singularity can be eliminated by selecting a proper coordinate system. We introduce
the null coordinates u, v which have the direction of null geodesics by [32]

u = t − r∗ and v = t + r∗. (8)

Inserting u, v in (3), we obtain:

ds2 =
(
1 − 2M

r

)
dudv + r2(dθ2 + Sin2θdφ2). (9)

By rewriting the metric via new coordinates

U = −4Me− u
4M and V = 4Me

v
4M , (10)

we find:

ds2 = −2M
e−r/2M

r
dUdV + r2(dθ2 + Sin2θdφ2). (11)

Nowwith solving (6), one can obtain the positive frequency solutions in Kruskal coordinates
[33]

�(I) = e−iωtFωl = e−iωv, (12)

�(II) = eiωtFωl = e−iωu. (13)

By using the above equations, we can quantize the scalar field

� =
∑

p

(b(I)
p �(I)

p + b(II)
p �(II)

p + h.c.), (14)

where p stands for (ω, l,m) and the operators b
(I)
p and b

(II)
p are annihilation operators

which correspond to the different regions in Penrose diagram. Those operators define the
Fulling-Rindler vacuum:

b(I)
p |0〉(I ) ⊗ |0〉(II ) = b(II)

p |0〉(I ) ⊗ |0〉(II ) = 0. (15)

Let us define the normalized modes φ1 and φ2 in terms of Kruskal coordinates:

φ1 = e−πωa/2�(−u)(−u/a)iωa + eπωa/2�(u)(u/a)iωa, (16)

φ2 = eπωa/2�(u)(−u/a)−iωa + e−πωa/2�(−u)(u/a)−iωa, (17)

where �(±u) is the Heaviside step function. We can quantize the scalar field as

φ =
∑

p

1√
2 sinh(πωa)

[d(I)
p φ1 + d(II)

p φ2 + h.c], (18)
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where bp can be written in dp as follows

b(I)
p = 1√

2 sinh(πωa)
[eπωa/2d(I)

p + e−πωa/2d(II)†
p ], (19)

b(II)
p = 1√

2 sinh(πωa)
[eπωa/2d(II)

p + e−πωa/2d(I)†
p ]. (20)

The Minkowski vacuum can be defined as

d(I)
p |0〉M = d(II)

p |0〉M = 0. (21)

The following relation shows the simplicity of Minkowski’s vacuum

|0〉M =
∞∑

np=0

∏

p

cosh−1 r tanhnp r|np〉I ⊗ |np〉II , (22)

where r represents the radial coordinate and |np〉I = (b
(I)†
p )n|0〉I /

√
n! and |np〉II =

(b
(II)†
p )n|0〉II /

√
n!, are orthonormal bases for Hilbert spaces.

3 Entanglement of Entangled Coherent States in Noninertial Frames

Let us assume prior to forming a black hole, Alice and Bob share an entangled coherent
state in the flat Minkowski spacetime such as follows

|ψ〉 = 1√
M

{|α〉A|α〉B + μ| − α〉A| − α〉B}, (23)

where the states |α〉 and |−α〉 are coherent states and subscripts A and B indicate the modes
associated with the observers Alice and Bob, respectively. For simplicity we assume that μ
and α are real numbers and M is a normalization factor, M = 1 + μ2 + 2μp2 in which
p = 〈α|−α〉 = e−2α2

. It should be noted that after the formation of the black hole, Alice is
in the flat region while Bob is inside the black hole. If Bob undergoes a uniform acceleration
or stays in curved spacetime, Bob’s state must be specified in Rindler or Schwarzschild
coordinates. Then the state (23) can be rewritten in terms of the Minkowski modes for Alice
and Schwarzschild modes for Bob. Bob is causally disconnected from region II , so we take
the trace over the mode II [7]. It leads to a mixed density matrix between Alice and Bob
which is given by

ρAB = 1

M cosh2 r

∑

n

tanh2nr

⎛

⎜⎜
⎝

ρ11 ρ12 ρ13 ρ14
ρ12 ρ22 ρ23 ρ24
ρ13 ρ23 ρ33 ρ34
ρ14 ρ24 ρ34 ρ44

⎞

⎟⎟
⎠ , (24)

where the elements of this matrix are arranged in Table 1.

Table 1 Elements of matrix ρAB

with R = √
1 − p2 ρ11 = (1 + μp2)2 ρ12 = μpR(1+μp2)

√
n+1

cosh r

ρ13 = μpR(1 + μp2) ρ14 = μR2(1+μp2)
√

n+1
cosh r

ρ22 = μ2p2R2(n+1)
cosh2 r

ρ23 = μ2p2R2√n+1
cosh r

ρ24 = μ2pR3(n+1)
cosh2 r

ρ33 = μ2p2R2

ρ34 = μ2pR3√n+1
cosh r

ρ44 = μ2R4(n+1)
cosh2 r
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The amount of entanglement between two qubits A and B can be measured by
logarithmic negativity which is defined by [34]

EN (ρ) = log2(2N (ρ) + 1), (25)

whereN (ρ) is the negativity of the state which is specified as

N (ρ) = |
∑

i

μi |, (26)

in that μi’s are the negative eigenvalues of partial transpose with respect to A. So we can
obtain

N (ρ) = |μ|√2(1 + n)
(
1 − p2

)
tanh2nr

M cosh2 r
√
1 + cosh 2r

. (27)

In Fig. 1, the logarithmic negativity is plotted as a function of black hole radius r .

a

b

Fig. 1 (Color online) Logarithmic negativity as a function of r for given p, a μ = 1 and b
μ = −1

3588



International Journal of Theoretical Physics (2020) 59: –35923583

Figure 1a and b show that the logarithmic negativity is a monotone function of radius
r . When r → 0, logarithmic negativity N (ρ) is equal to one, which corresponds to the
situation that Alice and Bob are Minkowski observers, i.e., no black hole is formed. In the
limit r → ∞, the logarithmic negativity tends to zero. Moreover, for μ = 1, by increasing
p the logarithmic negativity is reduced, whereas for μ = −1 the logarithmic negativity is
independent of p.

Consider an arbitrary one-qubit state |ϕ〉 = a|0〉 + b|1〉 with |a|2 + |b|2 = 1, which
Alice wishes to teleport to Bob [4]. For this purpose, Alice and Bob have initially shared the
bipartite state |ψ〉. The total initial state is |�〉 = |ψ〉 ⊗ |ϕ〉, where two first qubits belong
to Alice, and the third one belongs to Bob. Alice makes a local measurement in the Bell
basis |ψ±〉〈ψ±| and |ϕ±〉〈ϕ±| on the two particles in her possession. Then Alice sends the
result of her measurement to Bob via a classical channel. Bob is causally disconnected from
region II , so by tracing out over region II Bob gets

ρI = 2
M cosh2 r

∑

n

tanh2nr{ξ2|n〉〈n| + η2n|n + 1〉〈n + 1|
+ξηn(|n〉〈n + 1| + |n + 1〉〈n|)},

(28)

in which

ξ = a(1 + μp2) + bμRp, ηn =
√

n+1μR
cosh r

(ap + bR). (29)

The density operator is in a 2 × ∞ dimensional space. We can project the total state into
2 × 2 dimensional space [35]. In a two dimensional space, the reduced density operator is

ρI = 2

M cosh2 r
{ξ2|0〉〈0| + ξη0(|0〉〈1| + |1〉〈0|) + (η20 + ξ2 tanh2 r)|1〉〈1|}. (30)

Finally, the fidelity corresponding to the teleportation, FI = 〈ϕ|ρI |ϕ〉 is obtained as

FI = 2

M cosh2 r
{a2ξ2 + 2abξη0 + b2(η20 + ξ2 tanh2 r)}. (31)

For the pure input state, it is useful to calculate average fidelity which is defined by aver-
age over all possible pure states in the Bloch sphere with a = cos θ and b = sin θ as
follows [5]

F̄ = 1

π

∫ π

0
dθF I (r, θ). (32)

Where r represents the radial coordinate. In Fig. 2, average fidelity is plotted as a function
of r for given μ and p.

We concluded from Fig. 2a and b, by increasing r which scales directly with Bob’s accel-
eration, the fidelity decreases. Moreover, when r = 0 the fidelity is unity corresponding
to the case both Alice and Bob are in Minkowski space. On the other hand, for both cases
μ = 1 and μ = −1 by intensifying coherent field or equivalently decreasing p, the average
fidelity enhances.
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a

b

Fig. 2 (Color online) Average fidelity as a function of r for given μ and p, a μ = 1 and b μ = −1

4 Conclusion

In this paper, we examined the properties of quantum entanglement and teleportation in
the background of curvature spaces. We use the two-mode ECS as a quantum channel for
transmitting quantum states from sender to receiver. We assumed that Alice was standing
in the area described by the Minkowski metric and sending the two-mode ECS to Bob,
which is described in an area with Schwarzschild metric. The main purpose of this work is
to investigate the entanglement of two-mode ECS and teleportation in Schwarzschild black
hole. We show that the entanglement of a two-mode ECS in an inertial frame falls due to
the well-known influence of Hawking-Unruh in the curvature space. In Fig. 1, the diagram
of logarithmic negativity is plotted as a function of black hole radius r. We concluded that
when r → 0, the logarithmic negativity approaches to one and there is not a black hole.
In the limit r → ∞, the logarithmic negativity tends to zero. We also concluded that for
μ = 1 with increasing p the logarithmic negativity is reduced whereas for μ = −1 the
logarithmic negativity is independent of p. Finally, we study the fidelity corresponding to
the teleportation. In Fig. 2, we plot the average fidelity in terms of r that shows by increasing
r the fidelity decreases and when r = 0 the fidelity is unity corresponding to the Minkowski
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space. We also deduced that for both cases μ = 1 and μ = −1 by the enhancement of
coherent field or equivalently decreasing p, the average fidelity increases.
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