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Abstract
In this paper we present a deduction of the Hellmann-Feynman (HF) theorem for the low-
est eigenenergy E0 (λ) of a Hamiltonian H (λ), that is : its second-order derivative with

respect to he parameter λ,
∂2E0
∂λ2

, is always less than the expectation value of ∂2H(λ)

∂λ2
in the

ground state. We also point out that the above deduction does not hold for the FH theorem
in ensemble average. The electric polarizability of molecules is studied by the deduction of
the HF theorem

Keywords Hellmann-Feynman (HF) theorem · Eigenenergy E0 (λ) · Hamiltonian H (λ) ·
The expectation value

1 Introduction

In theoretical quantum physics and quantum chemistry the Hellmann-Feynman (HF) theo-
rem [1, 2] has been widely used for calculating various observables [3–6]. The Hellmann-
Feynman theorem states that when a system’s Hamiltonian, which depends upon a real
parameter λ, possesses its energy eigenvector |αn〉 , H |En〉 = En |En〉 with 〈En |En〉 = 1,
then

∂En(λ)

∂λ
= ∂ 〈En| H(λ) |En〉

∂λ
=

〈
En

∣∣∣∣∂H

∂λ

∣∣∣∣ En

〉
, (1)

Applying the HF theorem to multi-electron-neucleon interaction one can derive the electro-
static theorem [5]. By noticing that the HF theorem only deals with the first-order derivative
of the average energy (or H (λ)) with respect to λ, an interesting question thus naturally
arises: is there any physical rule or physical meaning which can be exposed by performing
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the second-order derivative ofE (λ)with respect to the parameter λ? This question has some
physical background, for instance, the electric polarizability, denoted as α in this paper, of
a molecule is a measure of its ability to respond to an electric field and acquires an electric
dipole moment, �μ = ∑

i qi�ri , where qi is the charge of the particle i at the location �ri . The
effect caused by an electric field �ε, applied in the x-direction with electric field strength ε,

which is assumed uniform over the molecule, is described by

H = H0 − �μ · �ε = H0 − μxε, μx = qX, (2)

whereH0 denotes the Hamiltonian of a molecule in the absence of the field, which is usually
taken as

H0 = P 2

2m
+ mω2

2
X2. (3)

In the context of quamtum mechanics, the expectation value of the electric dipole moment
operator μx in the presence of the electric field is the sum of a permanent dipole moment
μ0x and the contribution induced by the field, so we can expand

〈μx〉 = μ0x + αxxε + O
(
ε2

)
+ · · · , (4)

where αxx is named the polarizability in the x-direction [6]. For obtaining the polarizability,
one may use the HF theorem such that the variation of the energy En with respect to the
electric field strength ε is given by

dEn

dε
= 〈ψn| ∂H

∂ε
|ψn〉 = − 〈ψn| μx |ψn〉 , H |ψn〉 = En |ψn〉 . (5)

On the other hand, the energy En of the molecule in the presence of the electric field can be
Taylor-expanded relative to its energy En (0) in the absence of the field

En = En (0) +
(

dEn

dε

)
0
ε + 1

2

(
d2En

dε2

)
0
ε2 + 1

3!
(

d3En

dε3

)
0
ε3 + · · · (6)

the subscript 0 implies that the derivative is evaluated at ε = 0. Substituting (6) into (4)
yields

− dEn

dε
= 〈ψn| μx |ψn〉 = −

(
dEn

dε

)
0
−

(
d2En

dε2

)
0
ε − 1

2

(
d3En

dε3

)
0
ε2 − · · · , (7)

Then comparing (7) with (5) one can identify

μ0x = −
(

dEn

dε

)
0
, αxx = −

(
d2En

dε2

)
0
, · · · (8)

thus for obtaining αxx we need to enlarge the scope of usual FH theorem to the case about

the second-order derivative d2En

dε2
and explore its relation to d2H

dε2
. In the following we shall

analyse it and will obtain a deduction of the usual FH theorem, that is:
For the lowest eigenenergy E0 (λ), its second-order derivative with respect to parameter

λ is always less than the expectation value of ∂2H(λ)

∂λ2
in the ground state.

In Ref. [7] Fan and Chen has developed the HF theorem for pure state to mixed state
case, we shall also point out that the above deduction does not hold for the FH theorem in
ensemble avarage case.
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2 Deduction of the FH Theorem

Writing the eigenvalue equation of H as (H − En) |En〉 ≡ Gn |En〉 = 0,

(H − En) ≡ Gn. (9)

by considering that this equation holds for any variation of λ, we have

∂Gn

∂λ
|En〉 + Gn

∂

∂λ
|En〉 = 0, (10)

From the hermitian of the Hamiltonian operator H, it follows

〈En| ∂Gn

∂λ
+ ∂ 〈En|

∂λ
Gn = 0. (11)

Then (
〈En| ∂Gn

∂λ

)
∂

∂λ
|En〉 =

(
−∂ 〈En|

∂λ
Gn

)
∂

∂λ
|En〉 . (12)

Doing the second-order derivative with respect to λ for (10) leads to

∂2Gn

∂λ2
|En〉 + 2

∂Gn

∂λ

∂

∂λ
|En〉 + Gn

∂2

∂λ2
|En〉 = 0, (13)

then taking inner product with 〈En| we have

〈En| ∂2Gn

∂λ2
|En〉 + 2 〈En| ∂Gn

∂λ

∂

∂λ
|En〉 + 〈En| Gn

∂2

∂λ2
|En〉 = 0. (14)

After taking 〈En| Gn = 0 into account, (14) becomes to

〈En| ∂2Gn

∂λ2
|En〉 = −2 〈En| ∂Gn

∂λ

∂

∂λ
|En〉 (15)

then from (12) we have

〈En| ∂2Gn

∂λ2
|En〉 = 2

(
∂ 〈En|

∂λ

)
Gn

∂

∂λ
|En〉 (16)

or
∂2En

∂λ2
= 〈En| ∂2H

∂λ2
|En〉 − 2

(
∂ 〈En|

∂λ

)
(H − En)

(
∂ |En〉

∂λ

)
, (17)

which is sharply in contrast to (1), i.e., while one has ∂En(λ)
∂λ

= 〈En| ∂H
∂λ

|En〉 , one should

know ∂2En(λ)

∂λ2
�= 〈En| ∂2H

∂λ2
|En〉 . By setting

|ψ〉n = ∂

∂λ
|En〉 , (18)

we see
∂2En

∂λ2
= 〈En| ∂2H

∂λ2
|En〉 − 2 n 〈ψ | (H − En) |ψ〉n . (19)

In particular, if En is the ground state energy E0, then the value 0 〈ψ | H |ψ〉0 − E0 =(
∂
∂λ

〈E0|
)
H

(
∂
∂λ

|E0〉
) − E0 � 0, is always positive, so

∂2E0

∂λ2
= 〈E0| ∂2H

∂λ2
|E0〉 − 2 0 〈ψ | (H − E0) |ψ〉0 � 〈E0| ∂2H

∂λ2
|E0〉 , (20)

this states that for the lowest energy E0, its second-order derivative with respect to λ,
∂2E0
∂λ2

,

is always less than the expectation value of ∂2H

∂λ2
in the ground state, this is the deduction of

the Hellmann-Feynman theorem.
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For example, for a harmonic oscillator H0 = P 2

2m + mω2

2 X2, in its ground state |0〉 with
the energy E0 = �ω, we do have〈

0

∣∣∣∣∂2H0

∂ω2

∣∣∣∣ 0
〉

=
〈
0
∣∣∣mX2

∣∣∣ 0〉 = m

2

〈
0

∣∣∣∣(a + a†
)2∣∣∣∣ 0

〉
�

mω
= �

2ω
≥ ∂2E0

∂ω2
= 0, (21)

where X =
√

�

2mω

(
a + a†

)
, and noticing P = i

√
mω�
2

(
a† − a

)
we also have〈

0

∣∣∣∣∂2H0

∂m2

∣∣∣∣ 0
〉

=
〈
0

∣∣∣∣P 2

m3

∣∣∣∣ 0
〉

= −ω�

2m2

〈
0

∣∣∣∣(a − a†
)2∣∣∣∣ 0

〉
= ω�

2m2
≥ ∂2E0

∂m2
= 0, (22)

satisfying (20). We now apply (20) to studying the Electric polarizability of a molecule
described by the Hamiltonian in (2), we have〈

∂H

∂ε

〉
n

= 〈−qX〉n = ∂En (ε)

∂ε
. (23)

Supposing that the bound eigenstate of H = H0 − μxε is |n〉 (not H0’s eigenstate), from
[X,P ] = i�, we have

0 =
〈
n

∣∣∣∣ 1i� [P,H ]

∣∣∣∣ n
〉

=
〈
n

∣∣∣(qε − mω2X
)∣∣∣ n〉

. (24)

It follows
〈n| X |n〉 = qε

mω2
, (25)

and
∂En (ε)

∂ε
= − q2ε

mω2
, (26)

which is independent of n, so we can write

E (ε) = − q2ε2

2mω2
, (27)

As a result of (8), the polarizability is

αxx = −
(

d2E

dε2

)
0

= q2

mω2
. (28)

We now check if (28) agrees with (20), comparing with (20) we see indeed

d2E

dε2
= −q2

mω2
�

〈
E0

∣∣∣∣∂2H∂ε2

∣∣∣∣ E0

〉
= 0, (29)

since ∂2H

∂ε2
= 0. Further, from (20) we also obtain

−q2

mω2
= −2 n 〈ψ | (H − En) |ψ〉n , |ψ〉n = ∂

∂ε
|En〉 (30)

Since the Hamiltonian in (2) can be rewritten as

H = H0 − μxε = P 2

2m
+ mω2

2
X2 − εqX = ωa†a − εq

√
�

2mω

a† + a√
2

,

its eigenstate |En〉 is a coherent state. If |ψ〉n is normalizable, n 〈ψ | ψ〉n = c, we have the
expectation value of H in |ψ〉n

n 〈ψ |H | ψ〉n = q2

2mω2
+ cEn. (31)
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3 Some Discussions

We now consider two moleculars with mutual interaction in electric field described by the
Hamiltonian

H2 =
2∑

i=1

(
P 2

i

2m
+ mω2

2
X2

i

)
− εq (X1 + X2) − λX1X2 (32)

We calculate for the eigenvector of H2

〈ψn| X1 |ψn〉 = 1

i�
〈ψn| [P1, H2] |ψn〉 =

〈
ψn

∣∣∣(εq − mω2X1 + λX2

)∣∣∣ ψn

〉
〈ψn| X2 |ψn〉 = 1

i�
〈ψn| [P2, H2] |ψn〉 =

〈
ψn

∣∣∣(εq − mω2X2 + λX1

)∣∣∣ ψn

〉
(33)

noting
〈ψn| [Pi, H2] |ψn〉 = 0, i = 1, 2 (34)

so

〈ψn| (X1 + X2) |ψn〉 = 2qε

mω2 − λ
(35)

Thus the variation of the energy En with respect to the electric field strength ε is

dEn

dε
= −〈ψn| q (X1 + X2) |ψn〉 = − 2q2ε

mω2 − λ
(36)

which is not related to n, and the polarizability is

αxx = −
(

d2E

dε2

)
0

= 2q2

mω2 − λ
(37)

hence we see when two moleculars has inner interaction, its polarizability in electric field

becomes to 2q2

mω2−λ
. Moreover, when mω2 > λ, we do have

d2E0

dε2
= − 2q2

mω2 − λ
� 〈E0| ∂2H2

∂ε2
|E0〉 = 0, (38)

which conforms to the deduction of Hellmann-Feynman theorem.
By noticing that the usual Hellmann-Feynman theorem is about the pure state average

〈ψn| ∂H
∂λ

|ψn〉 , Fan and Chen developed it to the case of ensemble average (denoted by 〈 〉e)
and derived the generalized Hellmann-Feynman (GFHT) in Refs. [7–11]

d

dλ
〈H 〉e ≡ dĒ

dλ
=

〈(
1 + βĒ − βH

) ∂H

∂λ

〉
e

(39)

where 〈H 〉e ≡ Ē indicates the ensemble average, β = 1/KT, K is the Boltzmann constant.
When H is β−independent, (39) becomes to [7]

d

dλ
〈H (λ)〉e =

(
1 + β

∂

∂β

) 〈
∂H

∂λ

〉
e

= ∂

∂β

[
β

〈
∂H

∂λ

〉
e

]
. (40)

However, we do not have a general conclusion that ∂2En

∂λ2
� 〈En| ∂2H

∂λ2
|En〉 for all n, so the

above deduction does not hold for the ensemble avarage.
For example, when

H ′ =
(
0 λ

λ 1

)
, (41)
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so
∂2H ′

∂λ2
= 0, 〈En| ∂2H ′

∂λ2
|En〉 ≡ 0 (42)

On the other hand, H ′ eigenvalues are

E0 = 1 − √
1 + 4λ2

2
, E1 = 1 + √

1 + 4λ2

2
(43)

it follows
∂2E0

∂λ2
= − 4λ2(

1 + 4λ2
)3/2 < 0, (44)

which obeys the deduction of FH theorem, however, for E1 we can calculate

∂2E1

∂λ2
= 4λ2(

1 + 4λ2
)3/2 > 0 (45)

which does not obey the deduction of FH theorem.
In summary, we have presented the deduction of the Hellmann-Feynman (HF) theorem

for the lowest eigenenergy E0 (λ) of a Hamiltonian H (λ), that is : its second-order deriva-

tive with respect to he parameter λ,
∂2E0
∂λ2

, is always less than the expectation value of ∂2H(λ)

∂λ2

in the ground state. The electric polarizability of molecules is studied by the deduction of
the HF theorem.
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