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Abstract The aim of this paper is to investigate Cournot-type competition in the quantum
domain with the use of the Li-Du-Massar scheme for continuous-variable quantum games.
We derive a formula which, in a simple way, determines a unique Nash equilibrium. The
result concerns a large class of Cournot duopoly problems including the competition, where
the demand and cost functions are not necessary linear. Further, we show that the Nash equi-
librium converges to a Pareto-optimal strategy profile as the quantum correlation increases.
In addition to illustrating how the formula works, we provide the readers with two examples.

Keywords Quantum game · Cournot duopoly · Nash equilibrium

1 Introduction

Quantum game theory is an interdisciplinary field that combines quantum theory and game
theory. The first attempt to describe a game in the quantum domain applied to a simple coin
tossing game [1] and 2 × 2 bimatrix games [2, 3]. Shortly after that quantum game theory
has found applications in various fields including decision sciences [4–6], financial theory
[7–9] or mathematical psychology [5]. One of the economic applications concerns duopoly
problems. First attempts at exploring quantum game theory to this field were made in [10,
11]. Iqbal and Toor’s scheme was further investigated, for example, in [12–16], Li, Du and
Massar’s scheme in [17–21].
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The Li-Du-Massar scheme appears to be a generally accepted quantum scheme for
duopoly examples. It provides a “minimal” quantum structure of a two-player strategic-
form game with a continuum of strategies. The scheme, originally designed for Cournot
duopoly, enables the players to avoid an inefficient Nash equilibrium by means of quantum
resources. Moreover, it preserves the uniqueness of the solution [10, 22]. In essence, the
result has been proved for a specific Cournot duopoly example. Thus, the natural question
arises whether the uniqueness of Nash equilibrium and its efficiency (Pareto optimality)
hold in a more general setting. A natural generalization of the classically played Cournot
duopoly is due to [23] (see also [24]), where the payoff functions of the players are assumed
to depend on the demand and cost functions. Then suitable requirements on the payoff func-
tions such as concavity of the demand function and convexity of the cost function imply a
unique Nash equilibrium. This work is intended to generalize the above-mentioned fact to
the game played according to the Li-Du-Massar model.

Our presentation is self-contained, and designed to be accessible without a background
in game theory and quantum theory. The work starts with the important preliminaries from
game theory. We also provide the reader with the idea of quantum game introduced in [10].
In Section 4 our main results are stated and proved.

2 Preliminaries on Game Theory

For completeness of exposition, we recall some of the standards facts on game theory that
will be needed throughout the paper.

The basic object studied in game theory is a game in strategic form [25].

Definition 1 A game in strategic form is a triple (N, (Si)i∈N, (ui)i∈N) in which

– N = {1, 2, . . . , n} is the set of players,
– Si is the set of strategies of player i, for each player i ∈ N ,
– ui : S1 × · · · × Sn → R is a function associating each vector of strategies s = (si)i∈N

with the payoff ui(s) to player i, for each player i ∈ N .

Cournot duopoly problem is one of the earliest economic models of competition between
two players [26]. Player 1 and 2 offer quantities q1 and q2 of a homogeneous product and
compete for the same market of potential buyers. The price of the product is a decreasing
function that depends on the total quantity q = q1 +q2. Based on [27], the Cournot duopoly
example can be viewed as a strategic form game (N, (Si)i∈N, (ui)i∈N) with the components
defined as follows:

1. the set of players is N = {1, 2},
2. player i’s strategy set is Si = [0, ∞) with typical element qi ,
3. player i’s payoff function ui is given by formula

ui(q1, q2) = qiP (q1, q2) − cqi, q1, q2 ∈ [0, ∞), (1)

where P(q1, q2) represents the price of the product,

P(q1, q2) =
{

a − q1 − q2 if q1 + q2 < a,

0 if q1 + q2 ≥ a,
(2)

and c is a marginal cost such that a > c > 0.
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Nash equilibrium is a fundamental solution concept of strategic-form games. It is a way of
predicting reasonable results of the game, in particular, the result of the Cournot duopoly
example. A Nash equilibrium is a strategy vector at which each strategy is a best reply to
the other strategies [25].

Definition 2 A strategy vector s∗ = (s∗
1 , . . . , s∗

n) is a Nash equilibrium if for each player
i ∈ N and each strategy si ∈ Si the following is satisfied:

ui(s
∗) ≥ ui(si , s

∗−i ). (3)

The Cournot competition defined by (1) and (2) has the unique Nash equilibrium
(q∗

1 , q∗
2 ) = ((a−c)/3, (a−c)/3). The existence of the Nash equilibrium is due to concavity

of the payoff functions. In general, the following theorem can be proved [28].

Theorem 1 Let X1 and X2 be two compact convex sets in R
m and R

n, respectively. Let
u1(x1, x2) and u2(x1, x2) be two continuous functions on X1 × X2 such that u1(x1, x2) is
concave in x1 for fixed x2, and u2(x1, x2) is concave in x2 for fixed x1. Then there exists a
Nash equilibrium (x∗

1 , x∗
2 ).

One can check (see, for example [27]) that the Nash equilibrium in the Cournot compe-
tition is not efficient. The players can benefit from playing strategy profile (q1, q2) = ((a −
c)/4, (a − c)/4)). In other words, the Nash equilibrium (q∗

1 , q∗
2 ) = ((a − c)/3, (a − c)/3))

is not Pareto-optimal.

Definition 3 Given a collection of payoff functions

(u1(x1, . . . , xn), . . . , un(x1, . . . , xn)) (4)

for an n-person nonzero sum game, we say that a strategy profile (x∗
1 , . . . , x∗

n) is Pareto-
optimal if there is no strategy profile (x′

1, . . . , x
′
n) such that

ui(x
′
1, . . . , x

′
n) ≥ ui(x

∗
1 , . . . , x∗

n) (5)

for i ∈ {1, . . . , n} and

ui(x
′
1, . . . , x

′
n) > ui(x

∗
1 , . . . , x∗

n) (6)

for at least one i.

3 The Li-Du-Massar Quantum Duopoly Scheme

Let us recall the key elements of the Li-Du-Massar approach to duopoly examples [10]

(see [29] for more details). Let |00〉 be the initial state and J (γ ) = e−γ (a
†
1a

†
2−a1a2) be a

unitary operator, where γ ≥ 0 and a
†
i (ai) represents the creation (annihilation) operator of

electromagnetic field i. The player i’s strategies are unitary operators of the form

Di(xi) = exi (a
†
i −ai )/

√
2, xi ∈ [0, ∞), i = 1, 2. (7)

Then the operator J (γ ) and the strategy profile D1(x1) ⊗ D2(x2) determine the final state
|�f〉,

|�f〉 = J †(γ )(D1(x1) ⊗ D2(x2))J (γ )|00〉. (8)
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The quantity qi (or the price pi in the case of Bertrand duopoly examples) is then obtained

by performing the measurement Xi =
(
a

†
i + ai

)
/
√

2 on the state |�f〉. The result is

q1 = 〈�f|X1|�f〉 = x1 cosh γ + x2 sinh γ,

q2 = 〈�f|X2|�f〉 = x2 cosh γ + x1 sinh γ.
(9)

We obtain the quantum extension of the classical Cournot duopoly by substituting (9)
into (1),

u1(2)(x1, x2, γ ) =
{

q1(2)(a − c − eγ (x1 + x2)) if eγ (x1 + x2) < a,

−cq1(2) if eγ (x1 + x2) ≥ a.
(10)

We see from (7) that player i’s strategies can be identified with choosing xi ∈ [0, ∞).
Furthermore, (9) shows that the scheme correlates the players’ strategies, and the higher the
value of γ , the stronger correlation between x1 and x2.

It is worth pointing out that the resulting outputs (9) are not in units of xi’s. Given x1 and
x2 fixed, we see at once that qi increases with γ , for i = 1, 2.

For convenience, we normalize (9). It can be done by setting

xi �→ D
( xi

eγ

)
. (11)

It follows easily from (11) that the resulting quantities become

q ′
1 = x1 cosh γ + x2 sinh γ

eγ
, q ′

2 = x2 cosh γ + x1 sinh γ

eγ
. (12)

Both ways of describing the correlation of x1 and x2 are equivalent when studying the
Cournot duopoly by means of the Li-Du-Massar scheme. One can check that substituting
(12) into (1) results in the unique Nash equilibrium (x∗

1 , x∗
2 ) such that

x∗
1 = x∗

2 = a − c

3 + tanh γ
. (13)

In the case of (9) the Nash equilibrium strategy is

x∗
i = (a − c) cosh γ

1 + 2e2γ
, (14)

which is simply the division of (13) by eγ . Using (12) is more convenient, for example,
for comparing the classical and quantum equilibria. Note that strategy (13) ranges from the
classical equilibrium strategy (a−c)/3 to strategy (a−c)/4 being part of the Pareto-optimal
profile.

4 Quantum Approach to Generalized Cournot Duopoly

The generalization of the Cournot duopoly, as presented in [24], assumes that the price
P(q1, q2) of the product is a function of the demand D(q) that depends on the total quantity
q = q1 + q2. The cost function C(qi) returns the cost of producing qi units of the good. As
a result, player i’s payoff function is of the form

ui(q1, q2) = qiD(q1 + q2) − C(qi). (15)
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We now determine the payoff functions ui according to the Li-Du-Massar approach. It is
easily seen that the normalized quantities (12) satisfy equation q1 + q2 = x1 + x2. By
substituting (12) into (15) we obtain

u1(x1, x2, γ ) = x1 cosh γ+x2 sinh γ
eγ D(x1 + x2) − C

(
x1 cosh γ+x2 sinh γ

eγ

)
,

u2(x1, x2, γ ) = x2 cosh γ+x1 sinh γ
eγ D(x1 + x2) − C

(
x2 cosh γ+x1 sinh γ

eγ

)
,

(16)

for x1, x2 ≥ 0. As the following states, the payoff functions (16) determine the game with a
unique Nash equilibrium under some further restrictions on D and C.

Proposition 1 Suppose that the demand function D(x1 + x2) is a continuous, strictly
decreasing, concave function in the interval 0 ≤ x1 + x2 ≤ a, twice-differentiable in
0 < x1 + x2 < a that satisfies

D(0) > 0, D(x1 + x2) = 0, x1 + x2 ≥ a. (17)

Let the cost functionC(xi) be a strictly increasing, twice-differentiable, non-negative convex
function with

dC(0)

dxi

< D(0). (18)

Then, the game defined by (16) has exactly one Nash equilibrium given by (x∗, x∗). The
Nash equilibrium strategy is determined by the unique solution of the equation

D(2x) + (1 + tanh γ )x

2

dD(2x)

dx
− dC(x)

dx
= 0 (19)

in the interval 0 < x < a.

Proof Note that under the above assumptions,

∂2u1(2)(x1, x2, γ )

∂x2
1(2)

= 2 cosh γ

eγ

∂D(x1 + x2)

∂x1(2)

+x1(2) cosh γ + x2(1) sinh γ

eγ

∂2D(x1 + x2)

∂x2
1(2)

−
∂2C

(
x1(2) cosh γ+x2(1) sinh γ

eγ

)
∂x2

1(2)

< 0. (20)

Hence, ui for i = 1, 2 is strictly concave in xi , and by Theorem 1, there exists a Nash equi-
librium in the strategic-form game ({1, 2}, {[0, ∞), [0, ∞)}, {u1, u2}). We first prove that
there is no Nash equilibrium (x∗

1 , x∗
2 ) for which x∗

1 + x∗
2 ≥ a. According to the assumptions

on D(x1 + x2), in that case,

u1(2)(x1, x2, γ ) = −C

(
x1(2) cosh γ + x2(1) sinh γ

eγ

)
. (21)

Since −C((x1(2) cosh γ +x2(1) sinh γ )/eγ ) < 0 for x1 +x2 ≥ a and γ ≥ 0, and C is strictly
increasing, player i is better off choosing xi = 0 rather than x∗

i �= 0. Furthermore, it cannot
be the case that (x∗

1 , x∗
2 ) = (0, 0). Indeed, ∂u1(x1, x2, γ )/∂x1 is continuous with respect to

x1 and
∂u1(0, 0, γ )

∂x1
= cosh γ

eγ
D(0) − ∂C(0)

∂x1
> 0. (22)
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By the sign-preserving property, ∂u1(x1, 0, γ )/∂x1 > 0 in a nonempty interval (0, ε). It
follows that u1(x1, 0, γ ) is strictly increasing in (0, ε). Hence player 1 gains from switching
from strategy x1 = 0 to x1 > 0.

Let us assume that x∗
i > 0 for i = 1, 2. Since x∗

1 is an Nash equilibrium strategy, the
payoff function u1(x1, x

∗
2 , γ ) attains its maximum at x1 = x∗

1 . This gives

∂u1(x
∗
1 , x∗

2 , γ )

∂x1
= cosh γ

eγ
D(x∗

1 + x∗
2 ) + x∗

1 cosh γ + x∗
2 sinh γ

eγ

∂D(x∗
1 + x∗

2 )

∂x1

−
∂C

(
x∗

1 cosh γ+x∗
2 sinh γ

eγ

)
∂x1

= 0 (23)

and
∂u2(x

∗
1 , x∗

2 , γ )

∂x2
= cosh γ

eγ
D(x∗

1 + x∗
2 ) + x∗

2 cosh γ + x∗
1 sinh γ

eγ

∂D(x∗
1 + x∗

2 )

∂x2

−
∂C

(
x∗

2 cosh γ+x∗
1 sinh γ

eγ

)
∂x2

= 0. (24)

By assumption, the demand function D depends merely on x1 + x2. This clearly forces

∂D(x1 + x2)

∂x1
= ∂D(x1 + x2)

∂x2
. (25)

Subtracting (23) from (24) yields

x∗
1 − x∗

2

e2γ

∂D(x∗
1 + x∗

2 )

∂x1
−

⎛
⎝∂C

(
x∗

1 cosh γ+x∗
2 sinh γ

eγ

)
∂x1

−
∂C

(
x∗

2 cosh γ+x∗
1 sinh γ

eγ

)
∂x2

⎞
⎠ = 0.

(26)

Suppose, contrary to our claim, that x∗
1 > x∗

2 . Since C is convex, the derivatives ∂C/∂xi for
i = 1, 2 are increasing. Moreover ∂D(x1 + x2)/∂x1 < 0 for x1 + x2 �= 0. Using the fact
that inequality x1 > x2 is equivalent to

(x1 cosh γ + x2 sinh γ )e−γ > (x2 cosh γ + x1 sinh γ )e−γ (27)

for all γ ∈ [0, ∞), we conclude that the left-hand side of (26) is negative. So it must be the
case that x∗

1 ≤ x∗
2 . However, by a similar argument, (x∗

1 , x∗
2 ) with x∗

1 < x∗
2 does not satisfy

(26). We thus get x∗
1 = x∗

2 = x∗. Note that by the chain rule,

∂D(x1 + x2)

∂x1
= dD(x1 + x2)

d(x1 + x2)
(28)

and
∂C

(
x1 cosh γ+x2 sinh γ

eγ

)
∂x1

= cosh γ

eγ

dC
(

x1 cosh γ+x2 sinh γ
eγ

)

d
(

x1 cosh γ+x2 sinh γ
eγ

) . (29)

Since we can restrict our attention to x1 = x2 = x, the derivatives (28) and (29) in this case
can be written as

∂D(x1 + x2)

∂x1
= dD(2x)

d(2x)
= 1

2

dD(2x)

dx
,

∂C
(

x1 cosh γ+x2 sinh γ
eγ

)
∂x1

= cosh γ

eγ

dC(x)

dx
. (30)
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Taking into account (30) we can simplify (23) and (24) to

cosh γ

eγ

(
D(2x) − dC(x)

dx

)
+ x

2

dD(2x)

dx
= 0 (31)

which is equivalent to (19).
The proof is completed by showing that the equilibrium strategy x∗ is a unique root of

(19). Denote by h(x) the left hand-side of (19). Then, by assumption,

h(0) = D(0) − dC(0)

dx
> 0. (32)

Since D is continuous, D(a) = 0, and it has a negative and decreasing derivative, for
y ∈ (0, a/2) sufficiently close to a/2

h (y) ≈ (1 + tanh γ )y

2

dD(2y)

dx
− dC(y)

dx
< 0. (33)

Direct consideration of dh(x)/dx shows that h(x) is strictly decreasing in 0 < x < a/2.
Hence h(x) has a unique root in 0 < x < a/2. This finishes the proof.

Remark 1 Proposition 1 becomes a reformulation of Theorem 7.2.4 (see [24]) in case
γ = 0. According to that theorem, Nash equilibrium strategy is supposed to be the unique
solution of the equation

D(2x) + xD′(2x) − C′(x) = 0. (34)

if functions D and C satisfy similar assumptions to ones given in Proposition 1. In fact,
(34) does not lead us to the Nash equilibrium as term D′(2x) of (34) needs handling with
greater care. Applying (34) to the Cournot duopoly example mentioned in the Preliminaries
(see also Example 1 below) yields equation a − 4x − c = 0 whose the solution is part of
the Pareto-optimal outcome. In order to avoid this issue we need to take the derivative of
D(2x) with respect to 2x.

In what follows, we apply Proposition 1 to determine Nash equilibria in the quantum
Cournot-type competition. The following example gives us a look at how (19) simplifies the
analysis required to find Nash equilibria compared to [10, 22].

Example 1 Consider the classical Cournot duopoly example studied in [10, 22]. In that case,

D(x1 + x2) =
{

a − (x1 + x2) if x1 + x2 < a

0 otherwise
, C(xi) = cxi, c > 0. (35)

Now (19) becomes

a − 2x − (1 + tanh γ )x − c = 0. (36)

The above equation leads to the unique solution

x∗(γ ) = a − c

3 + tanh γ
−−−→
γ→∞

a − c

4
. (37)

It is equivalent with the result obtained by means of the best response correspondences [22].

As the next example illustrates, Nash equilibria can be easily found also in case the
demand function or the cost function are not linear.
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Example 2 Let

D(x1 + x2) =
{

a − (x1 + x2)
2 if x1 + x2 < a

0 otherwise
, C(xi) = √

axi . (38)

Equation (19) now reads

a − 2
√

ax − 4x2(2 + tanh γ ) = 0 (39)

yielding the unique positive solution

x∗(γ ) =
√

a

1 + √
9 + 4 tanh γ

. (40)

Having determined the Nash equilibrium in the game defined by (38) we are now in a
position to compare the resulting payoffs for different values of γ . Focusing on strategy
profiles in the form (x, x) we can use ui(x1, x2, 0) to study the payoffs in both the classical
and quantum game as we have ui(x, x, 0) = ui(x, x, γ ). A direct calculation shows that

ui(x
∗(0), x∗(0), 0) =

√
a3

8
<

√
a3

(
4 tanh γ + √

4 tanh γ + 9 + 5
)

(√
4 tanh γ + 9 + 1

)3

= ui(x
∗(γ ), x∗(γ ), 0) (41)

for γ ∈ (0,∞). The value ui(x
∗(γ ), x∗(γ ), 0) converges to

√
a3

(
13

√
13 − 19

)
/216 ≈

0.129
√

a3 as γ increases to infinity (see, Fig. 1).

In the classical version of the Cournot problem presented in Example 1, the Nash equi-
librium is not efficient. Both players could strictly benefit from playing ((a − c)/4, (a −
c)/4)–the Pareto-optimal profile that is the limit of Nash equilibria in the Li-Du-Massar
approach to the game as γ goes to infinity. The same applies to Example 2. The limit of the
right-hand side of inequality (41) is the maximal payoff that both players can gain in the
game. It turns out that this is a general result.

Fig. 1 The values of payoff function ui in Example 2 for a = 1
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Proposition 2 Let (x∗(γ ), x∗(γ )) be a Nash equilibrium in the Li-Du-Massar approach
to the generalized Cournot duopoly. Then a strategy profile (x∗, x∗) such that x∗ =
limγ→∞ x∗(γ ) is Pareto-optimal.

Proof We obtain the Pareto-optimal profile in the classical Cournot duopoly by solving the
following problem

arg max
x1,x2≥0

(u1(x1, x2, 0) + u2(x1, x2, 0)). (42)

By the definition of u1 and u2 we have

u1(x1, x2, 0) + u2(x1, x2, 0) = (x1 + x2)D(x1 + x2) − (C(x1) + C(x2)). (43)

As C is convex, it follows that

C(x1) + C(x2) ≥ 2C

(
x1 + x2

2

)
. (44)

Hence it is sufficient to consider

arg max
0≤x≤a/2

(xD(2x) − C(x)) (45)

in order to obtain a solution of (42). Write g(x) = xD(2x) − C(x). Then

d2g(x)

dx2
= 2

dD(2x)

dx
+ x

d2D(2x)

dx2
− d2C(x)

dx2
< 0. (46)

in the interval 0 < x < a/2. We conclude from (46) that g is strictly concave in 0 ≤ x ≤
a/2, and finally that a local maximum x∗ of g is unique and global. Clearly

dg(x∗)
dx

= D(2x∗) + x∗ dD(2x∗)
dx

− dC(x∗)
dx

= 0. (47)

Note that (47) is the limit of (19) as γ goes to infinity. We know from Proposition 1 that (19)
gives a Nash equilibrium strategy in the quantum Cournot duopoly. Thus, (19) determines
the Pareto-optimal equilibrium as γ approaches infinity. This is the desired conclusion.

5 Conclusions

Studies on quantum game theory so far have given us a lot of information about how specific
games can be described in the quantum domain. The work presented in this paper was an
attempt to generalize some of the existing results rather than examine another game. Our
research has shown that the results concerning a Cournot duopoly example can be extended
to a wide class of games. In each case of the Cournot-type competition including nonlinear
demand and cost functions, the Li-Du-Massar approach to the game implies the unique
Nash equilibrium converging to the Pareto-optimal outcome as the entanglement measure
goes to infinity. The equilibrium can be easily found by solving an equation that is of similar
complexity than one in the classical case.
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