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Abstract
As we know that data sharing, a critical element in social networks, has the benefits of
exploring important information, while also has the disadvantage of information leakage.
Therefore, without the reliable third party arbitration agency, it is impossible to share infor-
mation privately by distrustful multi-party. In this paper, we proposed a protocol called
Quantum Secure Multi-party Private Set Intersection Cardinality (QSMS-IC), which has
the capability of resisting quantum attacks. QSMS-IC, the extension of two-parity private
set intersection cardinality which was proposed in Information Sciences(2016,147-158),
utilizes quantum transformation, quantum measurements and quantum parallelism to solve
multi-party private set intersection cardinality problems. Compared with two-party PSI-CA
protocols, our proposed protocol can solve the data sharing among multi-party without the
reliable third party arbitration agency. It also can be used in numerous applications and more
suitable to the actual cases. For instance, large-scale social networks and privacy-preserving
data ming.
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1 Introduction

Secure multi-party computation (SMC) [1–3] enables three or more clients to evaluate the
function without disclosing any private information about their privacy information. Since it
was proposed by Yao [25], SMC had attracted wide attention from the scholars, which was
used in numerous scenarios such as information-sharing [19, 20] and privacy preserving [4,
5].

Private set intersection (PSI) [9, 21], a typical application of information-sharing, enables
two parties with privates sets to participate in calculation of the intersection without reveal-
ing any private inputs information. however, in some higher privacy-preserving scenarios,
such as in medical systems and social networks, private set intersection reveals too much pri-
vate personal information which may be exposed in part or in whole. In this case, Private Set
Intersection Cardinality (PSI-CA) [6, 7] was introduced, which can meet the requirements
on prevention of revealing the specific content, and make the outputting be the cardinal-
ity. In addition, in network circumstances, PSI-CA has huge practical application value in
safeguarding users’s privacy [22]. For example, in social networks, users can privately cal-
culate the common hobbies and interesting by using the PSI-CA protocol, so that they can
determine whether to become good friends or not [15]. In this situation, they use the ele-
ments of private sets on behalf of the hobbies and interesting. What’s more, users can also
privately calculate the distance of two physically independent parties. i.e. the Hamming dis-
tance which was proposed in literature [23]. Furthermore, there are other applications, such
as anonymous authentication [8], location privacy [26], and privacy-preserving data mining
[24] etc.

Due to the extensive and important application, there were some secure private set inter-
section cardinality protocols had been proposed [11–13]. In these existed protocols, most of
them are classical cryptography. However, the increasing capability of quantum computing
or algorithms has posed huge challenge to the security of these classical PSI-CA protocols
which depend on some unconfirmed arduous hypothesis [14]. It means that if there were not
strict constraint condition, it is impossible for two-party computations to fulfill the uncon-
ditional security e.g., a large integer factoring problem, which can be easily got over by fast
quantum algorithms [14]. In addition, with the advent of quantum computer, these classical
PSI-CA protocols are vulnerable to attack by quantum computers. Therefore, quantum cryp-
tography which is the combination of quantum computer and cryptography is draw attention
to the scholars. For instance, quantum sealed auction protocol [27], quantum anonymous
voting protocol [28], quantum signature [29] and identity-based quantum signature [30].

The quantum protocols of PSI-CA [7, 8, 10] with unconditional security was also pro-
posed. Compared with classical cryptography, the most important advantage of quantum
cryptography is that an eavesdropper can easily be identified by using the characteristics of
quantum mechanics. To the best of our knowledge, these proposed quantum PSI-CA proto-
cols are all about two-party computation [8–10]. In order to solve the data sharing among
multi-party, we, based on the ideas of quantum PSI-CA [8] and quantum counting [16,
17], presented an unconditionally quantum secure multi-party set intersection cardinality
(QSMS-IC) protocol, which is extended two parties to multi-party. Unlike the existed pro-
tocols, our proposed QSMS-IC protocols has two clear advantages: for classical protocols it
has higher security, and for existed quantum protocols, it is a real multi-party protocol, has
wider applications and more practical.

In this paper, we present a practical and feasible quantum secure multi-party set inter-
section cardinality protocol, which can privately compute the intersection cardinality. The
organization of the paper is following, the second section is the basic knowledge about
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quantum and the definition of QSMS-IC. We present a quantum secure multi-party set inter-
section cardinality protocol in Section 3. In addition, the security analysis and correctness
are shown in Section 4. Finally, in Section 5, we give the conclusion of the paper.

2 Preliminaries

2.1 Quantum Computing

Quantum computing [17], a theory of physics, can also be used in computer science. In this
section we give the basics of quantum computing that we will use.

2.1.1 Quantum Bits

Quantum bit is just like the classical bit, 0 or 1 in classical computation are corresponding
to the states |0〉 and |1〉 in quantum, and |0〉 and |1〉 are two orthogonal unit vectors in 2-
dimensional Hilbert space, these two states form a perfect complete orthogonal basis, which
is also called computational basis. The qubits also is a linear combination state, namely
superpositions:

|�〉 = α|0〉 + β|1〉 (1)
Here, α, β are complex numbers, and |α2〉 + |β2〉 = 1. Similarly, multiple qubits can be

expressed, such as n-qubit can be in any superposition of the 2n basis states

|�〉 = α0|00...00〉 + α1|00...01〉 + . . .

+α(2
n − 1)|11...11〉 (2)

where
∑2n−1

i=0 |αi |2 = 1, |00...00〉, |00...01〉, . . . , |11...11〉 are a perfect orthogonal basis in
n-dimensional Hilbert space.

2.1.2 QuantumMeasurement

The measurement will use Hermitian operator, M = ∑
m mPm, Pm is the projector onto the

eigenspace of M with eigenvalue m. After measurement, we will get the state pm|�〉√
p(m)

with

probability p(m) = 〈�|Pm|�〉.
For instance, in 2-dimensional Hilbert space p0 = |0〉〈0| and p1 = |1〉〈1| are sets of

projector operators

P0|�〉 = |0〉〈0|(α|0〉 + β|1〉)
= α|0〉〈0|0〉 + β|0〉〈0|1〉
= α|0〉 (3)

P1|�〉 = |1〉〈1|(α|0〉 + β|1〉)
= α|1〉〈1|0〉 + β|1〉〈1|1〉
= β|1〉 (4)

p(0) = 〈�|P0|�〉
= (α∗〈0| + β∗〈1|)P0(α|0〉 + β|1〉)
= (α∗〈0| + β∗〈1|)α|0〉
= |α|2 (5)
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p(1) = 〈�|P1|� >

= (α∗〈0| + β∗〈1|)P1(α|0〉) + β|1〉)
= (α∗〈0| + β∗〈1|)β|1〉
= |β|2 (6)

So when making measurement on |�〉 = α|0〉+β|1〉, |�〉 will be collapsed into the state
|0〉 with probabilities |α|2 and state |1〉 with probabilities |β|2

Similarly, when measuring α0|0〉 + α1|1〉 + · · · + α2n−1|2n − 1〉 in computational basis
{|0〉, |1〉, |2〉, . . . , |2n − 1〉} we will get |i〉 with probability |αi |2.

2.1.3 Quantum Transformation

In quantum mechanics, unitary transformation is used to describe the evolution of a closed
system, |�〉 = U |φ〉, (|φ〉 is the input state, U |φ〉 is the output state, |�〉 is the final state
that is using unitary transformation U , and U+U = I , I is the identity operator, U+ is the
conjugate transpose of U . NOT gate is the simplest one-qubit quantum logical gate, it maps
|0〉 to |1〉 and |1〉 to |0〉. The Hadamard gate is another one-qubit quantum logical gate, it is
following,

H |0〉 = 1√
2
(|0〉 + |1〉)

H |1〉 = 1√
2
(|0〉 − |1〉) (7)

CNOT gate is multi-qubit quantum logic gate, CNOT gate: |00〉 → |00〉, |01〉 → |01〉,
|10〉 → |11〉 and |11〉 → |10〉, the first qubit in CNOT gate is called control qubit, and the
second qubit is called target qubit. In this regard, if the control qubit is 0, the target qubit
remain unchanged, if the control qubit is 1, then the target qubit need change.

Besides, we also need to use the quantum Fourier transformwhich is the standard discrete
Fourier transform. For x ∈ {0, 1, . . . M − 1}, the definition of quantum Fourier transform
and the inverse quantum Fourier transform is shown as follows [9]:

QFT : |x〉 → 1√
M

M−1∑

y=0

e2πi x
M

y |y〉 (8)

QFT −1 : |x〉 → 1√
M

M−1∑

y=0

e−2πi x
M

y |y〉 (9)

QFT −1(QFT |x〉) = QFT −1

⎛

⎝ 1√
M

M−1∑

y=0

e2πi x
M

y |y〉
⎞

⎠

= 1√
M

M−1∑

y=0

e2πi x
M

yQFT −1|y〉

= 1√
M

M−1∑

y=0

e2πi x
M

y

⎛

⎝ 1√
M

M−1∑

y=0
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e−2πi x
M

j |j〉
)

= 1√
M

M−1∑

j=0

M−1∑

y=0

e2πi x
M

(x−j)|j〉

= 1√
M

M−1∑

y=0

|x > + 1√
M

M−1∑

j=0:j �=
⎛

⎝
M−1∑

y=0

e2πi x
M

(x−j)|j〉
⎞

⎠

= |x〉 (10)

2.1.4 Quantum Parallelism

Quantum parallelism allows quantum computers to perform multiple computations simul-
taneously. In classical computer, parallel computing means that there are some processors
that do the different computation simultaneously. In quantum compute, multiple computa-
tions are realized by the superposition of multiple states with a single quantum processor. It
means that a quantum computer has more computation ability than a classical computer.

For example, If there is a 2-qubit quantum circuit, then we can make a quantum
transformation Uf on it, Uf is following:

Uf : |x〉|y〉 → |x〉|y ⊕ f (x)〉 (11)

f (x) : {0, 1} → {0, 1} is a function, ⊕ is the operator of module 2. When y = 0, the
second qubit is just the value f (x). It means Uf : |x〉|0〉 → |x〉|f (x)〉, Furthermore, when
|x〉 = |0〉+|1〉√

2
, then

Uf

|0〉 + |1〉√
2

|0〉 = Uf

|0〉|0〉 + |1〉|0〉√
2

= Uf |0〉|0〉 + Uf |1〉|0〉√
2

= |0〉f (0) + |1〉f (1)√
2

(12)

Uf computes f (0) and f (1) simultaneously. It can generalize a more general function,
f (x) : {0, 1}n → {0, 1}, such that Uf |x〉|y〉 = |x〉|y ⊕ f (x)〉, the qubit lengths of |x〉 and
|y〉are n and 1, respectively. Similarly, consider |x〉 = H⊗n and |y〉 = |0〉. Then

Uf |x〉|0〉 = Uf H⊗n|0〉⊗n|0〉

= Uf

[ |0〉 + |1〉√
2

]⊗n

|0〉

= Uf

⎛

⎝ 1√
2n

2n−1
∑

i=0

|j〉
⎞

⎠ |0〉

= 1√
2n

2n−1
∑

i=0

|i〉|f (i)〉 (13)
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So we know that the quantum transformation Uf can computes f (i) for all values of i

simultaneously by (13).

2.2 quantum Secure Multi-Party Set Intersection Cardinality

Here, we give the definition of quantum secure multi-party set intersection cardinality
(QSMS-IC).

Definition 1. QSMS-IC, there are n−1 clients Ui, i = 2, . . . , n with the input are private
set Ai, (i = 2, 3, . . . , n) and a server U1 with the set A1 = {1, . . . , 1}. After running
QSMS-IC protocol, the clients Ui can get nothing except the cardinality of the intersection
|A1∩A2∩· · ·∩An|. In addition, QSMS-IC should meet the following privacy requirements:

Clients Ui privacy: The clients Ui learn no information about the sets of other clients
except about the set size |Ai |.

Fairness: All the clients Ui are peer entities, and no one can get the private information
by deceiving from the others. Finally, all the clients get the result of cardinality with equal
chance.

3 Quantum Securemulti-party Set Intersection Cardinality

3.1 SystemModel

Based on the quantum parallelism, quantum PSI-CA [7, 8] and Grovers search algorithm
[18], we proposed a new QSMS-IC protocol. First we assume that the system model has n
entities which are one server and n − 1 clients, and the private set Ai = {ai

1, a
i
2, . . . , a

i
nc

}
the elements in Ai lie in ZN , where ZN = {0, 1, 2, . . . , N − 1}, N = 2n (i.e.n = logN ,).
Moreover, assume that

∑n
i=1 nci

< N
2 , N and nci

are public. Figure 1 is the system model
of QSMS-IC protocol.

As shown in Fig. 1, there are n − 1 clients and a server. In the protocol, we suppose all
the clients and server are semi-honest: they are curious with the privacy of others, but are
honest to carry out the operations of the scheme.

Fig. 1 System model
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3.2 Operation Steps

The protocol consists nine steps as follows(also show in Fig. 2).

Step1. The server U1 initializes the state |ϕ0〉 in |0〉⊗n, then applies H⊗n to |ϕ0〉, and gets
the state |ϕ1〉, |ϕ1〉 = H⊗n|0〉⊗n = 1√

N

∑N−1
i=1 |x〉.

Step2. Then the server U1 gives an ancillary state |r〉, r is a random number in set {0, 1},
and does a transformation Ufs on |ϕ1〉 ⊗ |r〉, Ufs is defined as follows:

fA1(x) =
{
1 if x ∈ A1
0 if x /∈ A1

(14)

Ufs : 1√
N

N−1∑

x=0

|x〉|r〉 → 1√
N

N−1∑

x=0

|x〉|r ⊕ fA1(x)〉 (15)

Let |ϕ2〉 = 1√
N

∑N−1
x=0 |x〉|r ⊕ fA1(x)〉. ⊕ is the operator of module 2. Then, we do

the same transformation Ufs on |ϕ2〉 ⊗ |1〉, as follow:

Ufs : |ϕ2〉|1〉 → 1√
N

N−1∑

x=0

|x〉|r ⊕ fA1(x) ⊕ 1〉 (16)

Let |ϕ′
2〉 = 1√

N

∑N−1
x=0 |x〉|r ⊕ fA1(x) ⊕ 1〉. Then the server U1 sends |ϕ2〉, |ϕ′

2〉 to the
client U2 through the quantum channel.

Fig. 2 Sequence diagram
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Step3. When the client U2 received the state |ϕ2〉, |ϕ′
2〉, then the client U2 will do another

transformation Ufc on state |ϕ2〉, the transformation Ufc is defined as follow:

fA2(x) =
{
1 if x ∈ A2
0 if x /∈ A2

(17)

Ufc : 1√
N

N−1∑

x=0

|x〉|r ⊗ fA1(x)〉|fA2(x)〉 → 1√
N

N−1∑

x=0

|x〉|(r ⊕ fA1(x)) × fA2(x)〉 (18)

Here, Let |ϕ3〉 = 1√
N

∑N−1
x=0 |x〉|(r ⊕ fA1(x)) × fA2(x)〉, × is an operator that is logical

multiplication. Then does the transformation Ufc on |ϕ′
2〉 as follow:

fA2(x) =
{
1 if x ∈ A2
0 if x /∈ A2

Ufc : |ϕ′
2〉|fA2(x)〉 →

1√
N

N−1∑

x=0

|x〉|(r ⊕ fA1(x) ⊕ 1) × fA2(x)〉 (19)

Let |ϕ′
3〉 = 1√

N

∑N−1
x=0 |x〉|(r ⊕ fA1(x) ⊕ 1) × fA2(x)〉. Then client U2 sends |ϕ3〉, |ϕ′

3〉
to the client U3 through the quantum channe2.

Step4. After client U3 receives |ϕ3〉, |ϕ′
3〉, the client U3 does the same transformation Ufc

on state |ϕ3〉. then we get the result:

Ufc(ϕ3) : 1√
N

N−1∑

x=0

|x〉|(r ⊕ fA1(x)) × fA2(x) × fA3(x)〉 (20)

Here, we use state Ufc(|ϕ3〉) to expressed the results. Then the client U3 does Ufc

transformation on |ϕ′
3〉. The result is Ufc(|ϕ′

3〉) = 1√
N

∑N−1
x=0 |x〉|(r ⊕ fA1(x) ⊕ 1) ×

fA2(x) × fA3(x)〉
Then send Ufc(|ϕ3〉), Ufc(|ϕ′

3〉) to the client U4 through the quantum channe3, after
the client U4 receives Ufc(|ϕ3〉), Ufc(|ϕ′

3〉), and does Ufc transformation on Ufc(|ϕ3〉),
Ufc(|ϕ′

3〉) respectively, then send the results to the next client and until the last client Un,
the last client Un does Ufc transformation respectively, uses |ϕ〉, |ϕ′〉 as the last results
which will be sent to the server U1.

Step5: when the server U1 receives the state |ϕ〉, it will do the transformation Ufs on
|ϕ〉 × |r〉.

Ufs (ϕ) = 1√
N

N−1∑

x=0

|x〉|(r ⊕ fA1(x))

×fA2(x) × · · · × fAn(x) ⊕ r〉 (21)

Then does Ufc on state Ufs (|ϕ〉)

Ufc (Ufs (ϕ)) = 1√
N

N−1∑

x=0

|x〉|[(r ⊕ fA1(x))

×fA2(x) × · · · × fAn(x) ⊕ r] × fA1(x)〉 (22)
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Let |ϕ4〉 = 1√
N

∑N−1
x=0 |x〉|[(r ⊕ fA1(x)) × fA2(x) × · · · × fAn(x) ⊕ r] × fA1(x)〉 When

the server U1 receives the state |ϕ′〉, it will do two Ufs transformation on |ϕ′〉

Ufs (|ϕ′〉 ⊕ |r〉) = 1√
N

N−1∑

x=0

|x〉|(r ⊕ fA1(x) ⊕ 1)

×fA2(x) × · · · × fAn(x) ⊕ r〉 (23)

Ufs

= 1√
N

N−1∑

x=0

|x〉|(r ⊕ fA1(x) ⊕ 1) × fA2(x) × . . .

×fAn(x) ⊕ r ⊕ fA1(x)〉 (24)

Let|ϕ′
4〉 = 1√

N

∑N−1
x=0 |x〉|(r ⊕ fA1(x) ⊕ 1) × fA2(x) × · · · × fAn(x) ⊕ r ⊕ fA1(x)〉.

Step6: Then the server U1 does Uf transformation on |ϕ′
4〉 and |ϕ4〉. Then get

|ϕ5〉 = 1√
N

N−1∑

x=0

|x〉|[(r ⊕ fA1(x)) × fA2(x) × . . .

×fAn(x) ⊕ r ⊕ fA1(x)]× ∼〉 (25)

where ∼= |[(r ⊕ fA1(x) ⊕ 1) × fA2(x) × · · · × fAn(x) ⊕ r ⊕ fA1(x)]〉, and |[(r ⊕
fA1(x)) × fA2(x) × · · · × fAn(x) ⊕ r ⊕ fA1(x)]× ∼〉 contains the classical information
about the cardinality of their intersection.

Step7: The state |ϕ5〉 carried the cardinality of their intersection, so we should extract the
intersection cardinality from |ϕ5〉, the server U1 prepares quantum state 1√

M

∑M−1
y=0 |y〉 ,

M is a big integer, so the value of 2π√
t (N−t)

+ π2

M2 |N − 2t | is very small (t is defined in

Step8). Let |ϕ6〉 = 1√
M

∑M−1
y=0 |y〉 ⊗ |ϕ5〉. Then, the server U1 does a quantum operator

CF on |ϕ6〉, the result is state |ϕ7〉, CF is the following:

CF : |ϕ6〉 → |ϕ7〉

CF : 1√
M

M−1∑

y=0

|y〉 ⊗ |ϕ5〉 → 1√
M

M−1∑

y=0

|y〉 ⊗ Gy |ϕ5〉 (26)

|ϕ7〉 = 1√
M

M−1∑

y=0

|y〉 ⊗ Gy |ϕ6〉 = 1√
M

M−1∑

y=0

|y〉 ⊗ Gy

1√
N

N−1∑

x=0

|x〉|[(r ⊕ fA1(x)) × fA2(x) × · · · × fAn(x)

⊕r ⊕ fA1(x)]× ∼〉 (27)

G is defined by G = Uϕ6Ufr , G is an operator of amplitude amplification .

Ufr |x〉|r〉 =
{ −|x〉|1〉 if r = 1

|x〉|0〉 if r = 0
(28)

Uϕ6 = 2|ϕ6〉〈ϕ6| − I (29)

I is the identity operator.
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Step8: The server U1 does QFT −1 on the first logM qubits of |ϕ7〉 and then measures the
first logM qubits to obtain |x〉, and outputs Nsin2( x

M
π) as the estimation of t , t is the

number of the items that the last one qubit of |ϕ6〉 is in |1〉, for example, just like |x〉|1〉
in |ϕ6〉 . If t < N

2 , then server U1 outputs
∑n

i=1 nci
−t

2 , means, |A1 ∩ A2 ∩ · · · ∩ An| =
∑n

i=1 nci
−t

2 ; otherwise (nc+ns+t)−N
2 , means, |A1 ∩ A2 ∩ · · · ∩ An| = (nc+ns+t)−N

2 .
Step9: The server sends the result t to all the clients.

If we want to whether someone is intercepting in the channel, the bait technology can
be used. That is, when qubit sequence are transmitted, the sender randomly inserts some
bait particles which is prepared randomly with either Z-basis (i.e.,{|0〉, |1〉} or X-basis
(i.e.,{ 1√

2
+ |1〉, 1√

2
− |1〉}. When the receiver received the sequence, the sender would pub-

lic the bait particles positions and the measurement basis. Then the receiver’s measures
the bait particles accord to the public and tells his measurement results to the sender. The
sender compares the receiver results with the bait particles of the initial and then analyzes
it. If the error is too much according to the channel noise, then drop the protocol and restart
transmitting. Otherwise, it will continue to proceed next step.

4 Analysis

Let’s proof the correctness. Based on the state |ϕ5〉 = 1√
N

∑N−1
x=0 |x〉|[(r ⊕ fA1(x)) ×

fA2(x) × · · · × fAn(x) ⊕ r × fA1(x)]× ∼〉, [(r ⊕ fA1(x)) × fA2(x) × · · · × fAn(x) ⊕ r ×
fA1(x)]× ∼ is 0 or 1, so we define

|α〉 = 1√
t
|x〉|1〉 (30)

|β〉 = 1√
t
|x〉|0〉 (31)

Then we know that the state |ϕ5〉 can be re-expressed by (32)

|ϕ5〉 =
√

N − t

N
|β〉 +

√
t

N
|α〉 (32)

Equation (32) means that |ϕ5〉 is the uniform superposition of all product states, |α〉 is
the uniform superposition of these product states satisfying [(r ⊕ fA1(x)) × fA2(x) × · · · ×
fAn(x)⊕r ×fA1(x)]× ∼= 1 and β is opposite of α , means [(r ⊕fA1(x))×fA2(x)×· · ·×
fAn(x) ⊕ r × fA1(x)]× ∼= 0. Obviously, α ⊥ β . if we choose θ ∈ (0, π

2 ), sin2θ = t
N
.

then sinθ =
√

t
N
, cosθ =

√
N−t
N

, and thus |ϕ4〉 = cos|β〉 + sin|α〉. Then , we can get the

following equations:

G|β〉 = Uϕ6Ufr |β〉 = Uϕ6 |β|〉
= (2|ϕ6〉〈ϕ6| − I )|β〉
= 2|ϕ6〉〈ϕ6|β〉 − |β〉
= 2cosθ |ϕ6〉 − |β〉
= 2cosθ(cosθ |β〉 + sinθ |α〉) − |β〉
= (2cos2θ − 1)|β〉 + 2sinθcosθ |α〉
= cos2θ |β〉 + sin2θ |α〉 (33)
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G|α〉 = Uϕ6Ufr |α〉 = Uϕ6(−|α|〉)
= (2|ϕ6〉〈ϕ6| − I )(−|α〉)
= 2|ϕ6〉〈ϕ6|α〉 + |α〉
= −2sinθ |ϕ6〉 + |α〉
= −2sinθ(cosθ |β〉 + sinθ |α〉) + |α〉
= −2sinθcosθ |β〉 + (1 − 2sin2θ)|α〉
= −sin2θ |β〉 + cos2θ |α〉 (34)

In the two-dimensional subspace, G is a rotation operator of angle 2θ oriented from |β〉
to |α〉 spanned by |α〉 and |β〉. From |ϕ6〉, apply G and rotate it toward |α〉 by 2θ . Reapply G

and rotate it close to |α〉. Moreover, there are two orthogonal states defined in the following:

|φ+〉 = 1√
2
(|β〉 − i|α〉) (35)

|φ−〉 = 1√
2
(|β〉 + i|α〉) (36)

G|φ+〉 = 1√
2
(G|β〉 − iG|α〉)

= 1√
2
(cos2θ |β〉 + sin2θ |α〉

+isin2θ |β − icos2θ |α〉)(by(33and34))

= ei2θ

√
2

(|β〉 − i|α〉)(by(ei2θ = cos2θ + isin2θ))

= ei2θ |φ+〉 (37)

G|φ−〉 = 1√
2
(G|β〉 + iG|α〉)

= 1√
2
(cos2θ |β〉 + sin2θ |α〉

−isin2θ |β + icos2θ |α〉)(by26and27)

= e−i2θ

√
2

(|β〉 + i|α〉)(by(e−i2θ = cos2θ − isin2θ))

= e−i2θ |φ−〉 (38)

|φ+〉 and |φ−〉 are eigenvectors of G, ei2θand e−i2θ are eigenvalues, respectively. Let

θ = πω , then |ϕ6〉 = cos|β〉 + sin|α〉 = eiπω√
2

|φ+〉 + e−iπω√
2

|φ−〉 .If we apply G rotation

operator to |ϕ6 for y times, then

Gy |ϕ6〉 = eiπ(2y+1)ω

√
2

|φ+〉 + e−iπ(2y+1)ω

√
2

|φ−〉 (39)
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Then, we can get

|ϕ8〉 = 1√
M

M−1∑

y=0

|y〉 ⊗ Gy |ϕ5〉

= 1√
M

M−1∑

y=0

[|y〉 ⊗ (
eiπ(2y+1)ω

√
2

|φ+〉 + e−iπ(2y+1)ω

√
2

|φ−〉)]

= eiπω

√
2M

M−1∑

y=0

ei2πyω|y〉|φ+〉 + e−iπω

√
2M

M−1∑

y=0

e−i2πyω|y〉|φ−〉

= eiπω

√
2M

M−1∑

y=0

ei2πyω|y〉|φ+〉

+e−iπω

√
2M

M−1∑

y=0

e−i2πyω(1−ω)|y〉|φ−〉 (40)

then applying QFT −1 to the first logM qubits of |ϕ8〉, we can get

QFT −1|ϕ7〉 = QFT −1

⎡

⎣ eiπω

√
2M

M−1∑

y=0

ei2πyω|y〉|φ+〉

+e−iπω

√
2M

M−1∑

y=0

ei2πy(1−ω)|y〉|φ−〉
⎤

⎦

= eiπω

√
2M

M−1∑

y=0

ei2πyω(QFT −1|y〉)|φ+〉

+e−iπω

√
2M

M−1∑

y=0

ei2πy(1−ω)(QFT −1|y〉)|φ−〉

= eiπω

√
2M

M−1∑

y=0

ei2πyω

(
1√
M

M−1∑

x=0

ei2π y
M

x |x〉
)

|φ+〉 + e−iπω

√
2M

M−1∑

y=0

ei2πy(1−ω)

(
1√
M

M−1∑

x=0

e−i2π y
M

x |x〉
)

|φ−〉

= eiπω

√
2

M−1∑

y=0

⎛

⎝ 1

M

M−1∑

y=0

ei2πy(ω− x
M

))|x〉
⎞

⎠ |φ+〉

+e−iπω

√
2

M−1∑

y=0

⎛

⎝ 1

M

M−1∑

y=0

ei2πy[(1−ω)− x
M

]|x〉
⎞

⎠ |φ−〉
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= eiπω

√
2

|̃x+〉|φ+〉 + e−iπω

√
2

|̃x−〉|φ−〉 (41)

with

|̃x+〉 =
M−1∑

y=0

⎛

⎝ 1

M

M−1∑

y=0

ei2πy(ω− x
M

)

⎞

⎠ |x〉 (42)

|̃x−〉 =
M−1∑

y=0

⎛

⎝ 1

M

M−1∑

y=0

ei2πy(1−ω− x
M

)

⎞

⎠ |x〉 (43)

Make a measurement on |̃x+〉 in the computational basis {|0〉, |1〉, . . . , |M − 1〉} then get
|x〉 with the probability | 1

M

∑M−1
y=0 ei2πy(ω− x

M
)|2. so,

P

(

| x

M
− ω| ≤ 1

M

)

= P(|x − Mω| ≤ 1)

= P(x = �Mω�) + P(x = �Mω�)

= | 1
M

M−1∑

y=0

ei2πy(ω− �Mω�
M

)|2

+| 1
M

M−1∑

y=0

ei2πy(ω− �Mω�
M

)|2

= | 1 − ei2πy(ω− �Mω�
M

)

M(1 − ei2πy(ω− �Mω�
M

))
|2

+| 1 − ei2πy(ω− �Mω�
M

)

M(1 − ei2πy(ω− �Mω�
M

))
|2

= | sin[πM(ω − �Mω�
M

)]
Msin[π(ω − �Mω�

M
)] |

2

+| sin[πM(ω − �Mω�
M

)]
Msin[π(ω − �Mω�

M
)] |

2

= sin2[πM(ω − �Mω�
M

)]
M2sin2[π(ω − �Mω�

M
)]

+ sin2[πM(ω − �Mω�
M

)]
M2sin2[π(ω − �Mω�

M
)]

≥ 1

M2sin2( π
2M )

+ ≥ 1

M2sin2( π
2M )

= ≥ 2

M2sin2( π
2M )

>
2

M2( π
2M )2

= 8

π2
(44)

After measuring, x
M

is close to or equal to ω with high probability. In fact, when make a
measurement on |̃x+〉, the probability of getting either �Mω� or �Mω� is at least 8

π2 , with
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the estimation ω within the error 1
M
. Similarly, make a measurement on |̃x−〉, the probability

of getting either �M(1 − ω)� or �M(1 − ω)� is at least 8
π2 , with the estimation 1−ω within

the error 1
M

, so x
M

is close to or equal to 1 − ω with high probability. For θ = πω and
sin2θ = t

N
, t = Nsin2πω.For the first case (i.e.,|̃x+〉 ), ω = x

M
, so t = Nsin2(π x

M
) ;for

the second case (i.e,|̃x−〉 ),ω ≈ 1 − x
M
, so t = Nsin2(π − π x

M
) = Nsin2(π x

M
).For the

two cases, get the same estimation t .

Theorem 1 [16]. For ∀M ∈ Z, |t − t̃ | ≤ 2π
M

√
t (N − t)+ π2

M2 |N −2t |, the least probability
is 8

π2 ,so t̃ is an estimate of t . the error is ε ≤ 2π
M

√
t (N − t) + π2

M2 |N − 2t |.
Then we know the relations between t and |A1 ∩ A2 ∩ · · · ∩ An|

|A1 ∩ A2 ∩ · · · ∩ An| = t (45)

In Step 8, we can get the estimation of t with the high probability p, and p ≥ 8
π2
, error is

ε, error is very small, and ε ≤ 2π
M

√
t (N − t) + π2

M2 |N − 2t |; so the QSMS-IC protocol can

get the estimation of |A1 ∩ A2 ∩ · · · ∩ An| with high probability p ≥ 8
π2

and small error ε.
Then analyze the security.
Theorem 2 (client Privacy). In QSMS-IC protocol, the client Ui can not get the infor-

mation about the elements of A1 except the set size, and the server U1 also can not get the
information about the elements of Ai except the set size.

Proof. In QSMS-IC protocol, the server U1 sends a quantum state |ϕ2〉 to the server U2,
without revealing the elements of the set. Though the state |ϕ2〉 including the information
of fA1(x), the client U2 cannot extract fA1(x) from |ϕ2〉 . Supposed that the quantum state
|ϕ2〉 consists of two subsystems: the n-qubit system C̃ and the 1-qubit system S̃ , S̃ is ancil-
lary system. Suppose the clients are half a honest client which is curious about other client’s
information and actually transmits personal information. The client makes a projective mea-
surement on |ϕ2〉 , it can get |x〉|r⊕fA1(x)〉 with probability 1

n
. Thus, S̃ can be characterized

by quantum ensemble ξ ≡ {px, ρS̃(x)}, and px = 1
n
,

ρS̃(x) = T r̃c(|x〉|r ⊕ fA1(x)〉〈r ⊕ fA1(x)|〈x|)
= |r ⊕ fA1(x)〉〈r ⊕ fA1(x)| (46)

For |ϕ2〉 = 1
N

∑N−1
x=0 |x〉|r⊕fA1(x)〉 , so S̃ can also be described by the following density

operator,

ρS̃(x) = T r̃c|ϕ2〉〈ϕ2|
= 〈0|ϕ2〉〈ϕ2|0〉 + 〈1|ϕ2〉〈ϕ2|1〉 + . . .

+〈N − 1|ϕ2〉〈ϕ2|N − 1〉
= N − t

N
|0〉〈0| + t

N
|1〉〈1| (47)

Thus, ρS̃ is the average state of S̃. based on Holevo bound [14], we can get

1 ≤ χ(ξ) = S(ρS̃) − 1

N

N−1∑

x=0

S(ρS̃(x))

= S(ρS̃)

= S(
N − t

N
|0〉〈0| + t

N
|1〉〈1|) (48)
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Get the maximum value at t = N
2 . namely

I ≤ S

(
1

2
|0〉〈0| + 1

2
|1〉〈1|

)

= 1 (49)

It is the upper bound that the clients can get from S̃ through the measurement. But the
client U2 does not know the random r which is selected by the server U1 , so H(r) = 1
(H(.)is Shannon entropy and S(.)is Von Neumann entropy). Namely, it encrypts fA1(x) by
using the random R in one-time pad method. So, from |ϕ2〉, U2 cannot get the information
of fA1(x).

In addition, if the client does not honestly execute this protocol, he can send a fake state
|X〉to the server, instead of the state |ϕ1〉. Accordingly, the returned state from the server
will be |x〉|r ⊕fA1(x)〉, not |ϕ2〉 . Due to the random number r obviously the client can still
not get any information about fA1(x) .

So, the client Ai can’t get the information of fA1(x), due to the random r . Therefore, in
QSMS-IC protocol, the client Ai can’t get the set elements of A1 except the set size nci

.
similarly the client A1 also can’t get the information of the elements of Ai set except the set
size.

5 Conclusion

In this paper, we proposed a protocol called Quantum Secure Multiparty Set Intersection
Cardinality Protocol to privately compute the cardinality of set intersection. Unlike the
classical PSI-CA protocols, the proposed QSMS-IC protocol achieves the unconditional
security, because it is guaranteed by the basic principle of quantum mechanics; compared
with quantum PSI-CA protocol for two-party set Intersection, the proposed protocol can
achieve multi-party set intersection. In addition, our proposed scheme is very simple to deal
with dynamic updating, because it only needs to compute some set operations if adding or
deleting a new client. What’s more, the applications of the protocol is frequently used in
large-scale social networks, for instance, users can privately calculate the common hobbies.
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